# Hermite–Hadamard type inequalities for m-convex and $$( \alpha , m)$$-convex functions

## Abstract

In this paper, some new inequalities of the Hermite–Hadamard type for the classes of functions whose derivatives’ absolute values are m-convex and $$( \alpha , m)$$-convex are obtained. The results obtained in this work extend and improve the corresponding ones in the literature. Some applications to special means of real numbers are also given.

## Introduction

Let a real function f be defined on some nonempty interval I of real numbers. The function $$f:I\rightarrow \mathbb{R}$$ is said to be convex if the inequality

$$f \bigl( tu+ ( 1-t ) v \bigr) \leq tf ( u ) + ( 1-t ) f ( v )$$

holds for all $$u,v\in I$$ and $$t\in [ 0,1 ]$$.

Convexity in connection with integral inequalities is an interesting research area since much attention has been given to studying the concept of convexity and its variant forms in recent years. Some of the most useful inequalities related to the integral mean of a convex function are Hermite–Hadamard’s inequality, Jensen’s inequality, and Hardy’s inequality (see [8, 2325, 31]). Hermite–Hadamard’s inequality provides a necessary and sufficient condition for a function to be convex. This well-known result of Hermite and Hadamard is stated as follows:

If f is a convex function on some nonempty interval I of real numbers and $$[ u,v ] \in I$$ with $$u< v$$, then

$$f \biggl( \frac{u+v}{2} \biggr) \leq \frac{1}{v-u} \int _{u}^{v}f ( x ) \,dx\leq \frac{f ( u ) +f ( v ) }{2}.$$
(1)

This double inequality may be regarded as a refinement of the concept of convexity, and it follows easily from Jensen’s inequality. Recently, a remarkable variety of generalizations and extensions have been considered for the concept of convexity, and related Hermite–Hadamard type integral inequalities have been studied by many researchers (see, for example, [1, 2, 6, 10, 11, 13, 17, 19, 21, 26, 28, 29, 32, 33] and the references cited therein).

## Preliminaries

We recall the following well-known results and concepts.

Toader  introduced the concept of m-convex functions as follows.

### Definition 2.1

()

Let $$m\in [ 0,1 ]$$. The function $$f: [ 0,v ] \rightarrow \mathbb{R}$$ is said to be m-convex if

$$f \bigl( tx+m ( 1-t ) y \bigr) \leq tf ( x ) +m ( 1-t ) f ( y )$$

is satisfied for every $$x,y\in [ 0,v ]$$ and $$t\in [ 0,1 ]$$.

It can be easily seen that for $$m=1$$, m-convexity reduces to the classical convexity of functions.

Miheşan  defined the concept of $$( \alpha ,m )$$-convex functions as follows.

### Definition 2.2

()

Let $$\alpha ,m \in [ 0,1 ]$$. The function $$f: [ 0,v ] \rightarrow \mathbb{R}$$ is said to be $$( \alpha ,m )$$-convex if

$$f \bigl( tx+m ( 1-t ) y \bigr) \leq t^{\alpha }f ( x ) +m \bigl( 1-t^{\alpha } \bigr) f ( y )$$

is satisfied for every $$x,y\in [ 0,v ]$$ and $$t\in [ 0,1 ]$$.

Obviously, $$( \alpha ,m )$$-convexity reduces to m-convexity for $$\alpha =1$$ and classical convexity for $$\alpha =m=1$$.

For recent results, improvements and generalizations of the concepts of m-convexity and $$(\alpha ,m)$$-convexity, please refer to the monographs [35, 9, 14, 15, 18, 20, 27, 30, 34, 35, 37, 38].

In , Dragomir and Agarwal proved the following result connected with the right part of (1).

### Lemma 2.1

()

Let$$f:I^{\circ }\subseteq \mathbb{R} \rightarrow \mathbb{R}$$be a differentiable function on$$I^{\circ }$$ (interior ofI) and$$u,v\in I^{\circ }$$with$$u< v$$. If$$f^{\prime }\in L [ a,b ]$$, then

$$\frac{f ( u ) +f ( v ) }{2}-\frac{1}{v-u}\int _{u}^{v}f ( x ) \,dx=\frac{v-u}{2} \int _{0}^{1} ( 1-2t ) f^{\prime } \bigl( tu+ ( 1-t ) v \bigr) \,dt.$$

Bakula et al.  established the following result by using Lemma 2.1 and Hölder’s integral inequality.

### Theorem 2.1

Suppose thatIis an open real interval such that$$[ 0,\infty ) \subset I$$, and let$$0\leq u< v<\infty$$. Consider the differentiable function$$f:I\rightarrow \mathbb{R}$$onIsuch that$$f^{\prime }\in L [ u,v ]$$. If$$\vert f^{\prime } \vert ^{q}$$is anm-convex function on$$[ u,v ]$$for some$$m\in ( 0,1 ]$$and$$q\geq 1$$, then

\begin{aligned}& \biggl\vert \frac{f ( u ) +f ( v ) }{2}- \frac{1}{v-u}\int _{u}^{v}f ( x ) \,dx \biggr\vert \\& \quad \leq \frac{v-u}{4}\min \biggl\{ \biggl( \frac{ \vert f^{\prime } ( u ) \vert ^{q}+m \vert f^{\prime } ( \frac{v}{m} ) \vert ^{q}}{2} \biggr) ^{\frac{1}{q}}, \biggl( \frac{m \vert f^{\prime } ( \frac{u}{m} ) \vert ^{q}+ \vert f^{\prime } ( v ) \vert ^{q}}{2} \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}

İşcan  obtained the following integral inequality which gives better results than the classical Hölder integral inequality.

### Theorem 2.2

(Hölder–İşcan integral inequality)

Letfandgbe two real functions defined on$$[ u,v ]$$. If$$\vert f \vert ^{p}$$and$$\vert g \vert ^{q}$$are integrable functions on$$[ u,v ]$$for$$p>1$$and$$1/p+1/q=1$$, then

\begin{aligned} \int _{u}^{v} \bigl\vert f ( x ) g ( x ) \bigr\vert \,dx &\leq \frac{1}{v-u} \biggl\{ \biggl( \int _{u}^{v} ( v-x ) \bigl\vert f ( x ) \bigr\vert ^{p}\,dx \biggr) ^{\frac{1}{p}} \biggl( \int _{u}^{v} ( v-x ) \bigl\vert g ( x ) \bigr\vert ^{q}\,dx \biggr) ^{\frac{1}{q}} \\ &\quad{} + \biggl( \int _{u}^{v} ( x-u ) \bigl\vert f ( x ) \bigr\vert ^{p}\,dx \biggr) ^{\frac{1}{p}} \biggl( \int _{u}^{v} ( x-u ) \bigl\vert g ( x ) \bigr\vert ^{q}\,dx \biggr) ^{\frac{1}{q}} \biggr\} \\ &\leq \biggl( \int _{u}^{v} \bigl\vert f ( x ) \bigr\vert ^{p}\,dx \biggr) ^{\frac{1}{p}} \biggl( \int _{u}^{v} \bigl\vert g ( x ) \bigr\vert ^{q}\,dx \biggr) ^{\frac{1}{q}}. \end{aligned}

İşcan  proved the following Hermite–Hadamard type inequality by using Lemma 2.1 and the Hölder–İşcan integral inequality.

### Theorem 2.3

Suppose that$$f:I^{\circ }\subseteq \mathbb{R} \rightarrow \mathbb{R}$$is a differentiable function on$$I^{\circ }$$and$$u,v\in I^{\circ }$$with$$u< v$$. If$$\vert f^{\prime } \vert ^{q}$$is a convex function on$$[ u,v ]$$, then

\begin{aligned}& \biggl\vert \frac{f ( u ) +f ( v ) }{2}- \frac{1}{v-u}\int _{u}^{v}f ( x ) \,dx \biggr\vert \\& \quad \leq \frac{v-u}{4 ( p+1 ) ^{\frac{1}{p}}} \biggl\{ \biggl( \frac{2 \vert f^{\prime } ( u ) \vert ^{q}+ \vert f^{\prime } ( v ) \vert ^{q}}{3} \biggr)^{\frac{1}{q}}+ \biggl( \frac{ \vert f^{\prime } ( u ) \vert ^{q}+2 \vert f^{\prime } ( v ) \vert ^{q}}{3} \biggr)^{\frac{1}{q}} \biggr\} . \end{aligned}
(2)

In , a different representation of the Hölder–İşcan integral inequality was given as follows.

### Theorem 2.4

(Improved power-mean integral inequality)

Letfandgbe two real functions defined on$$[ u,v ]$$. If$$\vert f \vert$$, $$\vert f \vert \vert g \vert ^{q}$$are integrable functions on$$[ u,v ]$$for$$q\geq 1$$, then

\begin{aligned}& \int _{u}^{v} \bigl\vert f ( x ) g ( x ) \bigr\vert \,dx \\& \quad\leq \frac{1}{v-u} \biggl\{ \biggl( \int _{u}^{v} ( v-x ) \bigl\vert f ( x ) \bigr\vert \,dx \biggr) ^{1- \frac{1}{q}} \biggl( \int _{u}^{v} ( v-x ) \bigl\vert f ( x ) \bigr\vert \bigl\vert g ( x ) \bigr\vert ^{q}\,dx \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{u}^{v} ( x-u ) \bigl\vert f ( x ) \bigr\vert \,dx \biggr) ^{1- \frac{1}{q}} \biggl( \int _{u}^{v} ( x-u ) \bigl\vert f ( x ) \bigr\vert \bigl\vert g ( x ) \bigr\vert ^{q}\,dx \biggr) ^{\frac{1}{q}} \biggr\} \\& \quad \leq \biggl( \int _{u}^{v} \bigl\vert f ( x ) \bigr\vert \,dx \biggr) ^{1-\frac{1}{q}} \biggl( \int _{u}^{v} \bigl\vert f ( x ) \bigr\vert \bigl\vert g ( x ) \bigr\vert ^{q}\,dx \biggr) ^{\frac{1}{q}}. \end{aligned}

## Main results

Now we are in a position to establish some new Hermite–Hadamard type inequalities for the classes of m-convex and $$( \alpha , m)$$-convex functions.

### Theorem 3.1

Suppose thatIis an open real interval such that$$[ 0,\infty ) \subset I$$, and let$$0\leq u< v<\infty$$. Consider the differentiable function$$f:I\rightarrow \mathbb{R}$$onIsuch that$$f^{\prime }\in L [ u,v ]$$. If$$\vert f^{\prime } \vert ^{q}$$is anm-convex function on$$[ u,v ]$$for some$$m\in ( 0,1 ]$$and$$q>1$$, $$q=\frac{p}{p-1}$$, then

\begin{aligned} \biggl\vert \frac{f ( u ) +f ( v ) }{2}- \frac{1}{v-u}\int _{u}^{v}f ( x ) \,dx \biggr\vert \leq \frac{v-u}{4 ( p+1 ) ^{\frac{1}{p}}} \bigl( \lambda _{1}^{\frac{1}{q}}+ \lambda _{2}^{\frac{1}{q}} \bigr), \end{aligned}
(3)

where

\begin{aligned}& \lambda _{1}=\min \biggl\{ \frac{2 \vert f^{\prime } ( u ) \vert ^{q}+m \vert f^{\prime } ( \frac{v}{m} ) \vert ^{q}}{3},\frac{2m \vert f^{\prime } ( \frac{u}{m} ) \vert ^{q}+ \vert f^{\prime } ( v ) \vert ^{q}}{3} \biggr\} , \\& \lambda _{2}=\min \biggl\{ \frac{ \vert f^{\prime } ( u ) \vert ^{q}+2m \vert f^{\prime } ( \frac{v}{m} ) \vert ^{q}}{3},\frac{m \vert f^{\prime } ( \frac{u}{m} ) \vert ^{q}+2 \vert f^{\prime } ( v ) \vert ^{q}}{3} \biggr\} . \end{aligned}

### Proof

From Lemma 2.1 and the Hölder–İşcan integral inequality, we have

\begin{aligned}& \biggl\vert \frac{f ( u ) +f ( v ) }{2}- \frac{1}{v-u}\int _{u}^{v}f ( x ) \,dx \biggr\vert \\& \quad \leq \frac{v-u}{2} \int _{0}^{1} \vert 1-2t \vert \bigl\vert f^{\prime } \bigl( tu+ ( 1-t ) v \bigr) \bigr\vert \,dt \\& \quad \leq \frac{v-u}{2} \biggl\{ \biggl( \int _{0}^{1} ( 1-t ) \vert 1-2t \vert ^{p}\,dt \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{1} ( 1-t ) \bigl\vert f^{\prime } \bigl( tu+ ( 1-t ) v \bigr) \bigr\vert ^{q}\,dt \biggr) ^{ \frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{1}t \vert 1-2t \vert ^{p} \,dt \biggr) ^{ \frac{1}{p}} \biggl( \int _{0}^{1}t \bigl\vert f^{\prime } \bigl( tu+ ( 1-t ) v \bigr) \bigr\vert ^{q}\,dt \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}

From m-convexity of $$\vert f^{\prime } \vert ^{q}$$ on $$[ u,v ]$$ for all $$t\in [ 0,1 ]$$ we have

\begin{aligned} \int _{0}^{1}t \bigl\vert f^{\prime } \bigl( tu+ ( 1-t ) v \bigr) \bigr\vert ^{q}\,dt =& \int _{0}^{1}t \biggl\vert f^{\prime } \biggl( tu+m ( 1-t ) \frac{v}{m} \biggr) \biggr\vert ^{q}\,dt \\ \leq &\frac{2 \vert f^{\prime } ( u ) \vert ^{q}+m \vert f^{\prime } ( \frac{v}{m} ) \vert ^{q}}{6}, \end{aligned}

and analogously

\begin{aligned} \int _{0}^{1}t \bigl\vert f^{\prime } \bigl( tu+ ( 1-t ) v \bigr) \bigr\vert ^{q}\,dt =& \int _{0}^{1}t \biggl\vert f^{\prime } \biggl( mt\frac{u}{m}+ ( 1-t ) v \biggr) \biggr\vert ^{q} \,dt \\ \leq &\frac{2m \vert f^{\prime } ( \frac{u}{m} ) \vert ^{q}+ \vert f^{\prime } ( v ) \vert ^{q}}{6}. \end{aligned}

So we can write

\begin{aligned}& \int _{0}^{1}t \bigl\vert f^{\prime } \bigl( tu+ ( 1-t ) v \bigr) \bigr\vert ^{q}\,dt \\& \quad \leq \min \biggl\{ \frac{2 \vert f^{\prime } ( u ) \vert ^{q}+m \vert f^{\prime } ( \frac{v}{m} ) \vert ^{q}}{6}, \frac{2m \vert f^{\prime } ( \frac{u}{m} ) \vert ^{q}+ \vert f^{\prime } ( v ) \vert ^{q}}{6} \biggr\} . \end{aligned}
(4)

Similarly, we have

\begin{aligned}& \int _{0}^{1} ( 1-t ) \bigl\vert f^{\prime } \bigl( tu+ (1-t ) v \bigr) \bigr\vert ^{q}\,dt \\& \quad \leq \min \biggl\{ \frac{ \vert f^{\prime } ( u ) \vert ^{q}+2m \vert f^{\prime } ( \frac{v}{m} ) \vert ^{q}}{3},\frac{m \vert f^{\prime } ( \frac{u}{m} ) \vert ^{q}+2 \vert f^{\prime } ( v ) \vert ^{q}}{3} \biggr\} . \end{aligned}
(5)

Taking into account that

\begin{aligned} \int _{0}^{1}t \vert 1-2t \vert ^{p} \,dt =& \int _{0}^{1} ( 1-t ) \vert 1-2t \vert ^{p}\,dt \\ =&\frac{1}{2 ( p+1 ) }, \end{aligned}
(6)

we deduce from (4), (5), and (6) inequality (3). □

### Remark 3.1

Choosing $$m=1$$ in inequality (3), we get inequality (2).

### Theorem 3.2

Suppose thatIis an open real interval such that$$[ 0,\infty ) \subset I$$, and let$$0\leq u< v<\infty$$. Consider the differentiable function$$f:I\rightarrow \mathbb{R}$$onIsuch that$$f^{\prime }\in L [ u,v ]$$. If$$\vert f^{\prime } \vert ^{q}$$is anm-convex function on$$[ u,v ]$$for some$$m\in ( 0,1 ]$$and$$q\geq 1$$, then

\begin{aligned} \biggl\vert \frac{f ( u ) +f ( v ) }{2}- \frac{1}{v-u}\int _{u}^{v}f ( x ) \,dx \biggr\vert \leq \frac{v-u}{8} \bigl( \mu _{1}^{\frac{1}{q}}+\mu _{2}^{\frac{1}{q}} \bigr), \end{aligned}
(7)

where

\begin{aligned}& \mu _{1}=\min \biggl\{ \frac{3 \vert f^{\prime } ( u ) \vert ^{q}+m \vert f^{\prime } ( \frac{v}{m} ) \vert ^{q}}{4}, \frac{3m \vert f^{\prime } ( \frac{u}{m} ) \vert ^{q}+ \vert f^{\prime } ( v ) \vert ^{q}}{4} \biggr\} , \\& \mu _{2}=\min \biggl\{ \frac{ \vert f^{\prime } ( u ) \vert ^{q}+3m \vert f^{\prime } ( \frac{v}{m} ) \vert ^{q}}{4}, \frac{m \vert f^{\prime } ( \frac{u}{m} ) \vert ^{q}+3 \vert f^{\prime } ( v ) \vert ^{q}}{4} \biggr\} . \end{aligned}

### Proof

Using Lemma 2.1 and an improved power-mean integral inequality, we have

\begin{aligned}& \biggl\vert \frac{f ( u ) +f ( v ) }{2}- \frac{1}{v-u}\int _{u}^{v}f ( x ) \,dx \biggr\vert \\& \quad \leq \frac{v-u}{2.4^{\frac{1}{p}}} \biggl\{ \biggl( \int _{0}^{1} ( 1-t ) \vert 1-2t \vert \bigl\vert f^{ \prime } \bigl( tu+ ( 1-t ) v \bigr) \bigr\vert ^{q} \,dt \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{1} ( 1-t ) \vert 1-2t \vert \bigl\vert f^{\prime } \bigl( tu+ ( 1-t ) v \bigr) \bigr\vert ^{q} \,dt \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}

By m-convexity of $$\vert f^{\prime } \vert ^{q}$$ on $$[ u,v ]$$ for all $$t\in [ 0,1 ]$$ we have

\begin{aligned} \int _{0}^{1}t \vert 1-2t \vert \bigl\vert f^{\prime } \bigl( tu+ ( 1-t ) v \bigr) \bigr\vert ^{q}\,dt \leq \frac{3 \vert f^{\prime } ( u ) \vert ^{q}+m \vert f^{\prime } ( \frac{v}{m} ) \vert ^{q}}{16}, \end{aligned}

and analogously

$$\int _{0}^{1}t \vert 1-2t \vert \bigl\vert f^{\prime } \bigl( tu+ ( 1-t ) v \bigr) \bigr\vert ^{q}\,dt\leq \frac{3m \vert f^{\prime } ( \frac{u}{m} ) \vert ^{q}+ \vert f^{\prime } ( v ) \vert ^{q}}{16}.$$

So we obtain

\begin{aligned}& \int _{0}^{1}t \vert 1-2t \vert \bigl\vert f^{\prime } \bigl( tu+ ( 1-t ) v \bigr) \bigr\vert ^{q}\,dt \\& \quad \leq \min \biggl\{ \frac{3 \vert f^{\prime } ( u ) \vert ^{q}+m \vert f^{\prime } ( \frac{v}{m} ) \vert ^{q}}{16}, \frac{3m \vert f^{\prime } ( \frac{u}{m} ) \vert ^{q}+ \vert f^{\prime } ( v ) \vert ^{q}}{16} \biggr\} . \end{aligned}
(8)

Similarly, we have

\begin{aligned}& \int _{0}^{1} ( 1-t ) \vert 1-2t \vert \bigl\vert f^{\prime } \bigl( tu+ ( 1-t ) v \bigr) \bigr\vert ^{q} \,dt \\& \quad \leq \min \biggl\{ \frac{ \vert f^{\prime } ( u ) \vert ^{q}+3m \vert f^{\prime } ( \frac{v}{m} ) \vert ^{q}}{16},\frac{m \vert f^{\prime } ( \frac{u}{m} ) \vert ^{q}+3 \vert f^{\prime } ( v ) \vert ^{q}}{16} \biggr\} . \end{aligned}
(9)

By using inequalities (8), (9) and the fact that $$\int _{0}^{1}t \vert 1-2t \vert \,dt =\frac{1}{4}$$, we get inequality (7). □

### Corollary 3.1

Let the assumptions of Theorem 3.2be satisfied. If we take$$m=1$$, then inequality (7) becomes the following inequality:

\begin{aligned}& \biggl\vert \frac{f ( u ) +f ( v ) }{2}- \frac{1}{v-u}\int _{u}^{v}f ( x ) \,dx \biggr\vert \\& \quad \leq \frac{v-u}{8} \biggl\{ \biggl( \frac{3 \vert f^{\prime } ( u ) \vert ^{q}+ \vert f^{\prime } ( v ) \vert ^{q}}{4} \biggr)^{\frac{1}{q}}+ \biggl( \frac{ \vert f^{\prime } ( u ) \vert ^{q}+3 \vert f^{\prime } ( v ) \vert ^{q}}{4} \biggr)^{\frac{1}{q}} \biggr\} . \end{aligned}
(10)

### Theorem 3.3

Suppose thatIis an open real interval such that$$[ 0,\infty ) \subset I$$, and let$$0\leq u< v<\infty$$. Consider the differentiable function$$f:I\rightarrow \mathbb{R}$$onIsuch that$$f^{\prime }\in L [ u,v ]$$. If$$\vert f^{\prime } \vert ^{q}$$is an$$(\alpha , m)$$-convex function on$$[ u,v ]$$for some$$\alpha ,m\in ( 0,1 ]$$and$$q>1$$, $$q=\frac{p}{p-1}$$, then

\begin{aligned}& \biggl\vert \frac{f ( u ) +f ( v ) }{2}- \frac{1}{v-u}\int _{u}^{v}f ( x ) \,dx \biggr\vert \\& \quad \leq \frac{v-u}{4 ( p+1 ) ^{\frac{1}{p}}} \bigl( \varphi _{1}^{\frac{1}{q}}+ \varphi _{2}^{\frac{1}{q}} \bigr) \leq \frac{v-u}{4} \bigl( \varphi _{1}^{ \frac{1}{q}}+\varphi _{2}^{\frac{1}{q}} \bigr), \end{aligned}
(11)

where

\begin{aligned}& \varphi _{1}=\min \biggl\{ \frac{\alpha \vert f^{\prime } ( v ) \vert ^{q}+2m \vert f^{\prime } ( \frac{u}{m} ) \vert ^{q}}{\alpha +2}, \frac{2 \vert f^{\prime } ( u ) \vert ^{q}+m\alpha \vert f^{\prime } ( \frac{v}{m} ) \vert ^{q}}{\alpha +2} \biggr\} , \\& \varphi _{2}=\min \biggl\{ \frac{2 \vert f^{\prime } ( u ) \vert ^{q}+m\alpha ( \alpha +3 ) \vert f^{\prime } ( \frac{v}{m} ) \vert ^{q}}{ ( \alpha +1 ) ( \alpha +2 ) }, \frac{2m \vert f^{\prime } ( \frac{u}{m} ) \vert ^{q}+\alpha ( \alpha +3 ) \vert f^{\prime } ( v ) \vert ^{q}}{ ( \alpha +1 ) ( \alpha +2 ) } \biggr\} . \end{aligned}

### Proof

Using Lemma 2.1 and the Hölder–İşcan integral inequality, we have

\begin{aligned}& \biggl\vert \frac{f ( u ) +f ( v ) }{2}- \frac{1}{v-u}\int _{u}^{v}f ( x ) \,dx \biggr\vert \\& \quad \leq \frac{v-u}{2} \biggl\{ \biggl( \int _{0}^{1} ( 1-t ) \vert 1-2t \vert ^{p}\,dt \biggr) ^{\frac{1}{p}} \biggl( \int _{0}^{1} ( 1-t ) \bigl\vert f^{\prime } \bigl( tu+ ( 1-t ) v \bigr) \bigr\vert ^{q}\,dt \biggr) ^{ \frac{1}{q}} \\& \qquad {}+ \biggl( \int _{0}^{1}t \vert 1-2t \vert ^{p} \,dt \biggr) ^{ \frac{1}{p}} \biggl( \int _{0}^{1}t \bigl\vert f^{\prime } \bigl( tu+ ( 1-t ) v \bigr) \bigr\vert ^{q}\,dt \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}

By $$( \alpha ,m )$$-convexity of $$\vert f^{\prime } \vert ^{q}$$ on $$[ u,v ]$$ for all $$t\in [ 0,1 ]$$, we get

\begin{aligned}& \int _{0}^{1}t \bigl\vert f^{\prime } \bigl( tu+ ( 1-t ) v \bigr) \bigr\vert ^{q}\,dt \\& \quad \leq \min \biggl\{ \frac{2 \vert f^{\prime } ( u ) \vert ^{q}+m\alpha \vert f^{\prime } ( \frac{v}{m} ) \vert ^{q}}{2 ( \alpha +2 ) } , \frac{2m \vert f^{\prime } ( \frac{u}{m} ) \vert ^{q}+\alpha \vert f^{\prime } ( v ) \vert ^{q}}{2 ( \alpha +2 ) } \biggr\} \end{aligned}
(12)

and

\begin{aligned}& \int _{0}^{1} ( 1-t ) \bigl\vert f^{\prime } \bigl( tu+ ( 1-t ) v \bigr) \bigr\vert ^{q}\,dt \\& \quad \leq \min \biggl\{ \frac{2 \vert f^{\prime } ( u ) \vert ^{q}+m\alpha ( \alpha +3 ) \vert f^{\prime } ( \frac{v}{m} ) \vert ^{q}}{2 ( \alpha +1 ) ( \alpha +2 ) }, \frac{2m \vert f^{\prime } ( \frac{u}{m} ) \vert ^{q}+\alpha ( \alpha +3 ) \vert f^{\prime } ( v ) \vert ^{q}}{2 ( \alpha +1 ) ( \alpha +2 ) } \biggr\} .\quad \end{aligned}
(13)

The proof of the first inequality in (11) is completed by the combination of inequalities (12) and (13). The proof of the second inequality in (11) is completed using the fact

$$\frac{1}{2}< \biggl( \frac{1}{p+1} \biggr) ^{\frac{1}{p}}< 1$$

for $$p>1$$. □

### Corollary 3.2

Let the assumptions of Theorem 3.3be satisfied. If we take$$m=1$$, then inequality (11) becomes the following inequality:

\begin{aligned}& \biggl\vert \frac{f ( u ) +f ( v ) }{2}- \frac{1}{v-u} \int f ( x ) \,dx \biggr\vert \\& \quad \leq \frac{v-u}{4 ( p+1 ) ^{\frac{1}{p}}} \biggl[ \biggl( \frac{2 \vert f^{\prime } ( u ) \vert ^{q}+\alpha \vert f^{\prime } ( v ) \vert ^{q}}{\alpha +2} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{2 \vert f^{\prime } ( u ) \vert ^{q}+\alpha ( \alpha +3 ) \vert f^{\prime } ( v ) \vert ^{q}}{2 ( \alpha +1 ) ( \alpha +2 ) } \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}

### Remark 3.2

Inequality (11) yields the right-hand side of Hermite–Hadamard inequality (3) for $$\alpha =1$$.

### Remark 3.3

Choosing $$(\alpha ,m)=(1,1)$$ in the first part of (11), we get inequality (2).

### Theorem 3.4

Suppose thatIis an open real interval such that$$[ 0,\infty ) \subset I$$, and let$$0\leq u< v<\infty$$. Consider the differentiable function$$f:I\rightarrow \mathbb{R}$$onIsuch that$$f^{\prime }\in L [ u,v ]$$. If$$\vert f^{\prime } \vert ^{q}$$is an$$(\alpha , m)$$-convex function on$$[ u,v ]$$for some$$\alpha ,m\in ( 0,1 ]$$and$$q\geq 1$$, then

\begin{aligned} \biggl\vert \frac{f ( u ) +f ( v ) }{2}- \frac{1}{v-u}\int _{u}^{v}f ( x ) \,dx \biggr\vert \leq \frac{v-u}{2.4^{\frac{1}{p}}} \bigl( \tau _{1}^{\frac{1}{q}}+\tau _{2}^{ \frac{1}{q}} \bigr), \end{aligned}
(14)

where

\begin{aligned}& \tau _{1}=\min \biggl\{ \kappa _{1} \bigl\vert f^{\prime } ( u ) \bigr\vert ^{q}+m\kappa _{2} \biggl\vert f^{\prime } \biggl( \frac{v}{m} \biggr) \biggr\vert ^{q},m\kappa _{1} \biggl\vert f^{ \prime } \biggl( \frac{u}{m} \biggr) \biggr\vert ^{q}+\kappa _{2} \bigl\vert f^{\prime } ( v ) \bigr\vert ^{q} \biggr\} , \\& \tau _{2}=\min \biggl\{ \kappa _{1}^{\ast } \bigl\vert f^{\prime } ( u ) \bigr\vert ^{q}+m\kappa _{2}^{\ast } \biggl\vert f^{ \prime } \biggl( \frac{v}{m} \biggr) \biggr\vert ^{q},m\kappa _{1}^{ \ast } \biggl\vert f^{\prime } \biggl( \frac{u}{m} \biggr) \biggr\vert ^{q}+\kappa _{2}^{\ast } \bigl\vert f^{\prime } ( v ) \bigr\vert ^{q} \biggr\} \end{aligned}

such that

\begin{aligned}& \kappa _{1}= \frac{1}{ ( \alpha +2 ) ( \alpha +3 ) } \biggl[ \alpha +1+ \biggl( \frac{1}{2} \biggr) ^{\alpha +1} \biggr] ,\qquad \kappa _{2}= \frac{1}{4}-\kappa _{1} , \\& \kappa _{1}^{\ast }= \frac{1}{ ( \alpha +1 ) ( \alpha +2 ) ( \alpha +3 ) } \biggl[ \alpha -1+ ( \alpha +3 ) \biggl( \frac{1}{2} \biggr) ^{\alpha }- ( \alpha +1 ) \biggl( \frac{1}{2} \biggr) ^{\alpha +1} \biggr] , \qquad \kappa _{2}^{\ast }=\frac{1}{4}- \kappa _{1}^{\ast } . \end{aligned}

### Proof

Similar to Theorem 3.2 and using $$( \alpha ,m )$$-convexity of $$\vert f^{\prime } \vert ^{q}$$, we get the desired result. □

### Remark 3.4

If we take $$\alpha =1$$ in Theorem 3.4, inequality (14) reduces to inequality (7) in Theorem 3.2.

### Remark 3.5

Choosing $$\alpha =1$$ and $$m=1$$ in Theorem 3.4, we get inequality (10).

## Applications to special means

We now consider the applications of our results to the following special means for positive real numbers u and v$$( u\neq v )$$.

(1) The arithmetic mean:

\begin{aligned} A:=A ( u,v ) =\frac{u+v}{2}; \end{aligned}

(2) The logarithmic mean:

\begin{aligned} L:=L ( u,v ) =\frac{v-u}{\ln v-\ln u}; \end{aligned}

(3) The generalized logarithmic mean:

\begin{aligned} L_{n}:=L_{n} ( u,v ) = \biggl[ \frac{v^{n+1}-u^{n+1}}{ ( n+1 ) ( v-u ) } \biggr] ^{\frac{1}{n}}, \quad n \in \mathbb{Z} \backslash \{ -1,0 \} . \end{aligned}

### Proposition 4.1

Let$$u,v\in \mathbb{R} ^{+}$$, $$u< v$$, $$m\in ( 0,1 ]$$, and$$n\in \mathbb{Z} \backslash \{-1,0\}$$. Then, for all$$q\geq 1$$, we have

\begin{aligned}& \bigl\vert A \bigl( u^{n},v^{n} \bigr) -L_{n}^{n} ( u,v ) \bigr\vert \\& \quad \leq n.\frac{v-u}{8} \biggl\{ \biggl( \min \biggl\{ \frac{3 \vert u \vert ^{q ( n-1 ) }+m \vert \frac{v}{m} \vert ^{q ( n-1 ) }}{4}, \frac{3m \vert \frac{u}{m} \vert ^{q ( n-1 ) }+m \vert v \vert ^{q ( n-1 ) }}{4} \biggr\} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \min \biggl\{ \frac{ \vert u \vert ^{q ( n-1 ) }+3m \vert \frac{v}{m} \vert ^{q ( n-1 ) }}{4}, \frac{m \vert \frac{u}{m} \vert ^{q ( n-1 ) }+3 \vert v \vert ^{q ( n-1 ) }}{4} \biggr\} \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}

If we choose$$m=1$$, we obtain

\begin{aligned}& \bigl\vert A \bigl( u^{n},v^{n} \bigr) -L_{n}^{n} ( u,v ) \bigr\vert \\& \quad \leq n.\frac{v-u}{8} \biggl[ \biggl( \frac{3 \vert u \vert ^{q ( n-1 ) }+ \vert v \vert ^{q ( n-1 ) }}{4} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{ \vert u \vert ^{q ( n-1 ) }+3 \vert v \vert ^{q ( n-1 ) }}{4} \biggr) ^{ \frac{1}{q}} \biggr]. \end{aligned}

### Proof

The assertions follow from Theorem 3.2 and Corollary 3.1 applied respectively to the m-convex mapping $$f ( x ) =x^{n}$$, $$x\in \mathbb{R}$$, $$n\in \mathbb{Z}$$. □

### Proposition 4.2

Let$$u,v\in \mathbb{R} ^{+}$$, $$u< v$$, $$\alpha , m\in ( 0,1 ]$$, and$$n\in \mathbb{Z} \backslash \{-1,0\}$$. Then, for all$$q\geq 1$$, we have

\begin{aligned}& \bigl\vert A \bigl( u^{n},v^{n} \bigr) -L_{n}^{n} ( u,v ) \bigr\vert \\& \quad \leq n.\frac{v-u}{4 ( p+1 )^{\frac{1}{p}}} \biggl\{ \biggl( \min \biggl\{ \frac{2 \vert u \vert ^{q ( n-1 ) }+m\alpha \vert \frac{v}{m} \vert ^{q ( n-1 ) }}{\alpha +2}, \frac{2m \vert \frac{u}{m} \vert ^{q ( n-1 ) }+\alpha \vert v \vert ^{q ( n-1 ) }}{\alpha +2} \biggr\} \biggr) ^{\frac{1}{q}} \\& \qquad {}+ \biggl( \min \biggl\{ \frac{2 \vert u \vert ^{q ( n-1 ) }+m\alpha ( \alpha +3 ) \vert \frac{v}{m} \vert ^{q ( n-1 ) }}{ ( \alpha +1 ) ( \alpha +2 ) }, \frac{2m \vert \frac{u}{m} \vert ^{q ( n-1 ) }+\alpha ( \alpha +3 ) \vert v \vert ^{q ( n-1 ) }}{ ( \alpha +1 ) ( \alpha +2 ) } \biggr\} \biggr) ^{\frac{1}{q}} \biggr\} . \end{aligned}

If we choose$$m=1$$, we obtain

\begin{aligned}& \bigl\vert A \bigl( u^{n},v^{n} \bigr) -L_{n}^{n} ( u,v ) \bigr\vert \\& \quad \leq n.\frac{v-u}{4 ( p+1 )^{\frac{1}{p}}} \biggl[ \biggl( \frac{2 \vert u \vert ^{q ( n-1 ) }+\alpha \vert v \vert ^{q ( n-1 ) }}{\alpha +2} \biggr) ^{\frac{1}{q}}+ \biggl( \frac{2 \vert u \vert ^{q ( n-1 ) }+\alpha ( \alpha +3 ) \vert v \vert ^{q ( n-1 ) }}{ ( \alpha +1 ) ( \alpha +2 ) } \biggr) ^{\frac{1}{q}} \biggr]. \end{aligned}

### Proof

The assertions follow from Theorem 3.3 and Corollary 3.2 applied respectively to the $$( \alpha , m)$$-convex mapping $$f ( x ) =x^{n}$$, $$x\in \mathbb{R}$$, $$n\in \mathbb{Z}$$. □

## References

1. 1.

Ali, M.A., Abbas, M., Zafer, A.A.: On some Hermite–Hadamard integral inequalities in multiplicative calculus. J. Inequal. Spec. Funct. 10(1), 111–122 (2019)

2. 2.

Almuatiri, O., Kılıçman, A.: New fractional inequalities of midpoint type via s-convexity and their application. J. Inequal. Appl. 2019, 267 (2019)

3. 3.

Bai, R.-F., Qi, F., Xi, B.-Y.: Hermite–Hadamard type inequalities for the m- and $$( \alpha , m)$$-logarithmically convex functions. Filomat 27(1), 1–7 (2013)

4. 4.

Bakula, M.K., Özdemir, M.E., Pec̆arić, J.: Hadamard type inequalities for m-convex and $$( \alpha , m)$$-convex functions. J. Inequal. Pure Appl. Math. 9(4), Article ID 96 (2008)

5. 5.

Bakula, M.K., Pec̆arić, J., Ribićić, M.: Companion inequalities to Jensen’s inequality for m-convex and $$( \alpha , m)$$-convex functions. J. Inequal. Pure Appl. Math. 7(5), Article ID 194 (2006)

6. 6.

Budak, H., Sarıkaya, M.Z.: Some new generalized Hermite–Hadamard inequalities for generalized convex functions and applications. J. Math. Ext. 12(4), 51–66 (2018)

7. 7.

Dragomir, S.S., Agarwal, R.P.: Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula. Appl. Math. Lett. 11(5), 91–95 (1998)

8. 8.

Dragomir, S.S., Pearce, C.E.M.: Selected Topics on Hermite–Hadamard Inequalities and Applications. RGMIA Monographs. Victoria University (2000)

9. 9.

Dragomir, S.S., Toader, G.: Some inequalities for m-convex functions. Stud. Univ. Babeş–Bolyai, Math. 38(1), 21–28 (1993)

10. 10.

Guessab, A., Schmeisser, G.: Sharp integral inequalities of the Hermite–Hadamard type. J. Approx. Theory 115(2), 260–288 (2002)

11. 11.

Guessab, A., Schmeisser, G.: Convexity results and sharp error estimates in approximate multivariate integration. Math. Comput. 73(247), 1365–1384 (2004)

12. 12.

İşcan, İ.: New refinements for integral and sum forms of Hölder inequality. J. Inequal. Appl. 2019, 304 (2019)

13. 13.

İşcan, İ., Turhan, S., Maden, S.: Hermite–Hadamard and Simpson-like type inequalities for differentiable p-quasi-convex functions. Filomat 31(19), 5945–5953 (2017)

14. 14.

Kadakal, H.: $$( \alpha , m_{1}, m_{2})$$-Convexity and some inequalities of Hermite–Hadamard type. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 68(2), 2128–2142 (2019)

15. 15.

Kadakal, M.: Some Hermite–Hadamard type inequalities for $$(P;m)$$-function and quasi m-convex functions. Int. J. Optim. Control Theor. Appl. 10(1), 78–84 (2020)

16. 16.

Kadakal, M., İşcan, İ., Kadakal, H., Bekar, K.: On improvements of some integral inequalities (2019) https://doi.org/10.13140/RG.2.2.15052.46724. Researchgate preprint

17. 17.

Kunt, M., İşcan, İ.: Hermite–Hadamard–Fejer type inequalities for p-convex functions. Arab J. Math. Sci. 23, 215–230 (2017)

18. 18.

Kunt, M., İşcan, İ.: Hermite–Hadamard type inequalities for harmonically $$( \alpha , m)$$-convex functions by using fractional integrals. Konuralp J. Math. 5(1), 201–213 (2017)

19. 19.

Latif, M.A.: Inequalities of Hermite–Hadamard type for functions whose derivatives in absolute value are convex with applications. Arab J. Math. Sci. 21, 84–97 (2015)

20. 20.

Latif, M.A., Dragomir, S.S., Momoniat, E.: On Hermite–Hadamard type integral inequalities for n-times differentiable m- and $$(\alpha , m)$$-logarithmically convex functions. Filomat 30(11), 3101–3114 (2016)

21. 21.

Mehrez, K., Agarwal, P.: New Hermite–Hadamard type integral inequalities for convex functions and their applications. J. Comput. Appl. Math. 350, 274–285 (2019)

22. 22.

Miheşan, V.G.: A generalization of the convexity. In: Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, Romania (1993)

23. 23.

Milovanovic, G.V., Rassias, M.T. (eds.): Analytic Number Theory, Approximation Theory and Special Functions Springer, Berlin (2014)

24. 24.

Mitrinovic, D.S., Pecaric, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Norwell (1991)

25. 25.

Mitrinovic, D.S., Pecaric, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer Academic, Norwell (1993)

26. 26.

Noor, M.A., Qi, F., Awan, M.U.: Some Hermite–Hadamard type inequalities for $$log-h$$-convex functions. Analysis 33, 1–9 (2013)

27. 27.

Önalan, H.K., Akdemir, A.O., Set, E., Sarıkaya, M.Z.: Simpson’s type inequalities for m- and $$(\alpha , m)$$-geometrically convex functions. Konuralp J. Math. 2(1), 90–101 (2014)

28. 28.

Özcan, S., İşcan, İ.: Some new Hermite–Hadamard type inequalities for s-convex functions and their applications. J. Inequal. Appl. 2019, 201 (2019)

29. 29.

Özdemir, M.E., Önalan, H.K., Ardıç, M.A.: Hermite–Hadamard type inequalities for $$(h(\alpha , m))$$-convex functions. J. Concr. Appl. Math. 13(1), 96–107 (2015)

30. 30.

Özdemir, M.E., Set, E., Sarıkaya, M.Z.: Some new Hadamard type inequalities for co-ordinated m-convex and $$( \alpha , m)$$-convex functions. Hacet. J. Math. Stat. 40(2), 219–229 (2011)

31. 31.

Pecaric, J.E., Proschan, F., Tong, Y.L.: Convex Functions, Partial Orderings and Statistical Applications. Academic Press, Boston (1992)

32. 32.

Sarikaya, M.Z., Budak, H.: On generalized Hermite–Hadamard inequality for generalized convex function. Int. J. Nonlinear Anal. Appl. 8(2), 209–222 (2017)

33. 33.

Set, E., İşcan, İ., Sarıkaya, M.Z., Özdemir, M.E.: On new inequalities of Hermite–Hadamard–Fejer type for convex functions via fractional integrals. Appl. Math. Comput. 259, 875–881 (2015)

34. 34.

Set, E., Özdemir, M.E., Sarıkaya, M.Z., Karakoç, F.: Hermite–Hadamard type inequalities for $$( \alpha , m)$$-convex functions via fractional integrals. Moroccan J. Pure Appl. Anal. 3(1), 15–21 (2017)

35. 35.

Set, E., Sardari, M., Özdemir, M.E., Rooin, J.: On generalizations of the Hadamard inequality for $$( \alpha , m)$$-convex functions. Kyungpook Math. J. 52, 307–317 (2012)

36. 36.

Toader, G.: Some generalizations of the convexity. In: Proc. Colloq. Approx. Optim. Cluj-Napoca, Romania, Univ. Cluj-Napoca, pp. 329–338 (1985)

37. 37.

Tunç, M.: Hermite–Hadamard type inequalities via m and $$( \alpha , m)$$-convexity. Demonstr. Math. XLVI(3), 475–483 (2013)

38. 38.

Wang, S.-H., Wu, S.-H.: Some new Hermite–Hadamard type inequalities for operator m-convex and $$( \alpha , m)$$-convex functions on the co-ordinates. J. Comput. Anal. Appl. 25(3), 474–487 (2018)

### Acknowledgements

The author is thankful to the editor and anonymous referees for their valuable comments and suggestions.

Not applicable.

## Funding

There is no funding for this research article.

## Author information

Authors

### Contributions

All authors read and approved the final manuscript.

### Corresponding author

Correspondence to Serap Özcan.

## Ethics declarations

### Competing interests

The author declares that no competing interests exist.

## Rights and permissions 