- Research
- Open access
- Published:
Some parameterized inequalities by means of fractional integrals with exponential kernels and their applications
Journal of Inequalities and Applications volume 2020, Article number: 163 (2020)
Abstract
We use the definition of a new class of fractional integral operators, recently introduced by Ahmad et al. in [J. Comput. Appl. Math. 353:120–129, 2019], to establish a fractional-type integral identity with one parameter. We derive some parameterized integral inequalities for convex mappings based on this identity, and provide two examples to illustrate the investigated results as well. Moreover, we present applications of our findings to special means of real numbers, and error estimations for the quadrature formula in numerical analysis.
1 Introduction
Throughout this paper, let \(I \subseteq \mathbb{R}\) be a real interval and \(I^{\circ }\) be the interior of I.
Let \(u:I\rightarrow \mathbb{R}\) be a convex mapping on the interval I, for any \(a,b \in I\) with \(a< b\). Then one has
which is called a Hermite–Hadamard inequality. This well-known inequality gives estimates for the mean value of a continuous convex mapping \(u : [a, b]\rightarrow \mathbb{R}\).
For recent results obtained in terms of inequality (1.1), we refer the reader to [7, 15, 18, 19, 22, 31, 32, 35] and the references therein.
Another classical inequality of equal significance, which is named Simpson’s inequality, is expressed as follows:
where \(u:I\rightarrow \mathbb{R}\) is a four-order continuously differentiable mapping on \(I^{\circ }\) with \(\| u^{(4)} \|_{\infty }=\mathrm{sup}_{\tau \in I^{\circ }} |u^{(4)}( \tau ) |<\infty \).
Many inequalities have been established in terms of inequality (1.2) via functions of different classes, such as convex functions [10], geometrically relative convex functions [24], extended \((s, m)\)-convex functions [9], p-quasi-convex functions [12], preinvex functions [6], and h-convex functions [20].
In [27], the authors gave certain inequalities for twice differentiable convex mappings related to Hadamard’s inequality. They used the following lemma to derive their results.
Lemma 1.1
Let\(u:I\rightarrow \mathbb{R}\)be a twice differentiable function on\(I^{\circ }\), \(a,b\in I\)with\(a < b\). If\(u''\in L^{1} ([a,b] )\), then the following equality holds:
where
In [3], using mappings whose twice derivatives absolute values are quasi-convex, Alomari et al. presented some Hadamard inequalities based on the following lemma.
Lemma 1.2
Let\(u:I\rightarrow \mathbb{R}\)be a twice differentiable function on\(I^{\circ }\), \(a,b\in I\)with\(a < b\). If\(u''\in L^{1} ([a,b] )\), then the following equality holds:
In [26], Sarikaya and Aktan gave the following general integral identity for twice differentiable mappings.
Lemma 1.3
Let\(u:I\rightarrow \mathbb{R}\)be a twice differentiable function on\(I^{\circ }\), \(a,b\in I\)with\(a < b\). For\(0\leq \xi \leq 1\), if\(u''\in L^{1} ([a,b] )\), then the following equality holds:
where
Fractional calculus, as a very useful tool, has become a fascinating field of mathematics. This field has attracted many researchers to consider this issue. As a result, some well-known integral inequalities by the approach of fractional calculus have been carried out by many authors, including Chen [4] and Mohammed [23] in the study of the Hermite–Hadamard inequality, and Set et al. [29] in the Simpson type integral inequality for Riemann–Liouville fractional integrals, Chen and Katugampola [5] in the Hermite–Hadamard–Fejér type inequality for Katugampola fractional integrals, Wang et al. [33] in the Ostrowski type inequality for Hadamard fractional integrals, Du et al. [8] in the extensions of trapezium inequalities for k-fractional integrals, and Khan et al. [14] in the Hermite–Hadamard inequality for conformable fractional integrals. For more results related to the fractional integral operators, the interested reader is directed to [1, 11, 13, 16, 17, 21, 25, 28, 30] and the references cited therein.
In 2019, Ahmad et al. [2] proposed a new fractional integral operators with an exponential kernel as follows.
Definition 1.1
Let \(g\in L^{1} ([a,b] )\). The fractional integrals \(\mathcal{I}^{\alpha }_{a^{+}}g\) and \(\mathcal{I}^{\alpha }_{b^{-}}g\) of order \(\alpha \in (0,1)\) are, respectively, defined by
and
Note that
In the same paper, they established a fractional version of Hermite–Hadamard type involving exponential kernels as follows.
Theorem 1.1
Let\(g:[a, b]\rightarrow \mathbb{R}\)be a positive convex mapping with\(0\leq a < b\). If\(g\in L^{1} ([a,b] )\), then the following inequality for fractional integrals with an exponential kernel holds:
where
In [34], Wu et al. obtained an inequality of Hermite–Hadamard type involving twice differentiable convex mappings. They used the following lemma to prove their result.
Lemma 1.4
Let\(g:[a, b]\rightarrow \mathbb{R}\)be a twice differentiable mapping on\((a, b)\)with\(a < b\). If\(g''\in L^{1}([a, b])\), then the following identity holds:
Using fractional integrals with an exponential kernel, another integral identity involving twice differentiable mapping was presented by Wu et al. [34] as follows.
Lemma 1.5
Let\(g:[a, b]\rightarrow \mathbb{R}\)be a twice differentiable mapping on\((a, b)\)with\(a < b\). If\(g''\in L^{1}([a, b])\), then the following identity holds:
where
Motivated by the results mentioned above, especially the results developed in [2] and [34], we notice that it is possible to deal with these results uniformly via the fractional integrals with exponential kernels. For this purpose, we establish a general fractional-type integral identity for twice differentiable mappings. Using this integral identity, we derive certain parameterized fractional-type inequalities, which unifies Simpson’s inequality, the averaged midpoint-trapezoid inequality, and the trapezoid inequality. This is the main contribution of this work.
2 Main results
To prove our primary theorems, we present the following lemma.
Lemma 2.1
Let\(g:[a,b]\rightarrow \mathbb{R} \)be a twice differentiable mapping on\((a,b)\)with\(a< b\). If\(g''\in L^{1}([a,b]) \)and\(0\leq \lambda \leq 1\), then the following identity for fractional integrals holds:
where
Proof
Multiplying (1.7) by λ and (1.8) by \((1-\lambda )\) on both sides, respectively, and adding the resulting equalities obtained as a result, we get (2.1). Therefore, we deduce the desired result. □
By means of Lemma 2.1, we derive the following general integral inequalities.
Theorem 2.1
Let\(g:[a, b]\rightarrow \mathbb{R}\)be a twice differentiable mapping on\((a, b)\)with\(a< b\)satisfying\(g''\in L^{1}([a,b]) \)and\(0\leq \lambda \leq 1\). If\(|g''|\)is convex on\([a, b]\), then the following inequality holds:
Proof
Using Lemma 2.1 and the definition of \(w(t)\), we have
Since \(2e^{-\frac{\rho }{2}}\leq e^{-\rho t}+e^{-\rho (1-t)}\leq 1+e^{- \rho }\) for any \(t\in [0,1]\) and \(|g''|\) is convex on \([a, b]\), we obtain
On the other hand,
Using (2.4) and (2.5) in (2.3), we get the desired result in (2.2). Thus, the proof is completed. □
Corollary 2.1
Under all assumptions of Theorem 2.1, if\(|g''(x)|\leq M\)on\([a,b]\), then we have
Corollary 2.2
Consider Theorem 2.1.
- (1)
For\(\lambda =0\), we have Theorem 3 established by Wu et al. in [34].
- (2)
For\(\lambda =\frac{1}{3}\), we have the following Simpson inequality:
$$ \begin{aligned}[b] & \biggl\vert \frac{1}{6} \biggl[g(a)+4g \biggl(\frac{a+b}{2} \biggr)+g(b) \biggr]-\frac{1-\alpha }{2(1-e^{-\rho })} \bigl[ \mathcal{I}^{\alpha }_{a^{+}}g(b)+ \mathcal{I}^{\alpha }_{b^{-}}g(a) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{2} \biggl( \frac{\rho +\rho e^{-\rho }+2e^{-\rho }-2}{2\rho ^{2}(1-e^{-\rho })}+ \frac{1}{12} \biggr) \bigl( \bigl\vert g''(a) \bigr\vert + \bigl\vert g''(b) \bigr\vert \bigr). \end{aligned} $$ - (3)
For\(\lambda =\frac{1}{2}\), we have the following averaged midpoint-trapezoid integral inequality:
$$ \begin{aligned}[b] & \biggl\vert \frac{1}{4} \biggl[g(a)+2g \biggl(\frac{a+b}{2} \biggr)+g(b) \biggr]-\frac{1-\alpha }{2(1-e^{-\rho })} \bigl[ \mathcal{I}^{\alpha }_{a^{+}}g(b)+ \mathcal{I}^{\alpha }_{b^{-}}g(a) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{2} \biggl( \frac{\rho +\rho e^{-\rho }+2e^{-\rho }-2}{2\rho ^{2}(1-e^{-\rho })}+ \frac{1}{16} \biggr) \bigl( \bigl\vert g''(a) \bigr\vert + \bigl\vert g''(b) \bigr\vert \bigr). \end{aligned} $$ - (4)
For\(\lambda =1\), we have Theorem 2 established by Wu et al. in [34].
Remark 2.1
In (2.2) of Theorem 2.1, if we take \(\alpha \rightarrow 1\), i.e. \(\rho =\frac{1-\alpha }{\alpha }(b-a)\rightarrow 0\), then we have
and
Thus, Theorem 2.1 is transformed to
Specially, putting \(\lambda =1\), we have Proposition 2 established by Sarikaya and Aktan in [26].
Remark 2.2
For \(\lambda =\frac{1}{3}\) and \(\alpha \rightarrow 1\), we have the following Simpson inequality:
Remark 2.3
For \(\lambda =\frac{1}{2}\) and \(\alpha \rightarrow 1\), we have the averaged midpoint-trapezoid integral inequality:
Before giving the following results, we recall that hyperbolic tangent function is defined by
Theorem 2.2
Let\(g:[a,b]\rightarrow \mathbb{R} \)be a twice differentiable mapping on\((a,b)\)with\(a< b\)satisfying\(g''\in L^{1}([a,b]) \)and\(0\leq \lambda \leq 1\). For\(q>1\)with\(p^{-1}+q^{-1}=1\), if\(|g''|^{q}\)is convex on\([a,b]\), then the following inequalities for fractional integrals hold:
- (1)
For\(0\leq \lambda <1\), we have
$$ \begin{aligned}[b] & \biggl\vert \frac{1-\alpha }{2(1-e^{-\rho })} \bigl[\mathcal{I}^{\alpha }_{a^{+}}g(b)+ \mathcal{I}^{\alpha }_{b^{-}}g(a) \bigr]-(1-\lambda )g \biggl( \frac{a+b}{2} \biggr)-\lambda \frac{g(a)+g(b)}{2} \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}(1-\lambda )}{2} \biggl(\frac{2}{p+1} \biggr)^{{\frac{1}{p}}} \biggl[ \biggl(\frac{1}{2}+ \frac{\operatorname{tanh}(\frac{\rho }{4})}{\rho (1-\lambda )} \biggr)^{p+1}- \biggl(\frac{\operatorname{tanh}(\frac{\rho }{4})}{\rho (1-\lambda )} \biggr)^{p+1} \biggr]^{\frac{1}{p}} \\ &\qquad {}\times\biggl( \frac{ \vert g''(a) \vert ^{q}+ \vert g''(b) \vert ^{q}}{2} \biggr)^{\frac{1}{q}}. \end{aligned} $$(2.9) - (2)
For\(\lambda =1\), we have
$$ \begin{aligned}[b] & \biggl\vert \frac{1-\alpha }{2(1-e^{-\rho })} \bigl[ \mathcal{I}^{\alpha }_{a^{+}}g(b)+\mathcal{I}^{\alpha }_{b^{-}}g(a) \bigr]-\frac{g(a)+g(b)}{2} \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}\operatorname{tanh}(\frac{\rho }{4})}{2\rho } \biggl(\frac{ \vert g''(a) \vert ^{q}+ \vert g''(b) \vert ^{q}}{2} \biggr)^{\frac{1}{q}}. \end{aligned} $$(2.10)
Proof
First, suppose that \(0\leq \lambda <1\). Utilizing Lemma 2.1, the definition of \(w(t)\), and the Hölder inequality, we obtain
where
and
Owing to \(2e^{-\frac{\rho }{2}}\leq e^{-\rho t}+e^{-\rho (1-t)}\leq 1+e^{- \rho }\) for any \(t\in [0,1]\), we have
As a result,
Since \(|g''|^{q}\) is convex on \([a,b]\), we get
Using (2.12) and (2.13) in (2.11), we obtain the desired result in (2.9). Thus, this ends the proof for this case.
Now, suppose that \(\lambda =1\). The remainder of the argument is analogous to that of part one in Theorem 2.2 and we omit the details. Thus, the proof of Theorem 2.2 is completed. □
Corollary 2.3
Under all assumptions of Theorem 2.2, if\(|g''(x)|\leq M\)on\([a,b]\), then we obtain
Corollary 2.4
Consider Theorem 2.2.
- (1)
For\(\lambda =0\), we have the following midpoint inequality:
$$ \begin{aligned}[b] & \biggl\vert \frac{1-\alpha }{2(1-e^{-\rho })} \bigl[ \mathcal{I}^{\alpha }_{a^{+}}g(b)+\mathcal{I}^{\alpha }_{b^{-}}g(a) \bigr]-g \biggl(\frac{a+b}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{2} \biggl(\frac{2}{p+1} \biggr)^{{ \frac{1}{p}}} \biggl[ \biggl(\frac{1}{2}+ \frac{\operatorname{tanh}(\frac{\rho }{4})}{\rho } \biggr)^{p+1}- \biggl( \frac{\operatorname{tanh}(\frac{\rho }{4})}{\rho } \biggr)^{p+1} \biggr]^{ \frac{1}{p}}\\ &\qquad {}\times \biggl( \frac{ \vert g''(a) \vert ^{q}+ \vert g''(b) \vert ^{q}}{2} \biggr)^{ \frac{1}{q}}. \end{aligned} $$ - (2)
For\(\lambda =\frac{1}{3}\), we have the following Simpson inequality:
$$ \begin{aligned}[b] & \biggl\vert \frac{1}{6} \biggl[g(a)+4g \biggl(\frac{a+b}{2} \biggr)+g(b) \biggr]-\frac{1-\alpha }{2(1-e^{-\rho })} \bigl[ \mathcal{I}^{\alpha }_{a^{+}}g(b)+ \mathcal{I}^{\alpha }_{b^{-}}g(a) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{3} \biggl(\frac{2}{p+1} \biggr)^{{ \frac{1}{p}}} \biggl[ \biggl(\frac{1}{2}+ \frac{3\operatorname{tanh}(\frac{\rho }{4})}{2\rho } \biggr)^{p+1}- \biggl( \frac{3\operatorname{tanh}(\frac{\rho }{4})}{2\rho } \biggr)^{p+1} \biggr]^{ \frac{1}{p}} \\ &\qquad {}\times \biggl( \frac{ \vert g''(a) \vert ^{q}+ \vert g''(b) \vert ^{q}}{2} \biggr)^{ \frac{1}{q}}. \end{aligned} $$ - (3)
For\(\lambda =\frac{1}{2}\), we have the following averaged midpoint-trapezoid integral inequality:
$$ \begin{aligned}[b] & \biggl\vert \frac{1}{4} \biggl[g(a)+2g \biggl(\frac{a+b}{2} \biggr)+g(b) \biggr]-\frac{1-\alpha }{2(1-e^{-\rho })} \bigl[ \mathcal{I}^{\alpha }_{a^{+}}g(b)+ \mathcal{I}^{\alpha }_{b^{-}}g(a) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{4} \biggl(\frac{2}{p+1} \biggr)^{{ \frac{1}{p}}} \biggl[ \biggl(\frac{1}{2}+ \frac{2\operatorname{tanh}(\frac{\rho }{4})}{\rho } \biggr)^{p+1}- \biggl( \frac{2\operatorname{tanh}(\frac{\rho }{4})}{\rho } \biggr)^{p+1} \biggr]^{ \frac{1}{p}} \\ &\qquad {}\times \biggl( \frac{ \vert g''(a) \vert ^{q}+ \vert g''(b) \vert ^{q}}{2} \biggr)^{ \frac{1}{q}}. \end{aligned} $$
Remark 2.4
In (2.9) of Theorem 2.2, if we take \(\alpha \rightarrow 1\), i.e. \(\rho =\frac{1-\alpha }{\alpha }(b-a)\rightarrow 0\), then we have
Using (2.6) and (2.14) in (2.9), Theorem 2.2 is transformed to
Theorem 2.3
Let\(g:[a,b]\rightarrow \mathbb{R} \)be a twice differentiable mapping on\((a,b)\)with\(a< b\)satisfying\(g''\in L^{1}([a,b]) \)and\(0\leq \lambda <1\). If\(|g''|^{q}\)is convex on\([a,b]\)with\(q>1\), then the following inequality holds:
Proof
Utilizing Lemma 2.1, the definition of \(w(t)\), and the Hölder inequality, we obtain
Using the properties of integration, we get
with
and
where
and
Thus,
Analogously,
Using (2.18) and (2.19) in (2.17), we deduce the desired result in (2.16). Thus, the proof is completed. □
Corollary 2.5
Under all assumptions of Theorem 2.3, if\(|g''(x)|\leq M\)on\([a,b]\), then the following inequality is true:
Corollary 2.6
Consider Theorem 2.3.
- (1)
For\(\lambda =0\), we have the following midpoint inequality:
$$ \begin{aligned}[b] & \biggl\vert \frac{1-\alpha }{2(1-e^{-\rho })} \bigl[ \mathcal{I}^{\alpha }_{a^{+}}g(b)+\mathcal{I}^{\alpha }_{b^{-}}g(a) \bigr]-g \biggl(\frac{a+b}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{2} \biggl(\frac{2}{q+1} \biggr)^{{ \frac{1}{q}}} \biggl[ \biggl(\frac{1}{2}+ \frac{\operatorname{tanh}(\frac{\rho }{4})}{\rho } \biggr)^{q+1}- \biggl( \frac{\operatorname{tanh}(\frac{\rho }{4})}{\rho } \biggr)^{q+1} \biggr]^{ \frac{1}{q}} \\ &\qquad {} \times \biggl(\frac{ \vert g''(a) \vert ^{q}+ \vert g''(b) \vert ^{q}}{2} \biggr)^{ \frac{1}{q}}. \end{aligned} $$ - (2)
For\(\lambda =\frac{1}{3}\), we have the following Simpson inequality:
$$ \begin{aligned}[b] & \biggl\vert \frac{1}{6} \biggl[g(a)+4g \biggl(\frac{a+b}{2} \biggr)+g(b) \biggr]-\frac{1-\alpha }{2(1-e^{-\rho })} \bigl[ \mathcal{I}^{\alpha }_{a^{+}}g(b)+ \mathcal{I}^{\alpha }_{b^{-}}g(a) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{3} \biggl(\frac{2}{q+1} \biggr)^{{ \frac{1}{q}}} \biggl[ \biggl(\frac{1}{2}+ \frac{3\operatorname{tanh}(\frac{\rho }{4})}{2\rho } \biggr)^{q+1}- \biggl( \frac{3\operatorname{tanh}(\frac{\rho }{4})}{2\rho } \biggr)^{q+1} \biggr]^{ \frac{1}{q}}\\ &\qquad {} \times \biggl( \frac{ \vert g''(a) \vert ^{q}+ \vert g''(b) \vert ^{q}}{2} \biggr)^{ \frac{1}{q}}. \end{aligned} $$ - (3)
For\(\lambda =\frac{1}{2}\), we have the averaged midpoint-trapezoid integral inequality:
$$ \begin{aligned}[b] & \biggl\vert \frac{1}{4} \biggl[g(a)+2g \biggl(\frac{a+b}{2} \biggr)+g(b) \biggr]-\frac{1-\alpha }{2(1-e^{-\rho })} \bigl[ \mathcal{I}^{\alpha }_{a^{+}}g(b)+ \mathcal{I}^{\alpha }_{b^{-}}g(a) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{4} \biggl(\frac{2}{q+1} \biggr)^{{ \frac{1}{q}}} \biggl[ \biggl(\frac{1}{2}+ \frac{2\operatorname{tanh}(\frac{\rho }{4})}{\rho } \biggr)^{q+1}- \biggl( \frac{2\operatorname{tanh}(\frac{\rho }{4})}{\rho } \biggr)^{q+1} \biggr]^{ \frac{1}{q}}\\ &\qquad {} \times \biggl( \frac{ \vert g''(a) \vert ^{q}+ \vert g''(b) \vert ^{q}}{2} \biggr)^{ \frac{1}{q}}. \end{aligned} $$
Theorem 2.4
Let\(g:[a, b]\rightarrow \mathbb{R}\)be a twice differentiable mapping on\((a, b)\)with\(a< b\)satisfying\(g''\in L^{1}([a,b]) \)and\(0\leq \lambda \leq 1\). If\(|g''|^{q}\)is convex on\([a, b]\)with\(q>1\), then the following inequality holds:
Proof
Utilizing Lemma 2.1, the definition of \(w(t)\), and the power-mean integral inequality, we have
Using the properties of the modulus and direct computation, we obtain
and
Using (2.22) and (2.23) in (2.21), we obtain the desired result in (2.20). Thus, the proof is completed. □
Corollary 2.7
Under all assumptions of Theorem 2.4, if\(|g''(x)|\leq M\)on\([a,b]\), then the following inequality is true:
Corollary 2.8
Consider Theorem 2.4.
- (1)
For\(\lambda =0\), we have the following midpoint inequality:
$$ \begin{aligned}[b] & \biggl\vert \frac{1-\alpha }{2(1-e^{-\rho })} \bigl[ \mathcal{I}^{\alpha }_{a^{+}}g(b)+\mathcal{I}^{\alpha }_{b^{-}}g(a) \bigr]-g \biggl(\frac{a+b}{2} \biggr) \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{2} \biggl(\frac{1}{4}+ \frac{\rho +\rho e^{-\rho }+2e^{-\rho }-2}{\rho ^{2}(1-e^{-\rho })} \biggr) \biggl(\frac{ \vert g''(a) \vert ^{q}+ \vert g''(b) \vert ^{q}}{2} \biggr)^{ \frac{1}{q}}. \end{aligned} $$ - (2)
For\(\lambda =\frac{1}{3}\), we have the following Simpson inequality:
$$ \begin{aligned}[b] & \biggl\vert \frac{1}{6} \biggl[g(a)+4g \biggl(\frac{a+b}{2} \biggr)+g(b) \biggr]-\frac{1-\alpha }{2(1-e^{-\rho })} \bigl[ \mathcal{I}^{\alpha }_{a^{+}}g(b)+ \mathcal{I}^{\alpha }_{b^{-}}g(a) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{2} \biggl(\frac{1}{6}+ \frac{\rho +\rho e^{-\rho }+2e^{-\rho }-2}{\rho ^{2}(1-e^{-\rho })} \biggr) \biggl(\frac{ \vert g''(a) \vert ^{q}+ \vert g''(b) \vert ^{q}}{2} \biggr)^{ \frac{1}{q}}. \end{aligned} $$ - (3)
For\(\lambda =\frac{1}{2}\), we have the averaged midpoint-trapezoid integral inequality:
$$ \begin{aligned}[b] & \biggl\vert \frac{1}{4} \biggl[g(a)+2g \biggl(\frac{a+b}{2} \biggr)+g(b) \biggr]-\frac{1-\alpha }{2(1-e^{-\rho })} \bigl[ \mathcal{I}^{\alpha }_{a^{+}}g(b)+ \mathcal{I}^{\alpha }_{b^{-}}g(a) \bigr] \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}}{2} \biggl(\frac{1}{8}+ \frac{\rho +\rho e^{-\rho }+2e^{-\rho }-2}{\rho ^{2}(1-e^{-\rho })} \biggr) \biggl(\frac{ \vert g''(a) \vert ^{q}+ \vert g''(b) \vert ^{q}}{2} \biggr)^{ \frac{1}{q}}. \end{aligned} $$ - (4)
For\(\lambda =1\), we have the trapezoid inequality:
$$ \begin{aligned}[b] & \biggl\vert \frac{1-\alpha }{2(1-e^{-\rho })} \bigl[ \mathcal{I}^{\alpha }_{a^{+}}g(b)+\mathcal{I}^{\alpha }_{b^{-}}g(a) \bigr]-\frac{g(a)+g(b)}{2} \biggr\vert \\ &\quad \leq \frac{(b-a)^{2}(\rho +\rho e^{-\rho }+2e^{-\rho }-2)}{2\rho ^{2}(1-e^{-\rho })} \biggl(\frac{ \vert g''(a) \vert ^{q}+ \vert g''(b) \vert ^{q}}{2} \biggr)^{\frac{1}{q}}. \end{aligned} $$
Remark 2.5
Using (2.6) and (2.7) in (2.20), Theorem 2.4 is transformed to
Corollary 2.9
Under all assumptions of Theorems 2.1–2.4with\(0\leq \lambda <1\), we have
where
and
3 Examples
In this section, we provide two examples to illustrate our main results.
Example 3.1
Let \(g(x)=x^{2}\), for \(x\in (-\infty , \infty )\). Then \(|g''|\) is convex on \((-\infty , \infty )\). If we take \(a=0\), \(b=1\), \(\alpha =\frac{1}{2}\) and \(\lambda =\frac{1}{4}\), then all assumptions in Theorem 2.1 are satisfied.
Clearly, \(\rho =\frac{1-\alpha }{\alpha }(b-a)=1\). The left-hand side term of (2.2) is
The right-hand side term of (2.2) is
It is clear that \(0.0235<0.3515\), which demonstrates the result described in Theorem 2.1.
Example 3.2
Let \(g(x)=e^{x}\), for \(x\in (-\infty , \infty )\). Then \(|g''|^{q}\) is convex on \((-\infty , \infty )\). If we take \(a=0\), \(b=1\), \(\alpha =\frac{1}{2}\), \(\lambda =\frac{1}{2}\) and \(p=2=q\), then all assumptions in Theorem 2.2 are satisfied.
Clearly, \(\rho =\frac{1-\alpha }{\alpha }(b-a)=1\). The left-hand side term of (2.9) is
The right-hand side term of (2.9) is
It is clear that \(0.0334<0.3859\), which demonstrates the result described in Theorem 2.2.
Remark 3.1
Theorems 2.1–2.4 provide an upper bound for the approximation of the fractional integrals \(\frac{1-\alpha }{2(1-e^{-\rho })} [\mathcal{I}^{\alpha }_{a^{+}}g(b)+ \mathcal{I}^{\alpha }_{b^{-}}g(a) ]\). There exist certain integral functions that cannot be expressed by elementary functions. So Theorems 2.1–2.4 are of importance to deal with such integral functions. For example, let \(g(x) = e^{-x^{2}+x}\), for \(x\in [2, \infty )\). Then \(|g''|^{q}\) for \(q\geq 1\) is convex on \([2,\infty )\). If we take \(a=2\), \(b=3\), \(\alpha =\frac{1}{2}\) and \(\lambda =\frac{1}{2}\), then all assumptions in Theorem 2.3 are satisfied.
Clearly, \(\rho =\frac{1-\alpha }{\alpha }(b-a)=1\). The left-hand side term of (2.16) is
Obviously, the term \(\int ^{3}_{2}e^{-(s-1)^{2}}\,\mathrm{d}s\) and \(\int ^{3}_{2}e^{-s^{2}}\,\mathrm{d}s\) cannot be solved directly due to the fact that \(\int e^{-s^{2}}\,\mathrm{d}s\) cannot be expressed by elementary functions. However, applying Theorem 2.3 with \(q=2\), we obtain an upper bound for (3.1), i.e.
4 Application to special means
We consider the following means for arbitrary real numbers m, n (\(m\neq n\)).
- (a)
The arithmetic mean:
$$ \begin{aligned}[b] A(m,n)=\frac{m+n}{2}. \end{aligned} $$ - (b)
The geometric mean:
$$ \begin{aligned}[b] G(m,n)=\sqrt{mn},\quad mn\geq 0. \end{aligned} $$ - (c)
The harmonic mean:
$$ \begin{aligned}[b] H(m,n)=\frac{2}{\frac{1}{m}+\frac{1}{n}},\quad m, n\in \mathbb{R} \setminus \{0\}, m\neq -n. \end{aligned} $$ - (d)
The logarithmic mean:
$$ \begin{aligned}[b] L(m,n)=\frac{m-n}{\ln \vert m \vert -\ln \vert n \vert },\quad \vert m \vert \neq \vert n \vert , mn \neq 0. \end{aligned} $$ - (e)
The generalized logarithmic mean:
$$ \begin{aligned}[b] L_{r}(m,n)= \biggl[\frac{n^{r+1}-m^{r+1}}{(n-m)(r+1)} \biggr]^{\frac{1}{r}},\quad r\in \mathbb{Z}\setminus \{-1,0\}, m\neq n. \end{aligned} $$ - (f)
The identric mean:
$$ \begin{aligned}[b] I(m,n) = \textstyle\begin{cases} m, &m=n, \\ \frac{1}{e} (\frac{n^{n}}{m^{m}} )^{\frac{1}{n-m}} , &m\neq n, \end{cases}\displaystyle \quad m,n>0. \end{aligned} $$
We have the following results.
Proposition 4.1
Let\(m, n\in \mathbb{R}\), \(m< n\), \(0\leq \lambda \leq 1\)and\(r\in \mathbb{Z}\), \(|r|\geq 2\). Then
Proof
Applying the mapping \(g(x) = x^{r}\), \(x\in \mathbb{R}\), \(|r|\geq 2\) to Remark 2.1, we obtain the required result. □
Proposition 4.2
Let\(m, n\in \mathbb{R}\), \(0< m< n\)and\(0\leq \lambda \leq 1\). Then
Proof
Applying the mapping \(g(x) = \frac{1}{x}\), for \(x>0\) to Remark 2.4, we obtain the required result. □
Proposition 4.3
Let\(m, n\in \mathbb{R}\), \(0< m< n\)and\(0\leq \lambda \leq 1\). Then
Proof
Applying the mapping \(g(x) = -\ln x\), for \(x>0\) to Remark 2.5, we obtain the required result. □
Next, we give an application using trapezoid formula and midpoint formula. Let \(X:a=x_{0}< x_{1}<\cdots <x_{n-1}<x_{n}=b\) be a division of the interval \([a,b]\). We consider the following quadrature formula:
where
is the trapezoid version, and
is the midpoint version. The related approximation error is denoted by \(E_{i}(g,X)\), \(i=1,2\).
Now, we derive an error estimate related to trapezoid formula and midpoint formula.
Proposition 4.4
Let\(g:[a,b]\rightarrow \mathbb{R} \)be a twice differentiable mapping on\((a,b)\)with\(a< b\). If\(g''\in L^{1}([a,b])\)and\(|g''|\)is convex on\([a,b]\)with\(0\leq \lambda \leq 1\), for every divisionXof\([a,b]\), the following inequality holds:
Proof
Using Eqs. (4.1), (4.2) and (4.3), we have
and
Applying Remark 2.1 on the subinterval \([x_{i},x_{i+1}]\) (\(i=0,1,\ldots,n-1\)) of the division X, we deduce
Summing over from 0 to \(n-1\) and utilizing the convexity of \(|g''|\), we have
Thus, the proof is completed. □
Remark 4.1
For \(\lambda =0\), we have
which is given by Wu et al. in [34], Proposition 4.
Remark 4.2
For \(\lambda =1\), we have
5 Conclusion
Using the fractional integrals with exponential kernels, certain inequalities related to the Hermite–Hadamard and Simpson inequalities for convex mappings are established. The inequalities are parameterized by the parameter \(0 \leq \lambda \leq 1\). These inequalities generalize and extend parts of the results provided by Wu et al. in [34]. Some applications of the obtained results to special means and quadrature formula are also presented. With these contributions, we hope to motivate the interested researcher to further explore this enchanting field of the fractional integral inequalities based on these techniques and the ideas developed in the present paper.
References
Agarwal, P.: Some inequalities involving Hadamard-type k-fractional integral operators. Math. Methods Appl. Sci. 40(11), 3882–3891 (2017)
Ahmad, B., Alsaedi, A., Kirane, M., Torebek, B.T.: Hermite–Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 353, 120–129 (2019)
Alomari, M., Darus, M., Dragomir, S.S.: New inequalities of Hermite–Hadamard type for functions whose second derivatives absolute values are quasi-convex. Tamkang J. Math. 41(4), 353–359 (2010)
Chen, F.X.: On the generalization of some Hermite–Hadamard inequalities for functions with convex absolute values of the second derivatives via fractional integrals. Ukr. Math. J. 70(12), 1953–1965 (2019)
Chen, H., Katugampola, U.N.: Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 446(2), 1274–1291 (2017)
Deng, Y.P., Awan, M.U., Wu, S.H.: Quantum integral inequalities of Simpson-type for strongly preinvex functions. Mathematics 7(8), Article Number 751 (2019)
Dragomir, S.S., Nikodem, K.: Jensen’s and Hermite–Hadamard’s type inequalities for lower and strongly convex functions on normed spaces. Bull. Iran. Math. Soc. 44(5), 1337–1349 (2018)
Du, T.S., Awan, M.U., Kashuri, A., Zhao, S.S.: Some k-fractional extensions of the trapezium inequalities through generalized relative semi-\((m,h)\)-preinvexity. Appl. Anal. (2019). https://doi.org/10.1080/00036811.2019.1616083
Du, T.S., Li, Y.J., Yang, Z.Q.: A generalization of Simpson’s inequality via differentiable mapping using extended \((s, m)\)-convex functions. Appl. Math. Comput. 293, 358–369 (2017)
Hsu, K.C., Hwang, S.R., Tseng, K.L.: Some extended Simpson-type inequalities and applications. Bull. Iran. Math. Soc. 43(2), 409–425 (2017)
Iqbal, M., Bhatti, M.I., Nazeer, K.: Generalization of inequalities analogous to Hermite–Hadamard inequality via fractional integrals. Bull. Korean Math. Soc. 52(3), 707–716 (2015)
İşcan, İ., Turhan, S., Maden, S.: Hermite–Hadamard and Simpson-like type inequalities for differentiable p-quasi-convex functions. Filomat 31(19), 5945–5953 (2017)
Jleli, M., O’Regan, D., Samet, B.: On Hermite–Hadamard type inequalities via generalized fractional integrals. Turk. J. Math. 40(6), 1221–1230 (2016)
Khan, M.A., Chu, Y.M., Kashuri, A., Liko, R., Ali, G.: Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, Article Number 6928130 (2018)
Kórus, P.: An extension of the Hermite–Hadamard inequality for convex and s-convex functions. Aequ. Math. 93(3), 527–534 (2019)
Kunt, M., İşcan, İ., Turhan, S., Karapinar, D.: Improvement of fractional Hermite–Hadamard type inequality for convex functions. Miskolc Math. Notes 19(2), 1007–1017 (2018)
Kunt, M., Karapinar, D., Turhan, S., İşcan, İ.: The left Riemann–Liouville fractional Hermite–Hadamard type inequalities for convex functions. Math. Slovaca 69(4), 773–784 (2019)
Latif, M.A., Dragomir, S.S.: Generalization of Hermite–Hadamard type inequalities for n-times differentiable functions which are s-preinvex in the second sense with applications. Hacet. J. Math. Stat. 44(4), 839–853 (2015)
Liao, J., Wu, S.H., Du, T.S.: The Sugeno integral with respect to α-preinvex functions. Fuzzy Sets Syst. 379, 102–114 (2020)
Matłoka, M.: Weighted Simpson type inequalities for h-convex functions. J. Nonlinear Sci. Appl. 10, 5770–5780 (2017)
Mehrez, K., Agarwal, P.: New Hermite–Hadamard type integral inequalities for convex functions and their applications. J. Comput. Appl. Math. 350, 274–285 (2019)
Mihai, M.V., Awan, M.U., Noor, M.A., Kim, J.K., Noor, K.I.: Hermite–Hadamard inequalities and their applications. J. Inequal. Appl. 2018, Article Number 309 (2018)
Mohammed, P.O.: Hermite–Hadamard inequalities for Riemann–Liouville fractional integrals of a convex function with respect to a monotone function. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.5784
Noor, M.A., Noor, K.I., Awan, M.U.: Simpson-type inequalities for geometrically relative convex functions. Ukr. Math. J. 70(7), 1145–1154 (2018)
Qaisar, S., Nasir, J., Butt, S.I., Asma, A., Ahmad, F., Iqbal, M., Hussain, S.: Some fractional integral inequalities of type Hermite–Hadamard through convexity. J. Inequal. Appl. 2019, Article Number 111 (2019)
Sarikaya, M.Z., Aktan, N.: On the generalization of some integral inequalities and their applications. Math. Comput. Model. 54, 2175–2182 (2011)
Sarikaya, M.Z., Saglam, A., Yildirim, H.: New inequalities of Hermite–Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex. Int. J. Open Probl. Comput. Sci. Math. 5(3), 1–14 (2012)
Sarikaya, M.Z., Set, E., Yaldiz, H., Başak, N.: Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57, 2403–2407 (2013)
Set, E., Akdemir, A.O., Özdemir, M.E.: Simpson type integral inequalities for convex functions via Riemann–Liouville integrals. Filomat 31(14), 4415–4420 (2017)
Set, E., Choi, J., Çelİk, B.: Certain Hermite–Hadamard type inequalities involving generalized fractional integral operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112(4), 1539–1547 (2018)
Sun, W.B., Liu, Q.: New Hermite–Hadamard type inequalities for \((\alpha ,m)\)-convex functions and applications to special means. J. Math. Inequal. 11(2), 383–397 (2017)
Ul-Haq, W., Rehman, N., Al-Hussain, Z.A.: Hermite–Hadamard type inequalities for r-convex positive stochastic processes. J. Taibah Univ. Sci. 13(1), 87–90 (2019)
Wang, J.R., Deng, J.H., Fečkan, M.: Exploring s-e-condition and applications to some Ostrowski type inequalities via Hadamard fractional integrals. Math. Slovaca 64(6), 1381–1396 (2014)
Wu, X., Wang, J.R., Zhang, J.L.: Hermite–Hadamard-type inequalities for convex functions via the fractional integrals with exponential kernel. Mathematics 7(9), Article Number 845 (2019)
Yadollahzadeh, M., Babakhani, A., Neamaty, A.: Hermite–Hadamard’s inequality for pseudo-fractional integral operators. Stoch. Anal. Appl. 37(4), 620–635 (2019)
Acknowledgements
The authors are grateful to the editor and the anonymous reviewers for their valuable comments and suggestions, which have resulted in the present improved version of the original paper.
Availability of data and materials
Not applicable.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
The authors jointly worked on deriving the results and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Zhou, TC., Yuan, ZR., Yang, HY. et al. Some parameterized inequalities by means of fractional integrals with exponential kernels and their applications. J Inequal Appl 2020, 163 (2020). https://doi.org/10.1186/s13660-020-02430-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-020-02430-9