- Research
- Open access
- Published:
Opial integral inequalities for generalized fractional operators with nonsingular kernel
Journal of Inequalities and Applications volume 2020, Article number: 148 (2020)
Abstract
We consider the well-known classes of functions \(\mathcal{U}_{1}(\mathbf{v},\mathtt{k})\) and \(\mathcal{U}_{2}(\mathbf{v},\mathtt{k})\), and those of Opial inequalities defined on these classes. In view of these indices, we establish new aspects of the Opial integral inequality and related inequalities, in the context of fractional integrals and derivatives defined using nonsingular kernels, particularly the Caputo–Fabrizio (CF) and Atangana–Baleanu (AB) models of fractional calculus.
1 Introduction
Fractional calculus, or specifically the subject of fractional differential equations, is usually considered as a generalization of ordinary differential equations. In many fields they have been applied as more appropriate models of real world problems, for example in biology, engineering, finance, and physics [1–10]. Recently, the applications of fractional calculus have been developing, including control system, anomalous diffusion, petroleum engineering, multi-strain tuberculosis model, and viscoelastic mechanics. For this reason, we advice the reader to read the book [11] carefully, which includes a collection of different fractional models.
Many mathematical inequalities are simulated via the fractional calculus that lead to fractional integral inequalities. Fractional integral inequalities form a basic field of study within mathematical analysis [12, 13]. They have been used in the study of fractional ordinary and partial differential equations [14–17]. Specifically, they have been used in finding the uniqueness of solutions for a certain fractional differential equations and in providing bounds to solve certain fractional boundary value problems [18, 19].
There are many inequalities nowadays which has interested many mathematicians and in the past ten years much research has been done around this topic; see [20–35] for further details on various mathematical inequalities. One of the well-known inequalities arising in the theory of mathematical analysis, namely, is the Opial integral inequality. It was firstly found by Opial in 1960 [36], and his result is as follows: for a function \(\mathbb{g}(t)\in C^{1}[0,h]\) with \(\mathbb{g}(0)=\mathbb{g}(h)=0\) and \(\mathbb{g}(t)>0\) for \(t\in (0,h)\)
A best possibility here is \(\frac{h}{4}\).
The Opial integral inequality (1.1) has received substantial attention in various field of mathematics. Moreover, a large number of articles dealing with extensions, new results, variants, generalizations and discrete analogues of Opial’s integral inequality can be found in the literature [33, 37–40].
The idea we have considered in the current paper is Farid et al.’s idea [37]. Their results are as follows.
Definition 1.1
Let v be a continuous function. Denote by \(\mathcal{U}_{1}(\mathbf{v},\mathtt{k})\) the class of functions \(\mathfrak{u}:[\mathbb{o}_{1},\mathbb{o}_{2}]\to \mathbb{R}\) having the representation
where \(\mathtt{k}=\mathtt{k}(\eta,t)\) is an arbitrary nonnegative kernel such that \(\mathtt{k}(\eta,t)=0\) for \(t>\eta \), and \(\mathbf{v}(\eta )>0\) implies \(\mathfrak{u}(\eta )>0\) for every \(\eta \in [\mathbb{o}_{1},\mathbb{o}_{2}]\).
Definition 1.2
Let v be a continuous function. Denote by \(\mathcal{U}_{2}(\mathbf{v},\mathtt{k})\) the class of functions \(\mathfrak{u}:[\mathbb{o}_{1},\mathbb{o}_{2}]\to \mathbb{R}\) having the representation
where \(\mathtt{k}=\mathtt{k}(\eta,t)\) is an arbitrary nonnegative kernel such that \(\mathtt{k}(\eta,t)=0\) for \(t<\eta \), and \(\mathbf{v}(\eta )>0\) implies \(\mathfrak{u}(\eta )>0\) for every \(\eta \in [\mathbb{o}_{1},\mathbb{o}_{2}]\).
Theorem 1.1
Suppose\(\sigma, \mathbb{g}:[0,\infty )\to \mathbb{R}\)are two differentiable convex and increasing functions with\(\sigma (g(0))=0\). Also, suppose\(\mathfrak{u}\in \mathcal{U}_{1}(\mathbb{g}\circ \mathbf{v}, \mathtt{k})\)such that\(|\mathtt{k}(\eta,t)|\leq \mathcal{\mathcal{K}} =\)constant. Then we have
Theorem 1.2
Suppose\(\sigma,:[0,\infty )\to \mathbb{R}\)is a differentiable convex and increasing function with\(\sigma (0)=0\). Also, suppose\(\mathfrak{u}\in \mathcal{U}_{1}(\mathbb{g}\circ \mathbf{v}, \mathtt{k})\)such that\(|\mathtt{k}(\eta,t)|\leq \mathcal{\mathcal{K}} =\)constant. Then we have
for\(\bar{\varrho }\geq 1\).
The most efficient branch of mathematical analysis is fractional calculus, which involves integrals and derivatives taken to fractional orders, orders outside of the integer or natural numbers. Here, we present the Riemann–Liouville (RL) definition to facilitate the discussion of the aforementioned operations, which is most commonly used for fractional derivatives and integrals.
Definition 1.3
For any function f which is \(L^{1}\) on an interval \([\mathbb{o}_{1},\mathbb{o}_{2}]\), and for any \(\eta \in [\mathbb{o}_{1},\mathbb{o}_{2}]\), the ν̄th left-RL fractional integral of \(\mathbf{f}(\eta )\) is defined by the following integral transform, for \(\mathop {\operatorname {Re}}(\bar{\nu })>0\):
For any function f which is \(C^{n}\) on an interval \([\mathbb{o}_{1},\mathbb{o}_{2}]\), and for any \(\eta \in [\mathbb{o}_{1},\mathbb{o}_{2}]\), the ν̄th left-RL fractional derivative of \(\mathbf{f}(\eta )\) is defined, for \(n-1\leq \mathop {\operatorname {Re}}(\bar{\nu })< n\), as follows:
Between them, these two definitions cover orders of differentiation throughout the entire complex plane, where we interpret \({}^{RL}{}{D}^{-\bar{\nu }}_{\mathbb{o}_{1}+}\mathbf{f}(\eta ) = {}^{RL}{}{I}^{\bar{\nu }}_{\mathbb{o}_{1}+}\mathbf{f}(\eta )\). Equation (1.5) is the analytic continuation in ν̄ of the formula (1.4); thus, differentiation and integration are now unified in a single operator which we call differintegration.
Definition 1.4
For any function f which is \(L^{1}\) on an interval \([\mathbb{o}_{1},\mathbb{o}_{2}]\), and for any \(\eta \in [\mathbb{o}_{1},\mathbb{o}_{2}]\), the ν̄th right-RL fractional integral of \(\mathbf{f}(\eta )\) is defined by the following integral transform, for \(\mathop {\operatorname {Re}}(\bar{\nu })>0\):
For any function f which is \(C^{n}\) on an interval \([\mathbb{o}_{1},\mathbb{o}_{2}]\), and for any \(\eta \in [\mathbb{o}_{1},\mathbb{o}_{2}]\), the ν̄th right-RL fractional derivative of \(\mathbf{f}(\eta )\) is defined, for \(n-1\leq \mathop {\operatorname {Re}}(\bar{\nu })< n\), as follows:
Recently, many possible definitions have been proposed for fractional integrals and derivatives, starting from the classical RL formula (1.4)–(1.7) and its modifying and generalisations it by replacing the power function kernel with other kernel functions; like the Caputo [41], Hilfer [42, Chapter II], Atangana–Baleanu [43, 44] and Prabhakar [45, 46] definitions.
Many of those definitions have different properties from the classical RL model. Also, the definition discussed in this article, namely the Caputo–Fabrizio (CF) definition, is designed with the convolution of an exponential function with an ordinary derivative but it has the same supplemental properties of configuration and heterogeneous [47–49] with different kernels as occur in the Caputo and RL fractional derivatives. The CF-fractional derivative [50] has formed a new dimension in the study of fractional differential equations with its nonsingular kernel.
Definition 1.5
For any function f which is \(\mathcal{H}^{1}(\mathbb{o}_{1},\mathbb{o}_{2})\) with \(0<\bar{\nu }<1\), and for any \(\eta \in [\mathbb{o}_{1},\mathbb{o}_{2}]\), the ν̄th left-CF-fractional derivative of \(\mathbf{f}(\eta )\) in the sense of Caputo is defined by
and the left-CF-fractional derivative of \(\mathbf{f}(\eta )\) in the sense of Caputo is defined by
where \(\bar{\lambda }=-\frac{\bar{\nu }}{1-\bar{\nu }}\) and \(\mathcal{B}(\bar{\nu })>0\) is a normalization function that satisfies \(\mathcal{B}(0)=\mathcal{B}(1)=1\).
The aim of the present article is to establish new Opial integral inequalities type involving Caputo–Fabrizio fractional models by an extension of Farid et al.’s idea [37] as shown in Theorems 1.1–1.2. For special cases, our results yield some of the recent integral inequalities of Opial type and offer new estimates on such types of inequalities. Furthermore, we improve those findings to the higher order Caputo–Fabrizio (CF) and Atangana–Baleanu (AB) fractional operators, which we define in Sects. 2.2 and 3, respectively.
2 The CF-fractional inequalities
We here utilize CF-fractional integrals and derivatives for the inequalities (1.2) and (1.3) to obtain new corresponding CF-fractional integral inequalities of Opial type.
2.1 The first order CF-fractional inequalities
Theorem 2.1
Suppose\(\sigma, \mathbb{g}:[0,\infty )\to \mathbb{R}\)are two differentiable convex and increasing functions with\(\sigma (g(0))=0\)and suppose that\(\mathbf{f}'\in L[\mathbb{o}_{1},\mathbb{o}_{2}]\). Then, for\(0<\bar{\nu }<1\), we have
where\({}^{CFC} _{\mathbb{o}_{1}}{D}^{\bar{\nu }}\mathbf{f}(\eta )\)is as in (1.8).
Proof
Let \(\mathbf{v}:=\mathbf{f}'\), so v is a continuous function. Then, we find
where
Since \(\frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}>0\) and \(\bar{\lambda }=\frac{-\bar{\nu }}{1-\bar{\nu }}<0\) for \(0<\bar{\nu }<1\), the function \(\frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}\exp (\bar{\lambda }( \eta -\xi ))\) is a decreasing function on the interval \([\mathbb{o}_{1},\mathbb{o}_{2}]\) and hence
Then, by applying Theorem 1.1 for the above particular findings, we easily obtain inequalities (2.1). □
Corollary 2.1
Let the assumptions of previous theorem be given. Then, for\(0<\bar{\nu }<1\)and\(\bar{\varrho }\geq 1\), we have
Proof
We know that the function \(x^{\bar{\varrho }}\) is an increasing and convex function for \(\bar{\varrho }\geq 1\). Then, by applying Theorem 2.1 for such a function \(\mathbb{g}(\eta ):=x^{\bar{\varrho }}\), we easily obtain inequalities (2.4). □
We can obtain the same results for the right-sided CF-fractional integral on the class of functions \(\mathcal{U}_{2}(\mathbb{g}\circ \mathbf{v},\mathtt{k})\) (see Definition 1.2). These are given in the following.
Theorem 2.2
Suppose\(\sigma, \mathbb{g}:[0,\infty )\to \mathbb{R}\)are two differentiable convex and increasing functions with\(\sigma (g(0))=0\)and suppose that\(\mathbf{f}'\in L[\mathbb{o}_{1},\mathbb{o}_{2}]\). Then, for\(0<\bar{\nu }<1\), we have
where\({}^{CFC} _{\mathbb{o}_{1}}{D}^{\bar{\nu }}_{\mathbb{o}_{2}-} \mathbf{f}(\eta )\)is as in (1.9).
Proof
We can use the same method used for Theorem 2.1 to produce the results for Theorem 2.2. □
Corollary 2.2
Let the assumptions of previous theorem be given. Then, for\(0<\bar{\nu }<1\)and\(\bar{\varrho }\geq 1\), we have
Proof
We can use the same method used for Corollary 2.1 to produce the results for Corollary 2.2. □
2.2 The higher order CF-fractional inequalities
Here we generalize the previous findings to the new corresponding higher order CF-fractional inequalities of Opial type. At first, we have to recall the higher order CF-fractional derivatives.
Definition 2.1
([18])
For a function f, \(\mathbf{f}^{(n)}\in \mathcal{H}^{1}(\mathbb{o}_{1},\mathbb{o}_{2})\) and \(n<\bar{\nu }<n+1\), we have the higher order left and right CF-fractional derivatives, respectively, defined by
and
where \(\bar{\lambda }=-\frac{\bar{\nu }-n}{n+1-\bar{\nu }}\).
Theorem 2.3
Suppose\(\sigma, \mathbb{g}:[0,\infty )\to \mathbb{R}\)are two differentiable convex and increasing functions with\(\sigma (g(0))=0\)and suppose that\(\mathbf{f}^{(n+1)}\in L[\mathbb{o}_{1},\mathbb{o}_{2}]\). Then, for\(n<\bar{\nu }<n+1\), we have
where\({}^{CFC} _{\mathbb{o}_{1}}{D}^{\bar{\nu }}\mathbf{f}(\eta )\)is as in (2.7).
Proof
Let \(\mathbf{v}:=\mathbf{f}^{(n+1)}\), so v is a continuous function. Then we find
where
From this we have
Hence by applying Theorem 1.1 for the above particular findings, we easily obtain inequalities (2.9). □
Corollary 2.3
Let the assumptions of the previous theorem be given. Then, for\(n<\bar{\nu }<n+1\)and\(\bar{\varrho }\geq 1\), we have
Proof
We know that the function \(x^{\bar{\varrho }}\) is an increasing and convex function for \(\bar{\varrho }\geq 1\). Then, by applying Theorem 2.3 for such a function \(\mathbb{g}(\eta ):=x^{\bar{\varrho }}\), we easily obtain inequalities (2.12). □
We can obtain the same results for the right-sided higher order CF-fractional integral on the class of functions \(\mathcal{U}_{2}(\mathbb{g}\circ \mathbf{v},\mathtt{k})\) (see Definition 1.2). These are given in the following.
Theorem 2.4
Suppose\(\sigma, \mathbb{g}:[0,\infty )\to \mathbb{R}\)are two differentiable convex and increasing functions with\(\sigma (g(0))=0\)and suppose that\(\mathbf{f}^{(n+1)}\in L[\mathbb{o}_{1},\mathbb{o}_{2}]\). Then, for\(n<\bar{\nu }<n+1\), we have
where\({}^{CFC} _{H}{D}^{\bar{\nu }}_{\mathbb{o}_{2}-}\mathbf{f}(\eta )\)is as in (2.8).
Proof
We can use the same method used for Theorem 2.3 to produce the results for Theorem 2.4. □
Corollary 2.4
Let the assumptions of previous theorem be given. Then, for\(n<\bar{\nu }<n+1\)and\(\bar{\varrho }\geq 1\), we have
Proof
We can use the same method used for Corollary 2.3 to produce the results for Corollary 2.4. □
3 The ABC-fractional inequalities
In the final section, we improve our study from the CF-fractional operators with a nonsingular kernel to the Atangana–Baleanu (AB) fractional operators with a Mittag-Leffler (ML) kernel. For this, we get new inequalities of Opial type. Let us first recall the AB fractional derivatives.
Definition 3.1
For any function f which is \(\mathcal{H}^{1}(a,b)\) with \(0<\mathbb{o}_{1}<\mathbb{o}_{2}\), and for any \(x\in [\mathbb{o}_{1},\mathbb{o}_{2}]\), the ν̄th left-AB fractional derivative of \(\mathbf{f}(\eta )\) in the sense of Caputo is defined by
and the left-CF-fractional derivative of \(\mathbf{f}(\eta )\) in the sense of Caputo is defined by
where λ̄ and \(\mathcal{B}(\bar{\nu })\) are both as before, and \(\mathtt{E}_{\bar{\nu }}(\cdot )\) is a Mittag-Leffler (ML) function defined by [51]
for \(0\neq \bar{\lambda }\in \mathbb{R}, z\in \mathbb{C}\), and \(\Re (\bar{\nu })>0\).
Theorem 3.1
Suppose\(\phi, \mathbf{g}:[0,\infty )\to \mathbb{R}\)are two differentiable convex and increasing functions with\(\phi (g(0))=0\)and suppose that\(\mathbf{f}'\in L[\mathbb{o}_{1},\mathbb{o}_{2}]\). Then, for\(0<\bar{\nu }<1\), we have
where\({}^{ABC} _{\mathbb{o}_{1}+}{D}^{\bar{\nu }}\mathbf{f}(\eta )\)is as in (3.1).
Proof
Let \(\mathbf{v}:=\mathbf{f}'\), so v is a continuous function. Then we find
where
From [52], we can see that the function \(\frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}{E}_{\bar{\nu }} ( \bar{\lambda }(x-\xi )^{\bar{\nu }} )\) is a monotonically decreasing function on the interval \([\mathbb{o}_{1},\mathbb{o}_{2}]\) and hence
Then, by applying Theorem 1.1 for the above particular findings, we easily obtain inequalities (3.3). □
Corollary 3.1
Let the assumptions of the previous theorem be given. Then, for\(0<\bar{\nu }<1\)and\(\bar{\varrho }\geq 1\), we have
Proof
We can use the same technique used for Corollary 2.1 to produce the results for Corollary 3.2. □
We can obtain the same results for the right-sided AB fractional integral on the class of functions \(\mathcal{U}_{2}(\mathbf{g}\circ \mathbf{v},\mathtt{k})\) (see Definition 1.2). These are given in the following.
Theorem 3.2
Suppose\(\phi, \mathbf{g}:[0,\infty )\to \mathbb{R}\)are two differentiable convex and increasing functions with\(\phi (g(0))=0\)and suppose that\(\mathbf{f}'\in L[\mathbb{o}_{1},\mathbb{o}_{2}]\). Then, for\(0<\bar{\nu }<1\), we have
where\({}^{ABC} {D}^{\bar{\nu }}_{\mathbb{o}_{2}-}\mathbf{f}(\eta )\)is as in (3.2).
Proof
We can use the same technique used for Theorem 3.1 to produce the results for Theorem 3.2. □
Corollary 3.2
Let the assumptions of the previous theorem be given. Then, for\(0<\bar{\nu }<1\)and\(\bar{\varrho }\geq 1\), we have
Proof
We can use the same technique used for Corollary 2.1 to produce the results for Corollary 3.2. □
4 Conclusion
In the current study, we have considered the Opial integral inequalities in the context of generalized fractional operators with nonsingular kernel. Also, we have studied some related integral inequalities for the CFC and ABC-fractional integrals. It can be seen that our obtained formulas will be very helpful in the theoretical study of other models of fractional calculus.
References
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
Miller, S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, USA (1993)
Daftardar-Gejji, V.: Fractional Calculus and Fractional Differential Equations. Springer, East (2019)
Dokuyucu, M.A.: A fractional order alcoholism model via Caputo Fabrizio derivative. AIMS Math. 5(2), 781–797 (2020)
Dokuyucu, M.A.: Caputo and Atangana Baleanu Caputo fractional derivative applied to garden equation. Turkish J. Sci. 5(1), 1–7 (2020)
Martinez, M., Mohammed, P.O., Valdes, J.E.N.: Non-conformable fractional Laplace transform. Kragujev. J. Math. 46(3), 341–354 (2022)
Hamasalh, F.K., Mohammed, P.O.: Computational method for fractional differential equations using nonpolynomial fractional spline. Math. Sci. Lett. 5, 131–136 (2016)
Mohammed, P.O.: A generalized uncertain fractional forward difference equations of Riemann–Liouville type. J. Math. Res. 11(4), 43–50 (2019)
Akgül, A.: A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals 114, 478–482 (2018)
Akgül, A., Cordero, A., Torregrosa, J.R.: Solutions of fractional gas dynamics equation by a new technique. Math. Methods Appl. Sci. 43, 1349–1358 (2020)
Tarasov, V.: Handbook of Fractional Calculus with Applications, Appl. in Physics, Part A, vol. 4. De Gruyter, Boston (2019)
Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities: Theory and Applications: Volume I: Ordinary Differential Equations. Academic Press, New York (1969)
Walter, W.: Differential and Integral Inequalities, vol. 55. Springer, Berlin (2012) [orig. ed. in German; Springer Tracts in Natural Philosophy, 1964].
Denton, Z., Vatsala, A.S.: Fractional integral inequalities and applications. Comput. Math. Appl. 59(3), 1087–1094 (2010)
Mohammed, P.O., Sarikaya, M.Z.: On generalized fractional integral inequalities for twice differentiable convex functions. J. Comput. Appl. Math. 372, 112740 (2020)
Mohammed, P.O., Sarikaya, M.Z., Baleanu, D.: On the generalized Hermite–Hadamard inequalities via the tempered fractional integrals. Symmetry 12, 595 (2020). https://doi.org/10.3390/sym12040595
Mohammed, P.O., Abdeljawad, T.: Modification of certain fractional integral inequalities for convex functions. Adv. Differ. Equ. 2020, 69 (2020)
Abdeljawad, T.: Fractional operators with exponential kernels and a Lyapunov type inequality. Adv. Differ. Equ. 2017, 313 (2017)
Abdeljawad, T.: A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel. J. Inequal. Appl. 2017, 130 (2017)
Fernandez, A., Mohammed, P.O.: Hermite–Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6188
Mohammed, P.O., Brevik, I.: A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals. Symmetry 12, 610 (2020). https://doi.org/10.3390/sym12040610
Mohammed, P.O.: Some integral inequalities of fractional quantum type. Malaya J. Mat. 4(1), 93–99 (2016)
Mohammed, P.O.: Hermite–Hadamard inequalities for Riemann–Liouville fractional integrals of a convex function with respect to a monotone function. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.5784
Mohammed, P.O., Hamasalh, F.K.: New conformable fractional integral inequalities of Hermite–Hadamard type for convex functions. Symmetry 11(2), 263 (2019). https://doi.org/10.3390/sym11020263
Mohammed, P.O., Sarikaya, M.Z.: Hermite–Hadamard type inequalities for F-convex function involving fractional integrals. J. Inequal. Appl. 2018, 359 (2018)
Mohammed, P.O.: Inequalities of \((k,s), (k,h)\)-type for Riemann–Liouville fractional integrals. Appl. Math. E-Notes 17, 199–206 (2017)
Mohammed, P.O.: Inequalities of type Hermite–Hadamard for fractional integrals via differentiable convex functions. TJANT 4(5), 135–139 (2016)
Mohammed, P.O.: On new trapezoid type inequalities for h-convex functions via generalized fractional integral. TJANT 6(4), 125–128 (2018)
Qi, F., Mohammed, P.O., Yao, J.C., Yao, Y.H.: Generalized fractional integral inequalities of Hermite–Hadamard type for \((\alpha,m)\)-convex functions. J. Inequal. Appl. 2019, 135 (2019)
Gavrea, B., Gavrea, I.: On some Ostrowski type inequalities. Gen. Math. 18(1), 33–44 (2010)
Niu, P., Zhang, H., Wang, Y.: Hardy type and Rellich type inequalities on the Heisenberg group. Proc. Am. Math. Soc. 129(12), 3623–3630 (2001)
Yu, X., Lu, S.: Olsen-type inequalities for the generalized commutator of multilinear fractional integrals. Turk. J. Math. 42, 2348–2370 (2018)
Zhao, C.-J., Cheung, W.-S.: On some Opial-type inequalities. J. Inequal. Appl. 2011, 7 (2011)
Chikami, N.: On Gagliardo–Nirenberg type inequalities in Fourier–Herz spaces. J. Funct. Anal. 275(5), 1138–1172 (2018)
Ekinici, A., Ozdemir, M.E.: Some new integral inequalities via Riemann Liouville integral operators. Appl. Comput. Math. 3(18), 288–295 (2019)
Opial, Z.: Sur une inégalité. Ann. Pol. Math. 8, 29–32 (1960)
Farid, G., Rehman, A.U., Ullah, S., Nosheen, A., Waseem, M., Mehboob, Y.: Opial-type inequalities for convex functions and associated results in fractional calculus. Adv. Differ. Equ. 2019, 152 (2019)
Tomovski, Z., Pečarić, J., Farid, G.: Weighted Opial-type inequalities for fractional integral and differential operators involving generalized Mittag-Leffler functions. Eur. J. Pure Appl. Math. 10(3), 419–439 (2017)
Samraiz, M., Iqbal, S., Pečarić, J.: Generalized integral inequalities for fractional calculus. Cogent Math. 5(1), 1426205 (2018)
Başcı, Y., Baleanu, D.: New aspects of Opial-type integral inequalities. Adv. Differ. Equ. 2018, 452 (2018)
Caputo, M.: Linear model of dissipation whose q is almost frequency independent—II. Geophys. J. Int. 13, 529–539 (1967)
Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, New Jersey (2000)
Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)
Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018)
Prabhakar, T.R.: A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)
Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transforms Spec. Funct. 15(1), 31–49 (2004)
Atangana, A., Alkahtani, B.S.T.: Extension of the resistance inductance, capacitance electrical circuit of fractional derivative without singular kernel. Adv. Mech. Eng. 7, 1–6 (2015)
Gómez-Aguilar, J.F., López-López, M.G., Alvarado-Martínez, V.M., Reyes-Reyes, J., Adam-Medina, M.: Modeling diffusive transport with a fractional derivative without singular kernel. Physica A 447, 467–481 (2016)
Gómez-Aguilar, J.F., Torres, L., Yépez-Martínez, H., Calderón-Ramón, C., Cruz-Orduna, I., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H.: Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel. Entropy 17, 6289–6303 (2015)
Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)
Abdeljawad, T., Baleanu, D.: Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 9, 1098–1107 (2017)
Abdeljawad, T., Baleanu, D.: Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel. Chaos Solitons Fractals 102, 106–110 (2017)
Acknowledgements
The second author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.
Availability of data and materials
Not applicable.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
Both authors have contributed equally to this study. Also, they have read carefully and approved the final version of this manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Consent for publication
Not applicable.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Mohammed, P.O., Abdeljawad, T. Opial integral inequalities for generalized fractional operators with nonsingular kernel. J Inequal Appl 2020, 148 (2020). https://doi.org/10.1186/s13660-020-02419-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-020-02419-4