Skip to main content

Opial integral inequalities for generalized fractional operators with nonsingular kernel

Abstract

We consider the well-known classes of functions \(\mathcal{U}_{1}(\mathbf{v},\mathtt{k})\) and \(\mathcal{U}_{2}(\mathbf{v},\mathtt{k})\), and those of Opial inequalities defined on these classes. In view of these indices, we establish new aspects of the Opial integral inequality and related inequalities, in the context of fractional integrals and derivatives defined using nonsingular kernels, particularly the Caputo–Fabrizio (CF) and Atangana–Baleanu (AB) models of fractional calculus.

1 Introduction

Fractional calculus, or specifically the subject of fractional differential equations, is usually considered as a generalization of ordinary differential equations. In many fields they have been applied as more appropriate models of real world problems, for example in biology, engineering, finance, and physics [110]. Recently, the applications of fractional calculus have been developing, including control system, anomalous diffusion, petroleum engineering, multi-strain tuberculosis model, and viscoelastic mechanics. For this reason, we advice the reader to read the book [11] carefully, which includes a collection of different fractional models.

Many mathematical inequalities are simulated via the fractional calculus that lead to fractional integral inequalities. Fractional integral inequalities form a basic field of study within mathematical analysis [12, 13]. They have been used in the study of fractional ordinary and partial differential equations [1417]. Specifically, they have been used in finding the uniqueness of solutions for a certain fractional differential equations and in providing bounds to solve certain fractional boundary value problems [18, 19].

There are many inequalities nowadays which has interested many mathematicians and in the past ten years much research has been done around this topic; see [2035] for further details on various mathematical inequalities. One of the well-known inequalities arising in the theory of mathematical analysis, namely, is the Opial integral inequality. It was firstly found by Opial in 1960 [36], and his result is as follows: for a function \(\mathbb{g}(t)\in C^{1}[0,h]\) with \(\mathbb{g}(0)=\mathbb{g}(h)=0\) and \(\mathbb{g}(t)>0\) for \(t\in (0,h)\)

$$ \int _{0}^{h} \bigl\vert \mathbb{g}(t) \mathbb{g}'(t) \bigr\vert \,\mathrm{d}t \leq \int _{0}^{h} \bigl(\mathbb{g}'(t) \bigr)^{2}\,\mathrm{d}t. $$
(1.1)

A best possibility here is \(\frac{h}{4}\).

The Opial integral inequality (1.1) has received substantial attention in various field of mathematics. Moreover, a large number of articles dealing with extensions, new results, variants, generalizations and discrete analogues of Opial’s integral inequality can be found in the literature [33, 3740].

The idea we have considered in the current paper is Farid et al.’s idea [37]. Their results are as follows.

Definition 1.1

Let v be a continuous function. Denote by \(\mathcal{U}_{1}(\mathbf{v},\mathtt{k})\) the class of functions \(\mathfrak{u}:[\mathbb{o}_{1},\mathbb{o}_{2}]\to \mathbb{R}\) having the representation

$$\begin{aligned} \mathfrak{u}(\eta )= \int _{\mathbb{o}_{1}}^{\eta }\mathtt{k}(\eta,t) \mathbf{v}(t)\, \mathrm{d}t, \end{aligned}$$

where \(\mathtt{k}=\mathtt{k}(\eta,t)\) is an arbitrary nonnegative kernel such that \(\mathtt{k}(\eta,t)=0\) for \(t>\eta \), and \(\mathbf{v}(\eta )>0\) implies \(\mathfrak{u}(\eta )>0\) for every \(\eta \in [\mathbb{o}_{1},\mathbb{o}_{2}]\).

Definition 1.2

Let v be a continuous function. Denote by \(\mathcal{U}_{2}(\mathbf{v},\mathtt{k})\) the class of functions \(\mathfrak{u}:[\mathbb{o}_{1},\mathbb{o}_{2}]\to \mathbb{R}\) having the representation

$$\begin{aligned} \mathfrak{u}(\eta )= \int _{\eta }^{\mathbb{o}_{2}}\mathtt{k}(\eta,t) \mathbf{v}(t)\, \mathrm{d}t, \end{aligned}$$

where \(\mathtt{k}=\mathtt{k}(\eta,t)\) is an arbitrary nonnegative kernel such that \(\mathtt{k}(\eta,t)=0\) for \(t<\eta \), and \(\mathbf{v}(\eta )>0\) implies \(\mathfrak{u}(\eta )>0\) for every \(\eta \in [\mathbb{o}_{1},\mathbb{o}_{2}]\).

Theorem 1.1

Suppose\(\sigma, \mathbb{g}:[0,\infty )\to \mathbb{R}\)are two differentiable convex and increasing functions with\(\sigma (g(0))=0\). Also, suppose\(\mathfrak{u}\in \mathcal{U}_{1}(\mathbb{g}\circ \mathbf{v}, \mathtt{k})\)such that\(|\mathtt{k}(\eta,t)|\leq \mathcal{\mathcal{K}} =\)constant. Then we have

$$\begin{aligned} &\int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma ' \bigl(\mathbb{g} \bigl( \bigl\vert \mathfrak{u}(\eta ) \bigr\vert \bigr) \bigr) \mathbb{g}' \bigl( \bigl\vert \mathfrak{u}(\eta ) \bigr\vert \bigr) \bigl\vert \mathbb{g} \circ \mathbf{v}(\eta ) \bigr\vert \,\mathrm{d} \eta \\ &\quad \leq \frac{1}{\mathcal{K}} \sigma \biggl(\mathbb{g} \biggl( \mathcal{\mathcal{K}} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}} \bigl\vert \mathbb{g}\circ \mathbf{v}(t) \bigr\vert \,\mathrm{d}t \biggr) \biggr) \\ &\quad \leq \frac{1}{\mathcal{\mathcal{K}}(\mathbb{o}_{2}-\mathbb{o}_{1})} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma \bigl(\mathbb{g} \bigl( \mathcal{\mathcal{K}}(\mathbb{o}_{2}-\mathbb{o}_{1}) \bigl\vert \mathbb{g}\circ \mathbf{v}(t) \bigr\vert \bigr) \bigr)\,\mathrm{d}t. \end{aligned}$$
(1.2)

Theorem 1.2

Suppose\(\sigma,:[0,\infty )\to \mathbb{R}\)is a differentiable convex and increasing function with\(\sigma (0)=0\). Also, suppose\(\mathfrak{u}\in \mathcal{U}_{1}(\mathbb{g}\circ \mathbf{v}, \mathtt{k})\)such that\(|\mathtt{k}(\eta,t)|\leq \mathcal{\mathcal{K}} =\)constant. Then we have

$$\begin{aligned} &\int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma ' \bigl( \bigl\vert \mathfrak{u}(\eta ) \bigr\vert ^{\bar{\varrho }} \bigr) \bigl( \bigl\vert \mathfrak{u}(\eta ) \bigr\vert \bigr)^{\bar{\varrho }-1} \bigl\vert \bigl( \mathbf{v}(\eta ) \bigr)^{\bar{\varrho }} \bigr\vert \,\mathrm{d}\eta \\ &\quad \leq \frac{1}{\bar{\varrho }\mathcal{\mathcal{K}}} \sigma \biggl( \mathbb{g} \biggl(\mathcal{\mathcal{K}} \int _{\mathbb{o}_{1}}^{ \mathbb{o}_{2}} \bigl\vert \mathbf{v}(t) \bigr\vert ^{\bar{\varrho }} \,\mathrm{d}t \biggr)^{\bar{\varrho }} \biggr) \\ &\quad \leq \frac{1}{\bar{\varrho }\mathcal{\mathcal{K}}(\mathbb{o}_{2}-\mathbb{o}_{1})} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma \bigl(\mathbb{g} \bigl(\mathcal{ \mathcal{K}}(\mathbb{o}_{2}-\mathbb{o}_{1}) \bigl\vert \mathbf{v}(t) \bigr\vert ^{\bar{\varrho }} \bigr)^{\bar{\varrho }} \bigr)\, \mathrm{d}t, \end{aligned}$$
(1.3)

for\(\bar{\varrho }\geq 1\).

The most efficient branch of mathematical analysis is fractional calculus, which involves integrals and derivatives taken to fractional orders, orders outside of the integer or natural numbers. Here, we present the Riemann–Liouville (RL) definition to facilitate the discussion of the aforementioned operations, which is most commonly used for fractional derivatives and integrals.

Definition 1.3

([1, 2])

For any function f which is \(L^{1}\) on an interval \([\mathbb{o}_{1},\mathbb{o}_{2}]\), and for any \(\eta \in [\mathbb{o}_{1},\mathbb{o}_{2}]\), the ν̄th left-RL fractional integral of \(\mathbf{f}(\eta )\) is defined by the following integral transform, for \(\mathop {\operatorname {Re}}(\bar{\nu })>0\):

$$ {}^{RL}{} {I}^{\bar{\nu }}_{\mathbb{o}_{1}+}\mathbf{f}( \eta ) :=\frac{1}{\varGamma (\bar{\nu })} \int _{\mathbb{o}_{1}}^{\eta }( \eta -\xi )^{\bar{\nu }-1}\mathbf{f}( \xi ) \,\mathrm{d}\xi. $$
(1.4)

For any function f which is \(C^{n}\) on an interval \([\mathbb{o}_{1},\mathbb{o}_{2}]\), and for any \(\eta \in [\mathbb{o}_{1},\mathbb{o}_{2}]\), the ν̄th left-RL fractional derivative of \(\mathbf{f}(\eta )\) is defined, for \(n-1\leq \mathop {\operatorname {Re}}(\bar{\nu })< n\), as follows:

$$ {}^{RL}{} {D}^{\bar{\nu }}_{\mathbb{o}_{1}+}\mathbf{f}( \eta ) :=\frac{\,\mathrm{d}^{n}}{\,\mathrm{d}\eta ^{n}} {}^{RL}{} {I}^{n-\bar{\nu }}_{\mathbb{o}_{1}+} \mathbf{f}(\eta ). $$
(1.5)

Between them, these two definitions cover orders of differentiation throughout the entire complex plane, where we interpret \({}^{RL}{}{D}^{-\bar{\nu }}_{\mathbb{o}_{1}+}\mathbf{f}(\eta ) = {}^{RL}{}{I}^{\bar{\nu }}_{\mathbb{o}_{1}+}\mathbf{f}(\eta )\). Equation (1.5) is the analytic continuation in ν̄ of the formula (1.4); thus, differentiation and integration are now unified in a single operator which we call differintegration.

Definition 1.4

([1, 2])

For any function f which is \(L^{1}\) on an interval \([\mathbb{o}_{1},\mathbb{o}_{2}]\), and for any \(\eta \in [\mathbb{o}_{1},\mathbb{o}_{2}]\), the ν̄th right-RL fractional integral of \(\mathbf{f}(\eta )\) is defined by the following integral transform, for \(\mathop {\operatorname {Re}}(\bar{\nu })>0\):

$$ {}^{RL}{} {I}^{\bar{\nu }}_{\mathbb{o}_{2}-}\mathbf{f}( \eta ) :=\frac{1}{\varGamma (\bar{\nu })} \int _{\eta }^{\mathbb{o}_{2}}( \xi -x)^{\bar{\nu }-1}\mathbf{f}(\xi ) \,\mathrm{d}\xi. $$
(1.6)

For any function f which is \(C^{n}\) on an interval \([\mathbb{o}_{1},\mathbb{o}_{2}]\), and for any \(\eta \in [\mathbb{o}_{1},\mathbb{o}_{2}]\), the ν̄th right-RL fractional derivative of \(\mathbf{f}(\eta )\) is defined, for \(n-1\leq \mathop {\operatorname {Re}}(\bar{\nu })< n\), as follows:

$$ {}^{RL}{} {D}^{\bar{\nu }}_{\mathbb{o}_{2}-}\mathbf{f}( \eta ) :=(-1)^{n}\frac{\,\mathrm{d}^{n}}{\,\mathrm{d}\eta ^{n}} {}^{RL}{} {I}^{n-\bar{\nu }}_{\mathbb{o}_{2}-}\mathbf{f}(\eta ).$$
(1.7)

Recently, many possible definitions have been proposed for fractional integrals and derivatives, starting from the classical RL formula (1.4)–(1.7) and its modifying and generalisations it by replacing the power function kernel with other kernel functions; like the Caputo [41], Hilfer [42, Chapter II], Atangana–Baleanu [43, 44] and Prabhakar [45, 46] definitions.

Many of those definitions have different properties from the classical RL model. Also, the definition discussed in this article, namely the Caputo–Fabrizio (CF) definition, is designed with the convolution of an exponential function with an ordinary derivative but it has the same supplemental properties of configuration and heterogeneous [4749] with different kernels as occur in the Caputo and RL fractional derivatives. The CF-fractional derivative [50] has formed a new dimension in the study of fractional differential equations with its nonsingular kernel.

Definition 1.5

([1, 2])

For any function f which is \(\mathcal{H}^{1}(\mathbb{o}_{1},\mathbb{o}_{2})\) with \(0<\bar{\nu }<1\), and for any \(\eta \in [\mathbb{o}_{1},\mathbb{o}_{2}]\), the ν̄th left-CF-fractional derivative of \(\mathbf{f}(\eta )\) in the sense of Caputo is defined by

$$\begin{aligned} {}^{CFC} _{\mathbb{o}_{1}}{D}^{\bar{\nu }}\mathbf{f}( \eta )&:=\frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }} \int _{\mathbb{o}_{1}}^{ \eta }\mathbf{f}'(\xi )\exp \bigl(\bar{\lambda }(\eta -\xi )\bigr)\,\mathrm{d} \xi, \end{aligned}$$
(1.8)

and the left-CF-fractional derivative of \(\mathbf{f}(\eta )\) in the sense of Caputo is defined by

$$\begin{aligned} {}^{CFC} _{\mathbb{o}_{1}}{D}^{\bar{\nu }}_{\mathbb{o}_{2}-} \mathbf{f}(\eta ) &:=- \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }} \int _{\eta }^{ \mathbb{o}_{2}}\mathbf{f}'(\xi )\exp \bigl(\bar{\lambda }(\xi -x)\bigr) \,\mathrm{d}\xi, \end{aligned}$$
(1.9)

where \(\bar{\lambda }=-\frac{\bar{\nu }}{1-\bar{\nu }}\) and \(\mathcal{B}(\bar{\nu })>0\) is a normalization function that satisfies \(\mathcal{B}(0)=\mathcal{B}(1)=1\).

The aim of the present article is to establish new Opial integral inequalities type involving Caputo–Fabrizio fractional models by an extension of Farid et al.’s idea [37] as shown in Theorems 1.11.2. For special cases, our results yield some of the recent integral inequalities of Opial type and offer new estimates on such types of inequalities. Furthermore, we improve those findings to the higher order Caputo–Fabrizio (CF) and Atangana–Baleanu (AB) fractional operators, which we define in Sects. 2.2 and 3, respectively.

2 The CF-fractional inequalities

We here utilize CF-fractional integrals and derivatives for the inequalities (1.2) and (1.3) to obtain new corresponding CF-fractional integral inequalities of Opial type.

2.1 The first order CF-fractional inequalities

Theorem 2.1

Suppose\(\sigma, \mathbb{g}:[0,\infty )\to \mathbb{R}\)are two differentiable convex and increasing functions with\(\sigma (g(0))=0\)and suppose that\(\mathbf{f}'\in L[\mathbb{o}_{1},\mathbb{o}_{2}]\). Then, for\(0<\bar{\nu }<1\), we have

$$\begin{aligned} &\int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma ' \bigl(\mathbb{g} \bigl( \bigl\vert {}^{CFC} _{\mathbb{o}_{1}}{D}^{\bar{\nu }}\mathbf{f}( \eta ) \bigr\vert \bigr) \bigr) \mathbb{g}' \bigl( \bigl\vert {}^{CFC} _{\mathbb{o}_{1}}{D}^{\bar{\nu }}\mathbf{f}(\eta ) \bigr\vert \bigr) \bigl\vert \mathbb{g}\circ \mathbf{f}'(\eta ) \bigr\vert \,\mathrm{d} \eta \\ &\quad \leq \frac{1-\bar{\nu }}{\mathcal{B}(\bar{\nu })}\sigma \biggl( \mathbb{g} \biggl(\frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }} \int _{ \mathbb{o}_{1}}^{\mathbb{o}_{2}} \bigl\vert \mathbb{g}\circ \mathbf{f}'(t) \bigr\vert \,\mathrm{d}t \biggr) \biggr) \\ &\quad \leq \frac{1-\bar{\nu }}{\mathcal{B}(\bar{\nu })(\mathbb{o}_{2}-\mathbb{o}_{1})} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma \biggl(\mathbb{g} \biggl( \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}(\mathbb{o}_{2}- \mathbb{o}_{1}) \bigl\vert \mathbb{g}\circ \mathbf{f}'(t) \bigr\vert \biggr) \biggr)\, \mathrm{d}t, \end{aligned}$$
(2.1)

where\({}^{CFC} _{\mathbb{o}_{1}}{D}^{\bar{\nu }}\mathbf{f}(\eta )\)is as in (1.8).

Proof

Let \(\mathbf{v}:=\mathbf{f}'\), so v is a continuous function. Then, we find

$$\begin{aligned} \mathfrak{u}(\eta ):={}^{CFC} _{\mathbb{o}_{1}}{D}^{ \bar{\nu }}\mathbf{f}(\eta ) &= \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }} \int _{\mathbb{o}_{1}}^{ \eta } \exp \bigl(\bar{\lambda }(\eta -\xi ) \bigr)\mathbf{v}(\xi )\,\mathrm{d} \xi \\ &= \int _{\mathbb{o}_{1}}^{\eta }\mathtt{k}(\eta,\xi )\mathbf{v}(\xi ) \,\mathrm{d}\xi, \end{aligned}$$
(2.2)

where

$$\begin{aligned} \mathtt{k}(\eta,\xi )&= \textstyle\begin{cases} \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}\exp (\bar{\lambda }( \eta -\xi )), & \mathbb{o}_{1}\leq \xi \leq \eta, \\ 0, & \eta < \xi \leq \mathbb{o}_{2}. \end{cases}\displaystyle \end{aligned}$$
(2.3)

Since \(\frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}>0\) and \(\bar{\lambda }=\frac{-\bar{\nu }}{1-\bar{\nu }}<0\) for \(0<\bar{\nu }<1\), the function \(\frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}\exp (\bar{\lambda }( \eta -\xi ))\) is a decreasing function on the interval \([\mathbb{o}_{1},\mathbb{o}_{2}]\) and hence

$$ \bigl\vert \mathtt{k}(\eta,\xi ) \bigr\vert \leq \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}:=\mathcal{K}. $$

Then, by applying Theorem 1.1 for the above particular findings, we easily obtain inequalities (2.1). □

Corollary 2.1

Let the assumptions of previous theorem be given. Then, for\(0<\bar{\nu }<1\)and\(\bar{\varrho }\geq 1\), we have

$$\begin{aligned} &\int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma ' \bigl( \bigl\vert {}^{CFC} _{\mathbb{o}_{1}}{D}^{\bar{\nu }}\mathbf{f}(\eta ) \bigr\vert ^{ \bar{\varrho }} \bigr) \bigl\vert {}^{CFC} _{\mathbb{o}_{1}}{D}^{ \bar{\nu }} \mathbf{f}(\eta ) \bigr\vert ^{\bar{\varrho }-1} \bigl\vert \bigl( \mathbf{f}'(\eta ) \bigr)^{\bar{\varrho }} \bigr\vert \,\mathrm{d}\eta \\ &\quad \leq \frac{1-\bar{\nu }}{\bar{\varrho }\mathcal{B}(\bar{\nu })} \sigma \biggl( \biggl(\frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}} \bigl\vert \mathbf{f}'(t) \bigr\vert ^{ \bar{\varrho }}\,\mathrm{d}t \biggr)^{\bar{\varrho }} \biggr) \\ &\quad \leq \frac{1-\bar{\nu }}{\bar{\varrho }\mathcal{B}(\bar{\nu })(\mathbb{o}_{2}-\mathbb{o}_{1})} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma \biggl( \biggl( \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}(\mathbb{o}_{2}- \mathbb{o}_{1}) \bigl\vert \mathbf{f}'(t) \bigr\vert ^{\bar{\varrho }} \biggr)^{ \bar{\varrho }} \biggr)\,\mathrm{d}t. \end{aligned}$$
(2.4)

Proof

We know that the function \(x^{\bar{\varrho }}\) is an increasing and convex function for \(\bar{\varrho }\geq 1\). Then, by applying Theorem 2.1 for such a function \(\mathbb{g}(\eta ):=x^{\bar{\varrho }}\), we easily obtain inequalities (2.4). □

We can obtain the same results for the right-sided CF-fractional integral on the class of functions \(\mathcal{U}_{2}(\mathbb{g}\circ \mathbf{v},\mathtt{k})\) (see Definition 1.2). These are given in the following.

Theorem 2.2

Suppose\(\sigma, \mathbb{g}:[0,\infty )\to \mathbb{R}\)are two differentiable convex and increasing functions with\(\sigma (g(0))=0\)and suppose that\(\mathbf{f}'\in L[\mathbb{o}_{1},\mathbb{o}_{2}]\). Then, for\(0<\bar{\nu }<1\), we have

$$\begin{aligned} &\int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma ' \bigl(\mathbb{g} \bigl( \bigl\vert {}^{CFC} {D}^{\bar{\nu }}_{\mathbb{o}_{2}-} \mathbf{f}(\eta ) \bigr\vert \bigr) \bigr) \mathbb{g}' \bigl( \bigl\vert {}^{CFC} {D}^{\bar{\nu }}_{\mathbb{o}_{2}-} \mathbf{f}(\eta ) \bigr\vert \bigr) \bigl\vert \mathbb{g}\circ \mathbf{f}'(\eta ) \bigr\vert \,\mathrm{d}\eta \\ &\quad \leq \frac{1-\bar{\nu }}{\mathcal{B}(\bar{\nu })}\sigma \biggl( \mathbb{g} \biggl(\frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }} \int _{ \mathbb{o}_{1}}^{\mathbb{o}_{2}} \bigl\vert \mathbb{g}\circ \mathbf{f}'(t) \bigr\vert \,\mathrm{d}t \biggr) \biggr) \\ &\quad \leq \frac{1-\bar{\nu }}{\mathcal{B}(\bar{\nu })(\mathbb{o}_{2}-\mathbb{o}_{1})} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma \biggl(\mathbb{g} \biggl( \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}(\mathbb{o}_{2}- \mathbb{o}_{1}) \bigl\vert \mathbb{g}\circ \mathbf{f}'(t) \bigr\vert \biggr) \biggr)\, \mathrm{d}t, \end{aligned}$$
(2.5)

where\({}^{CFC} _{\mathbb{o}_{1}}{D}^{\bar{\nu }}_{\mathbb{o}_{2}-} \mathbf{f}(\eta )\)is as in (1.9).

Proof

We can use the same method used for Theorem 2.1 to produce the results for Theorem 2.2. □

Corollary 2.2

Let the assumptions of previous theorem be given. Then, for\(0<\bar{\nu }<1\)and\(\bar{\varrho }\geq 1\), we have

$$\begin{aligned} &\int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma ' \bigl( \bigl\vert {}^{CFC} {D}^{\bar{\nu }}_{\mathbb{o}_{2}-} \mathbf{f}(\eta ) \bigr\vert ^{\bar{\varrho }} \bigr) \bigl\vert {}^{CFC} {D}^{ \bar{\nu }}_{\mathbb{o}_{2}-}\mathbf{f}(\eta ) \bigr\vert ^{ \bar{\varrho }-1} \bigl\vert \bigl(\mathbf{f}'(\eta ) \bigr)^{ \bar{\varrho }} \bigr\vert \,\mathrm{d}\eta \\ &\quad \leq \frac{1-\bar{\nu }}{\bar{\varrho }\mathcal{B}(\bar{\nu })} \sigma \biggl( \biggl(\frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}} \bigl\vert \mathbf{f}'(t) \bigr\vert ^{ \bar{\varrho }}\,\mathrm{d}t \biggr)^{\bar{\varrho }} \biggr) \\ &\quad \leq \frac{1-\bar{\nu }}{\bar{\varrho }\mathcal{B}(\bar{\nu })(\mathbb{o}_{2}-\mathbb{o}_{1})} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma \biggl( \biggl( \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}(\mathbb{o}_{2}- \mathbb{o}_{1}) \bigl\vert \mathbf{f}'(t) \bigr\vert ^{\bar{\varrho }} \biggr)^{ \bar{\varrho }} \biggr)\,\mathrm{d}t. \end{aligned}$$
(2.6)

Proof

We can use the same method used for Corollary 2.1 to produce the results for Corollary 2.2. □

2.2 The higher order CF-fractional inequalities

Here we generalize the previous findings to the new corresponding higher order CF-fractional inequalities of Opial type. At first, we have to recall the higher order CF-fractional derivatives.

Definition 2.1

([18])

For a function f, \(\mathbf{f}^{(n)}\in \mathcal{H}^{1}(\mathbb{o}_{1},\mathbb{o}_{2})\) and \(n<\bar{\nu }<n+1\), we have the higher order left and right CF-fractional derivatives, respectively, defined by

$$\begin{aligned} \bigl({}^{CFC} _{\mathbb{o}_{1}}{D}_{H}^{\bar{\nu }} \mathbf{f} \bigr) (\eta )&:=\bigl({}^{CFC} _{\mathbb{o}_{1}}{D}^{ \bar{\nu }-n} \mathbf{f}^{(n)} \bigr) (\eta ) = \frac{\mathcal{B}(\bar{\nu }-n)}{n+1-\bar{\nu }} \int _{\mathbb{o}_{1}}^{ \eta }\mathbf{f}^{(n+1)}(\xi )\exp \bigl(\bar{\lambda }(\eta -\xi )\bigr) \,\mathrm{d}\xi \end{aligned}$$
(2.7)

and

$$\begin{aligned} &\bigl({}^{CFC} _{H}{D}_{\mathbb{o}_{2}}^{\bar{\nu }} \mathbf{f} \bigr) (\eta ) \\ &\quad :=\bigl({}^{CFC} {D}_{\mathbb{o}_{2}}^{ \bar{\nu }-n}(-1)^{n} \mathbf{f}^{(n)} \bigr) (\eta ) = \frac{(-1)^{n}\mathcal{B}(\bar{\nu }-n)}{n+1-\bar{\nu }} \int _{\eta }^{ \mathbb{o}_{2}}\mathbf{f}^{(n+1)}(\xi )\exp \bigl(\bar{\lambda }(\xi -x)\bigr) \,\mathrm{d}\xi, \end{aligned}$$
(2.8)

where \(\bar{\lambda }=-\frac{\bar{\nu }-n}{n+1-\bar{\nu }}\).

Theorem 2.3

Suppose\(\sigma, \mathbb{g}:[0,\infty )\to \mathbb{R}\)are two differentiable convex and increasing functions with\(\sigma (g(0))=0\)and suppose that\(\mathbf{f}^{(n+1)}\in L[\mathbb{o}_{1},\mathbb{o}_{2}]\). Then, for\(n<\bar{\nu }<n+1\), we have

$$\begin{aligned} &\int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma ' \bigl(\mathbb{g} \bigl( \bigl\vert {}^{CFC} _{\mathbb{o}_{1}}{D}_{H}^{\bar{\nu }} \mathbf{f}(\eta ) \bigr\vert \bigr) \bigr) \mathbb{g}' \bigl( \bigl\vert {}^{CFC} _{\mathbb{o}_{1}}{D}_{H}^{\bar{\nu }} \mathbf{f}(\eta ) \bigr\vert \bigr) \bigl\vert \mathbb{g}\circ \mathbf{f}^{(n+1)}(\eta ) \bigr\vert \,\mathrm{d}\eta \\ &\quad \leq \frac{n+1-\bar{\nu }}{\mathcal{B}(\bar{\nu }-n)} \sigma \biggl( \mathbb{g} \biggl(\frac{\mathcal{B}(\bar{\nu }-n)}{n+1-\bar{\nu }} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}} \bigl\vert \mathbb{g}\circ \mathbf{f}^{(n+1)}(t) \bigr\vert \,\mathrm{d}t \biggr) \biggr) \\ &\quad\leq \frac{n+1-\bar{\nu }}{\mathcal{B}(\bar{\nu }-n)(\mathbb{o}_{2}-\mathbb{o}_{1})} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}} \sigma \biggl(\mathbb{g} \biggl( \frac{\mathcal{B}(\bar{\nu }-n)}{n+1-\bar{\nu }}(\mathbb{o}_{2}- \mathbb{o}_{1}) \bigl\vert \mathbb{g}\circ \mathbf{f}^{(n+1)}(t) \bigr\vert \biggr) \biggr) \,\mathrm{d}t, \end{aligned}$$
(2.9)

where\({}^{CFC} _{\mathbb{o}_{1}}{D}^{\bar{\nu }}\mathbf{f}(\eta )\)is as in (2.7).

Proof

Let \(\mathbf{v}:=\mathbf{f}^{(n+1)}\), so v is a continuous function. Then we find

$$\begin{aligned} \mathfrak{u}(\eta ):={}^{CFC} _{\mathbb{o}_{1}}{D}^{ \bar{\nu }}\mathbf{f}(\eta ) &= \frac{\mathcal{B}(\bar{\nu }-n)}{n+1-\bar{\nu }} \int _{\mathbb{o}_{1}}^{ \eta }\exp \bigl(\bar{\lambda }(\eta -\xi ) \bigr)\mathbf{v}(\xi )\,\mathrm{d}\xi \\ &= \int _{\mathbb{o}_{1}}^{\eta }\mathtt{k}(\eta,\xi )\mathbf{v}(\xi ) \,\mathrm{d}\xi, \end{aligned}$$
(2.10)

where

$$\begin{aligned} \mathtt{k}(\eta,\xi )&= \textstyle\begin{cases} \frac{\mathcal{B}(\bar{\nu }-n)}{n+1-\bar{\nu }}\exp (\bar{\lambda }( \eta -\xi )), & \mathbb{o}_{1}\leq \xi \leq \eta, \\ 0, & \eta < \xi \leq \mathbb{o}_{2}. \end{cases}\displaystyle \end{aligned}$$
(2.11)

From this we have

$$ \bigl\vert \mathtt{k}(\eta,\xi ) \bigr\vert \leq \frac{\mathcal{B}(\bar{\nu }-n)}{n+1-\bar{\nu }}:=\mathcal{K}. $$

Hence by applying Theorem 1.1 for the above particular findings, we easily obtain inequalities (2.9). □

Corollary 2.3

Let the assumptions of the previous theorem be given. Then, for\(n<\bar{\nu }<n+1\)and\(\bar{\varrho }\geq 1\), we have

$$\begin{aligned} &\int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma ' \bigl( \bigl\vert {}^{CFC} _{\mathbb{o}_{1}}{D}_{H}^{\bar{\nu }} \mathbf{f}(\eta ) \bigr\vert ^{\bar{\varrho }} \bigr) \bigl\vert {}^{CFC} _{\mathbb{o}_{1}}{D}_{H}^{\bar{\nu }}\mathbf{f}(\eta ) \bigr\vert ^{\bar{\varrho }-1} \bigl\vert \bigl(\mathbf{f}^{(n+1)}(\eta ) \bigr)^{\bar{\varrho }} \bigr\vert \,\mathrm{d}\eta \\ &\quad \leq \frac{n+1-\bar{\nu }}{\bar{\varrho }\mathcal{B}(\bar{\nu }-n)} \sigma \biggl( \biggl(\frac{\mathcal{B}(\bar{\nu }-n)}{n+1-\bar{\nu }} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}} \bigl\vert \mathbf{f}^{(n+1)}(t) \bigr\vert ^{\bar{\varrho }}\,\mathrm{d}t \biggr)^{\bar{\varrho }} \biggr) \\ &\quad \leq \frac{n+1-\bar{\nu }}{\bar{\varrho }\mathcal{B}(\bar{\nu }-n)(\mathbb{o}_{2}-\mathbb{o}_{1})} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma \biggl( \biggl( \frac{\mathcal{B}(\bar{\nu }-n)}{n+1-\bar{\nu }}(\mathbb{o}_{2}- \mathbb{o}_{1}) \bigl\vert \mathbf{f}^{(n+1)}(t) \bigr\vert ^{\bar{\varrho }} \biggr)^{\bar{\varrho }} \biggr)\,\mathrm{d}t. \end{aligned}$$
(2.12)

Proof

We know that the function \(x^{\bar{\varrho }}\) is an increasing and convex function for \(\bar{\varrho }\geq 1\). Then, by applying Theorem 2.3 for such a function \(\mathbb{g}(\eta ):=x^{\bar{\varrho }}\), we easily obtain inequalities (2.12). □

We can obtain the same results for the right-sided higher order CF-fractional integral on the class of functions \(\mathcal{U}_{2}(\mathbb{g}\circ \mathbf{v},\mathtt{k})\) (see Definition 1.2). These are given in the following.

Theorem 2.4

Suppose\(\sigma, \mathbb{g}:[0,\infty )\to \mathbb{R}\)are two differentiable convex and increasing functions with\(\sigma (g(0))=0\)and suppose that\(\mathbf{f}^{(n+1)}\in L[\mathbb{o}_{1},\mathbb{o}_{2}]\). Then, for\(n<\bar{\nu }<n+1\), we have

$$\begin{aligned} &\int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma ' \bigl(\mathbb{g} \bigl( \bigl\vert {}^{CFC} _{H}{D}^{\bar{\nu }}_{\mathbb{o}_{2}-} \mathbf{f}(\eta ) \bigr\vert \bigr) \bigr) \mathbb{g}' \bigl( \bigl\vert {}^{CFC} _{H}{D}^{\bar{\nu }}_{\mathbb{o}_{2}-} \mathbf{f}(\eta ) \bigr\vert \bigr) \bigl\vert \mathbb{g}\circ \mathbf{f}^{(n+1)}(\eta ) \bigr\vert \,\mathrm{d}\eta \\ &\quad \leq \frac{n+1-\bar{\nu }}{\mathcal{B}(\bar{\nu }-n)}\sigma \biggl( \mathbb{g} \biggl(\frac{\mathcal{B}(\bar{\nu }-n)}{n+1-\bar{\nu }} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}} \bigl\vert \mathbb{g}\circ \mathbf{f}^{(n+1)}(t) \bigr\vert \,\mathrm{d}t \biggr) \biggr) \\ &\quad \leq \frac{n+1-\bar{\nu }}{\mathcal{B}(\bar{\nu }-n)(\mathbb{o}_{2}-\mathbb{o}_{1})} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma \biggl(\mathbb{g} \biggl( \frac{\mathcal{B}(\bar{\nu }-n)}{n+1-\bar{\nu }}(\mathbb{o}_{2}- \mathbb{o}_{1}) \bigl\vert \mathbb{g}\circ \mathbf{f}^{(n+1)}(t) \bigr\vert \biggr) \biggr) \,\mathrm{d}t, \end{aligned}$$
(2.13)

where\({}^{CFC} _{H}{D}^{\bar{\nu }}_{\mathbb{o}_{2}-}\mathbf{f}(\eta )\)is as in (2.8).

Proof

We can use the same method used for Theorem 2.3 to produce the results for Theorem 2.4. □

Corollary 2.4

Let the assumptions of previous theorem be given. Then, for\(n<\bar{\nu }<n+1\)and\(\bar{\varrho }\geq 1\), we have

$$\begin{aligned} &\int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma ' \bigl( \bigl\vert {}^{CFC} _{H}{D}^{\bar{\nu }}_{\mathbb{o}_{2}-} \mathbf{f}(\eta ) \bigr\vert ^{\bar{\varrho }} \bigr) \bigl\vert {}^{CFC} _{H}{D}^{ \bar{\nu }}_{\mathbb{o}_{2}-}\mathbf{f}(\eta ) \bigr\vert ^{ \bar{\varrho }-1} \bigl\vert \bigl(\mathbf{f}^{(n+1)}(\eta ) \bigr)^{ \bar{\varrho }} \bigr\vert \,\mathrm{d}\eta \\ &\quad \leq \frac{n+1-\bar{\nu }}{\bar{\varrho }\mathcal{B}(\bar{\nu }-n)} \sigma \biggl( \biggl(\frac{\mathcal{B}(\bar{\nu }-n)}{n+1-\bar{\nu }} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}} \bigl\vert \mathbf{f}^{(n+1)}(t) \bigr\vert ^{\bar{\varrho }}\,\mathrm{d}t \biggr)^{\bar{\varrho }} \biggr) \\ &\quad \leq \frac{n+1-\bar{\nu }}{\bar{\varrho }\mathcal{B}(\bar{\nu }-n)(\mathbb{o}_{2}-\mathbb{o}_{1})} \\ &\qquad{}\times \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\sigma \biggl( \biggl( \frac{\mathcal{B}(\bar{\nu }-n)}{n+1-\bar{\nu }}(\mathbb{o}_{2}- \mathbb{o}_{1}) \bigl\vert \mathbf{f}^{(n+1)}(t) \bigr\vert ^{\bar{\varrho }} \biggr)^{\bar{\varrho }} \biggr)\,\mathrm{d}t. \end{aligned}$$
(2.14)

Proof

We can use the same method used for Corollary 2.3 to produce the results for Corollary 2.4. □

3 The ABC-fractional inequalities

In the final section, we improve our study from the CF-fractional operators with a nonsingular kernel to the Atangana–Baleanu (AB) fractional operators with a Mittag-Leffler (ML) kernel. For this, we get new inequalities of Opial type. Let us first recall the AB fractional derivatives.

Definition 3.1

([19, 51])

For any function f which is \(\mathcal{H}^{1}(a,b)\) with \(0<\mathbb{o}_{1}<\mathbb{o}_{2}\), and for any \(x\in [\mathbb{o}_{1},\mathbb{o}_{2}]\), the ν̄th left-AB fractional derivative of \(\mathbf{f}(\eta )\) in the sense of Caputo is defined by

$$\begin{aligned} {}^{ABC} _{\mathbb{o}_{1}+}{D}^{\bar{\nu }}\mathbf{f}( \eta )&:=\frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }} \int _{\mathbb{o}_{1}}^{x} \mathbf{f}'(\xi ) \mathtt{E}_{\bar{\nu }} \bigl(\bar{\lambda }(x-\xi )^{ \bar{\nu }}\bigr) )\, \mathrm{d}\xi, \end{aligned}$$
(3.1)

and the left-CF-fractional derivative of \(\mathbf{f}(\eta )\) in the sense of Caputo is defined by

$$\begin{aligned} {}^{ABC} {D}^{\bar{\nu }}_{\mathbb{o}_{2}-} \mathbf{f}(\eta ) &:=- \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }} \int _{x}^{\mathbb{o}_{2}} \mathbf{f}'(\xi ) \mathtt{E}_{\bar{\nu }} \bigl(\bar{\lambda }(\xi -x)^{ \bar{\nu }}\bigr) )\, \mathrm{d}\xi, \end{aligned}$$
(3.2)

where λ̄ and \(\mathcal{B}(\bar{\nu })\) are both as before, and \(\mathtt{E}_{\bar{\nu }}(\cdot )\) is a Mittag-Leffler (ML) function defined by [51]

$$ \mathtt{E}_{\bar{\nu }} \bigl(\bar{\lambda } z^{\bar{\nu }} \bigr)= \mathtt{E}_{\bar{\nu }}(\bar{\lambda },z) :=\sum _{\ell =0}^{ \infty }\bar{\lambda }^{\ell } \frac{z^{\bar{\nu }\ell }}{\varGamma (\bar{\nu }\ell +1)}, $$

for \(0\neq \bar{\lambda }\in \mathbb{R}, z\in \mathbb{C}\), and \(\Re (\bar{\nu })>0\).

Theorem 3.1

Suppose\(\phi, \mathbf{g}:[0,\infty )\to \mathbb{R}\)are two differentiable convex and increasing functions with\(\phi (g(0))=0\)and suppose that\(\mathbf{f}'\in L[\mathbb{o}_{1},\mathbb{o}_{2}]\). Then, for\(0<\bar{\nu }<1\), we have

$$\begin{aligned} &\int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\phi ' \bigl(\mathbf{g} \bigl( \bigl\vert {}^{ABC} _{\mathbb{o}_{1}+}{D}^{\bar{\nu }}\mathbf{f}( \eta ) \bigr\vert \bigr) \bigr) \mathbf{g}' \bigl( \bigl\vert {}^{ABC} _{\mathbb{o}_{1}+}{D}^{\bar{\nu }}\mathbf{f}(\eta ) \bigr\vert \bigr) \bigl\vert \mathbf{g}\circ \mathbf{f}'(\eta ) \bigr\vert \,\mathrm{d}\eta \\ &\quad \leq \frac{1-\bar{\nu }}{\mathcal{B}(\bar{\nu })}\phi \biggl( \mathbf{g} \biggl(\frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }} \int _{ \mathbb{o}_{1}}^{\mathbb{o}_{2}} \bigl\vert \mathbf{g}\circ \mathbf{f}'(t) \bigr\vert \,\mathrm{d}t \biggr) \biggr) \\ &\quad \leq \frac{1-\bar{\nu }}{\mathcal{B}(\bar{\nu })(\mathbb{o}_{2}-\mathbb{o}_{1})} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\phi \biggl(\mathbf{g} \biggl( \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}(\mathbb{o}_{2}- \mathbb{o}_{1}) \bigl\vert \mathbf{g}\circ \mathbf{f}'(t) \bigr\vert \biggr) \biggr)\, \mathrm{d}t, \end{aligned}$$
(3.3)

where\({}^{ABC} _{\mathbb{o}_{1}+}{D}^{\bar{\nu }}\mathbf{f}(\eta )\)is as in (3.1).

Proof

Let \(\mathbf{v}:=\mathbf{f}'\), so v is a continuous function. Then we find

$$\begin{aligned} \mathbf{u}(\eta ) &:={}^{ABC} _{\mathbb{o}_{1}+}{D}^{ \bar{\nu }} \mathbf{f}(\eta )= \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }} \int _{\mathbb{o}_{1}}^{x}{E}_{ \bar{\nu }} \bigl(\bar{\lambda }(x-\xi )^{\bar{\nu }} \bigr) \mathbf{v}(\xi )\,\mathrm{d}\xi \\ &= \int _{\mathbb{o}_{1}}^{x}\mathtt{k}(x,\xi )\mathbf{v}(\xi ) \, \mathrm{d}\xi, \end{aligned}$$
(3.4)

where

$$\begin{aligned} \mathtt{k}(x,\xi )&= \textstyle\begin{cases} \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}{E}_{\bar{\nu }} ( \bar{\lambda }(x-\xi )^{\bar{\nu }} ), & a\leq \xi \leq x, \\ 0, & x< \xi \leq b. \end{cases}\displaystyle \end{aligned}$$
(3.5)

From [52], we can see that the function \(\frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}{E}_{\bar{\nu }} ( \bar{\lambda }(x-\xi )^{\bar{\nu }} )\) is a monotonically decreasing function on the interval \([\mathbb{o}_{1},\mathbb{o}_{2}]\) and hence

$$ \bigl\vert \mathtt{k}(x,\xi ) \bigr\vert \leq \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}:=\mathcal{K}. $$

Then, by applying Theorem 1.1 for the above particular findings, we easily obtain inequalities (3.3). □

Corollary 3.1

Let the assumptions of the previous theorem be given. Then, for\(0<\bar{\nu }<1\)and\(\bar{\varrho }\geq 1\), we have

$$\begin{aligned} &\int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\phi ' \bigl( \bigl\vert {}^{ABC} _{\mathbb{o}_{1}+}{D}^{\bar{\nu }}\mathbf{f}(\eta ) \bigr\vert ^{\bar{\varrho }} \bigr) \bigl\vert {}^{ABC} _{\mathbb{o}_{1}+}{D}^{\bar{\nu }} \mathbf{f}(\eta ) \bigr\vert ^{q-1} \bigl\vert \bigl( \mathbf{f}'(\eta ) \bigr)^{ \bar{\varrho }} \bigr\vert \,\mathrm{d} \eta \\ &\quad \leq \frac{1-\bar{\nu }}{q\mathcal{B}(\bar{\nu })}\phi \biggl( \biggl( \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }} \int _{\mathbb{o}_{1}}^{ \mathbb{o}_{2}} \bigl\vert \mathbf{f}'(t) \bigr\vert ^{\bar{\varrho }} \,\mathrm{d}t \biggr)^{\bar{\varrho }} \biggr) \\ &\quad\leq \frac{1-\bar{\nu }}{q\mathcal{B}(\bar{\nu })(\mathbb{o}_{2}-\mathbb{o}_{1})} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\phi \biggl( \biggl( \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}(\mathbb{o}_{2}- \mathbb{o}_{1}) \bigl\vert \mathbf{f}'(t) \bigr\vert ^{\bar{\varrho }} \biggr)^{ \bar{\varrho }} \biggr)\,\mathrm{d}t. \end{aligned}$$
(3.6)

Proof

We can use the same technique used for Corollary 2.1 to produce the results for Corollary 3.2. □

We can obtain the same results for the right-sided AB fractional integral on the class of functions \(\mathcal{U}_{2}(\mathbf{g}\circ \mathbf{v},\mathtt{k})\) (see Definition 1.2). These are given in the following.

Theorem 3.2

Suppose\(\phi, \mathbf{g}:[0,\infty )\to \mathbb{R}\)are two differentiable convex and increasing functions with\(\phi (g(0))=0\)and suppose that\(\mathbf{f}'\in L[\mathbb{o}_{1},\mathbb{o}_{2}]\). Then, for\(0<\bar{\nu }<1\), we have

$$\begin{aligned} &\int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}}\phi ' \bigl(\mathbf{g} \bigl( \bigl\vert {}^{ABC} {D}^{\bar{\nu }}_{\mathbb{o}_{2}-} \mathbf{f}( \eta ) \bigr\vert \bigr) \bigr) \mathbf{g}' \bigl( \bigl\vert {}^{ABC} {D}^{\bar{\nu }}_{\mathbb{o}_{2}-} \mathbf{f}(\eta ) \bigr\vert \bigr) \bigl\vert \mathbf{g}\circ \mathbf{f}'(\eta ) \bigr\vert \,\mathrm{d}\eta \\ &\quad \leq \frac{1-\bar{\nu }}{\mathcal{B}(\bar{\nu })}\phi \biggl( \mathbf{g} \biggl(\frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }} \int _{ \mathbb{o}_{1}}^{\mathbb{o}_{2}} \bigl\vert \mathbf{g}\circ \mathbf{f}'(t) \bigr\vert \,\mathrm{d}t \biggr) \biggr) \\ &\quad \leq \frac{1-\bar{\nu }}{\mathcal{B}(\bar{\nu })(\mathbb{o}_{2}-\mathbb{o}_{1})} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}} \phi \biggl(\mathbf{g} \biggl( \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}(\mathbb{o}_{2}- \mathbb{o}_{1}) \bigl\vert \mathbf{g}\circ \mathbf{f}'(t) \bigr\vert \biggr) \biggr)\, \mathrm{d}t, \end{aligned}$$
(3.7)

where\({}^{ABC} {D}^{\bar{\nu }}_{\mathbb{o}_{2}-}\mathbf{f}(\eta )\)is as in (3.2).

Proof

We can use the same technique used for Theorem 3.1 to produce the results for Theorem 3.2. □

Corollary 3.2

Let the assumptions of the previous theorem be given. Then, for\(0<\bar{\nu }<1\)and\(\bar{\varrho }\geq 1\), we have

$$\begin{aligned} &\int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}} \phi ' \bigl( \bigl\vert {}^{ABC} {D}^{\bar{\nu }}_{\mathbb{o}_{2}-} \mathbf{f}(\eta ) \bigr\vert ^{\bar{\varrho }} \bigr) \bigl\vert {}^{ABC} {D}^{ \bar{\nu }}_{\mathbb{o}_{2}-}\mathbf{f}(\eta ) \bigr\vert ^{q-1} \bigl\vert \bigl(\mathbf{f}'(\eta ) \bigr)^{\bar{\varrho }} \bigr\vert \,\mathrm{d} \eta \\ &\quad \leq \frac{1-\bar{\nu }}{q\mathcal{B}(\bar{\nu })}\phi \biggl( \biggl( \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }} \int _{\mathbb{o}_{1}}^{ \mathbb{o}_{2}} \bigl\vert \mathbf{f}'(t) \bigr\vert ^{\bar{\varrho }} \,\mathrm{d}t \biggr)^{\bar{\varrho }} \biggr) \\ &\quad \leq \frac{1-\bar{\nu }}{q\mathcal{B}(\bar{\nu })(\mathbb{o}_{2}-\mathbb{o}_{1})} \int _{\mathbb{o}_{1}}^{\mathbb{o}_{2}} \phi \biggl( \biggl( \frac{\mathcal{B}(\bar{\nu })}{1-\bar{\nu }}(\mathbb{o}_{2}- \mathbb{o}_{1}) \bigl\vert \mathbf{f}'(t) \bigr\vert ^{\bar{\varrho }} \biggr)^{ \bar{\varrho }} \biggr)\,\mathrm{d}t. \end{aligned}$$
(3.8)

Proof

We can use the same technique used for Corollary 2.1 to produce the results for Corollary 3.2. □

4 Conclusion

In the current study, we have considered the Opial integral inequalities in the context of generalized fractional operators with nonsingular kernel. Also, we have studied some related integral inequalities for the CFC and ABC-fractional integrals. It can be seen that our obtained formulas will be very helpful in the theoretical study of other models of fractional calculus.

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)

    Book  MATH  Google Scholar 

  2. Miller, S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, USA (1993)

    MATH  Google Scholar 

  3. Daftardar-Gejji, V.: Fractional Calculus and Fractional Differential Equations. Springer, East (2019)

    Book  MATH  Google Scholar 

  4. Dokuyucu, M.A.: A fractional order alcoholism model via Caputo Fabrizio derivative. AIMS Math. 5(2), 781–797 (2020)

    Article  Google Scholar 

  5. Dokuyucu, M.A.: Caputo and Atangana Baleanu Caputo fractional derivative applied to garden equation. Turkish J. Sci. 5(1), 1–7 (2020)

    Google Scholar 

  6. Martinez, M., Mohammed, P.O., Valdes, J.E.N.: Non-conformable fractional Laplace transform. Kragujev. J. Math. 46(3), 341–354 (2022)

    Google Scholar 

  7. Hamasalh, F.K., Mohammed, P.O.: Computational method for fractional differential equations using nonpolynomial fractional spline. Math. Sci. Lett. 5, 131–136 (2016)

    Article  Google Scholar 

  8. Mohammed, P.O.: A generalized uncertain fractional forward difference equations of Riemann–Liouville type. J. Math. Res. 11(4), 43–50 (2019)

    Google Scholar 

  9. Akgül, A.: A novel method for a fractional derivative with non-local and non-singular kernel. Chaos Solitons Fractals 114, 478–482 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Akgül, A., Cordero, A., Torregrosa, J.R.: Solutions of fractional gas dynamics equation by a new technique. Math. Methods Appl. Sci. 43, 1349–1358 (2020)

    Article  Google Scholar 

  11. Tarasov, V.: Handbook of Fractional Calculus with Applications, Appl. in Physics, Part A, vol. 4. De Gruyter, Boston (2019)

    Google Scholar 

  12. Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities: Theory and Applications: Volume I: Ordinary Differential Equations. Academic Press, New York (1969)

    MATH  Google Scholar 

  13. Walter, W.: Differential and Integral Inequalities, vol. 55. Springer, Berlin (2012) [orig. ed. in German; Springer Tracts in Natural Philosophy, 1964].

    Google Scholar 

  14. Denton, Z., Vatsala, A.S.: Fractional integral inequalities and applications. Comput. Math. Appl. 59(3), 1087–1094 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mohammed, P.O., Sarikaya, M.Z.: On generalized fractional integral inequalities for twice differentiable convex functions. J. Comput. Appl. Math. 372, 112740 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mohammed, P.O., Sarikaya, M.Z., Baleanu, D.: On the generalized Hermite–Hadamard inequalities via the tempered fractional integrals. Symmetry 12, 595 (2020). https://doi.org/10.3390/sym12040595

    Article  Google Scholar 

  17. Mohammed, P.O., Abdeljawad, T.: Modification of certain fractional integral inequalities for convex functions. Adv. Differ. Equ. 2020, 69 (2020)

    Article  MathSciNet  Google Scholar 

  18. Abdeljawad, T.: Fractional operators with exponential kernels and a Lyapunov type inequality. Adv. Differ. Equ. 2017, 313 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Abdeljawad, T.: A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel. J. Inequal. Appl. 2017, 130 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fernandez, A., Mohammed, P.O.: Hermite–Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6188

    Article  Google Scholar 

  21. Mohammed, P.O., Brevik, I.: A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals. Symmetry 12, 610 (2020). https://doi.org/10.3390/sym12040610

    Article  Google Scholar 

  22. Mohammed, P.O.: Some integral inequalities of fractional quantum type. Malaya J. Mat. 4(1), 93–99 (2016)

    Google Scholar 

  23. Mohammed, P.O.: Hermite–Hadamard inequalities for Riemann–Liouville fractional integrals of a convex function with respect to a monotone function. Math. Methods Appl. Sci. (2019). https://doi.org/10.1002/mma.5784

    Article  Google Scholar 

  24. Mohammed, P.O., Hamasalh, F.K.: New conformable fractional integral inequalities of Hermite–Hadamard type for convex functions. Symmetry 11(2), 263 (2019). https://doi.org/10.3390/sym11020263

    Article  MATH  Google Scholar 

  25. Mohammed, P.O., Sarikaya, M.Z.: Hermite–Hadamard type inequalities for F-convex function involving fractional integrals. J. Inequal. Appl. 2018, 359 (2018)

    Article  MathSciNet  Google Scholar 

  26. Mohammed, P.O.: Inequalities of \((k,s), (k,h)\)-type for Riemann–Liouville fractional integrals. Appl. Math. E-Notes 17, 199–206 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Mohammed, P.O.: Inequalities of type Hermite–Hadamard for fractional integrals via differentiable convex functions. TJANT 4(5), 135–139 (2016)

    Google Scholar 

  28. Mohammed, P.O.: On new trapezoid type inequalities for h-convex functions via generalized fractional integral. TJANT 6(4), 125–128 (2018)

    Article  Google Scholar 

  29. Qi, F., Mohammed, P.O., Yao, J.C., Yao, Y.H.: Generalized fractional integral inequalities of Hermite–Hadamard type for \((\alpha,m)\)-convex functions. J. Inequal. Appl. 2019, 135 (2019)

    Article  MathSciNet  Google Scholar 

  30. Gavrea, B., Gavrea, I.: On some Ostrowski type inequalities. Gen. Math. 18(1), 33–44 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Niu, P., Zhang, H., Wang, Y.: Hardy type and Rellich type inequalities on the Heisenberg group. Proc. Am. Math. Soc. 129(12), 3623–3630 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yu, X., Lu, S.: Olsen-type inequalities for the generalized commutator of multilinear fractional integrals. Turk. J. Math. 42, 2348–2370 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao, C.-J., Cheung, W.-S.: On some Opial-type inequalities. J. Inequal. Appl. 2011, 7 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Chikami, N.: On Gagliardo–Nirenberg type inequalities in Fourier–Herz spaces. J. Funct. Anal. 275(5), 1138–1172 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ekinici, A., Ozdemir, M.E.: Some new integral inequalities via Riemann Liouville integral operators. Appl. Comput. Math. 3(18), 288–295 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Opial, Z.: Sur une inégalité. Ann. Pol. Math. 8, 29–32 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  37. Farid, G., Rehman, A.U., Ullah, S., Nosheen, A., Waseem, M., Mehboob, Y.: Opial-type inequalities for convex functions and associated results in fractional calculus. Adv. Differ. Equ. 2019, 152 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tomovski, Z., Pečarić, J., Farid, G.: Weighted Opial-type inequalities for fractional integral and differential operators involving generalized Mittag-Leffler functions. Eur. J. Pure Appl. Math. 10(3), 419–439 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Samraiz, M., Iqbal, S., Pečarić, J.: Generalized integral inequalities for fractional calculus. Cogent Math. 5(1), 1426205 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Başcı, Y., Baleanu, D.: New aspects of Opial-type integral inequalities. Adv. Differ. Equ. 2018, 452 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Caputo, M.: Linear model of dissipation whose q is almost frequency independent—II. Geophys. J. Int. 13, 529–539 (1967)

    Article  Google Scholar 

  42. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, New Jersey (2000)

    Book  MATH  Google Scholar 

  43. Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  44. Baleanu, D., Fernandez, A.: On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 59, 444–462 (2018)

    Article  MathSciNet  Google Scholar 

  45. Prabhakar, T.R.: A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  46. Kilbas, A.A., Saigo, M., Saxena, R.K.: Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transforms Spec. Funct. 15(1), 31–49 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Atangana, A., Alkahtani, B.S.T.: Extension of the resistance inductance, capacitance electrical circuit of fractional derivative without singular kernel. Adv. Mech. Eng. 7, 1–6 (2015)

    Google Scholar 

  48. Gómez-Aguilar, J.F., López-López, M.G., Alvarado-Martínez, V.M., Reyes-Reyes, J., Adam-Medina, M.: Modeling diffusive transport with a fractional derivative without singular kernel. Physica A 447, 467–481 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Gómez-Aguilar, J.F., Torres, L., Yépez-Martínez, H., Calderón-Ramón, C., Cruz-Orduna, I., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H.: Modeling of a mass-spring-damper system by fractional derivatives with and without a singular kernel. Entropy 17, 6289–6303 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  51. Abdeljawad, T., Baleanu, D.: Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel. J. Nonlinear Sci. Appl. 9, 1098–1107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Abdeljawad, T., Baleanu, D.: Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel. Chaos Solitons Fractals 102, 106–110 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Availability of data and materials

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Both authors have contributed equally to this study. Also, they have read carefully and approved the final version of this manuscript.

Corresponding author

Correspondence to Thabet Abdeljawad.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, P.O., Abdeljawad, T. Opial integral inequalities for generalized fractional operators with nonsingular kernel. J Inequal Appl 2020, 148 (2020). https://doi.org/10.1186/s13660-020-02419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-020-02419-4

MSC

Keywords