- Research
- Open Access
- Published:
Some identities of type 2 q-Bernoulli polynomials
Journal of Inequalities and Applications volumeĀ 2020, ArticleĀ number:Ā 154 (2020)
Abstract
Recently, symmetric properties of some special polynomials arising from p-adic q-integrals on \({\mathbb{Z}}_{p}\) have been investigated extensively by many researchers.
In this paper, we find some symmetric identities for type 2 q-Bernoulli polynomials under the symmetry group \(S_{n}\) of degree n by using the bosonic p-adic q-integral onĀ \({\mathbb{Z}}_{p}\).
1 Introduction
In the book Ars Conjectandi, Jakob Bernoulli introduced the Bernoulli numbers for studying of the sums of powers of consecutive integers \(1^{k} +2^{k} +\cdots +n^{2}\). As a generalization of these numbers, we have the Bernoulli polynomials, which are defined by the generating function to be
In the special case \(x=0\), \(B_{n}(0)=B_{n}\) are the Bernoulli numbers. It is well known that
for each nonnegative integer k and positive integer n (see [2, 15, 21]).
The Bernoulli numbers and polynomials have very important roles in the pure and applied mathematics. In [14], Kim and Kim represented several trigonometric functions as a formal power series involving either Bernoulli or Euler numbers, and relationships between the Bernoulli numbers and zeta functions are investigated by Arakawa et al. in [2]. In [1], authors found some applications of the Bernoulli numbers and polynomials corresponding to zeta functions, and Kim and Kim studied some special polynomials in connection with Bernoulli numbers and polynomials (see [27]).
In addition, the Bernoulli numbers and polynomials have been generalized by many researchers. For example, Carlitz degenerated the Bernoulli polynomials and investigated the properties of those polynomials in [5]. Kim represented the q-Bernoulli polynomials and numbers by using q-Volkenborn integration (see [19, 20]). In [40], authors constructed a family of modified p-adic twisted functions and gave some applications and examples related to these polynomials, and Simsek defined some new sequences containing the Bernoulli numbers and the Euler numbers and found some computation formulas and identities for those sequences (see [38]). Gaboury et al. defined some new classes of Bernoulli polynomials and found explicit formulas of those polynomials in [7], and Park and Rim defined modified q-Bernoulli polynomials with weight (see [34]). Moreover, Simsek gave the generating functions of the twisted Bernoulli polynomials and obtained some equations which are general versions of Eq.Ā (1) in [36], and Kim et al. defined type 2 q-Bernoulli polynomials and investigated the properties of those polynomials (see [15]).
As a new generalization of the Bernoulli numbers, Jang and Kim introduced the type 2 degenerate Bernoulli polynomials in [9] and investigated relationships between some special functions and those polynomials. In addition, they found some interesting identities for those numbers and polynomials.
Carlitz generalized the Bernoulli polynomials to q-Bernoulli numbers in [3, 4, 6, 15, 21, 28, 34, 35] as follows:
with the usual convection about replacing \(\beta _{q} ^{n}\) by \(\beta _{n,q}\), and Kim defined the modified q-Bernoulli numbers as follows:
with the usual convection about replacing \(B_{q} ^{n}\) by \(B_{n,q}\) (see [18, 21, 22]).
For a given prime number p, \(\mathbb{Z}_{p}\), \(\mathbb{Q}_{p}\), and \(\mathbb{C}_{p}\) denote the ring of p-adic integers, the field of p-adic rational numbers, and the completions of algebraic closure of \(\mathbb{Q}_{p}\), respectively. The p-adic norm is normalized as \(|p|_{p} = \frac{1}{p}\).
Let \(q \in {\mathbb{C}}_{p}\) be an indeterminate with \(|q-1|_{p} < p^{- \frac{1}{p-1}}\). Then the q-analogue of numberx are defined as \([x]_{q} =\frac{1- q^{x}}{1-q}\). Note that \(\lim_{q \rightarrow 1} [x]_{q} = x \) for each \(x \in \mathbb{Z}_{p}\).
By (1), we know that the power sums of consecutive nonnegative q-integers are given by
For the set of all uniformly differentiable on \({\mathbb{Z}}_{p}\) denoted by \(\operatorname{UD}(\mathbb{Z}_{p})\), the bosonicp-adicq-integrals on\({\mathbb{Z}}_{p}\) are defined by the Kim as follows:
In [9], the authors defined type 2 Bernoulli polynomials as follows:
and found relations between some special functions or numbers and those polynomials (see [9, 12, 15, 27]). Note that a Witt-type formula of the type 2 Bernoulli polynomials is
for each nonnegative integer n where
is the bosonic p-adic integral on \({\mathbb{Z}}_{p}\).
As a natural generalization of the type 2 Bernoulli polynomials, Kim et al. defined the type 2 q-Bernoulli polynomials by using the bosonic p-adic q-integral on \({\mathbb{Z}}_{p}\) as follows:
and found the power sums of consecutive odd positive q-integers are represented by the type 2 q-Bernoulli polynomials as follows:
for each positive integer n and each nonnegative integer k (see [12, Eq.Ā (2.13), TheoremĀ 2.2]).
In the past decade, many symmetric identities of special functions have been found by many authors (see [6, 8, 10ā13, 17, 24ā26, 28ā30, 32, 33, 37]). In particular, Kim et al. [28] obtained some symmetric identities for type 2 q-Bernoulli polynomials under symmetry group \(S_{3}\), and Duran et al. [6] investigated some symmetric identities of Carlitzās generalized twisted q-Bernoulli polynomials under the symmetric group of order 3. He et al. [8] studied some symmetric identities on a sequence of polynomials and derived interesting identities involving Bernoulli numbers and polynomials as particular cases of those identities.
In this paper, we derive symmetric identities for type 2 q-Bernoulli polynomials under the symmetry group \(S_{n}\) of degree n by using the bosonic p-adic q-integral on \({\mathbb{Z}}_{p}\), and the proof methods, which are found by Kim, are also used as good tools in this paper(see [13, 25, 29, 30]). In particular, those identities are generalizations of the results of Kim et al. [28].
2 Symmetric identities for the type 2 q-Bernoulli polynomials
Let \(t \in {\mathbb{C}}_{p}\) with \(|t|_{p}< p^{-\frac{1}{p-1}}\), and let \(S_{n}\) be the symmetry group of degree n. For each positive integers \(w_{1},\ldots ,w_{n}\) and each nonnegative integers \(k_{1},\ldots ,k_{n-1}\), we consider the following integral equation for the bosonic p-adic q-integral on \({\mathbb{Z}}_{p}\);
By (3) we have
If we put
then, by (5), we obtain the following theorem.
Theorem 2.1
Let\(w_{1},w_{2},\ldots ,w_{n}\)be positive integers. For each\(\sigma \in S_{n}\), the\(F (w_{\sigma (1)},w_{\sigma (2)},\ldots , w_{\sigma (n)} )\)have the same value.
Note that, by the definition of the q-analogue of the number x,
By the definition of type 2 q-Bernoulli polynomials and (6), we get
and so by (7), we know that
By TheoremĀ 2.1 and (8), we obtain the following theorem.
Theorem 2.2
For each nonnnegative integermand each set of positive integers\(w_{1},w_{2},\ldots , w_{n}\),
have the same value for any\(\sigma \in S_{n}\).
By the definition of q-analogue of number x, we know that
and by (9), we get
By TheoremĀ 2.1 and (10), we have
where
Hence, by (11), we obtain the following theorem.
Theorem 2.3
For each set of positive integers\(w_{1},\ldots ,w_{n}\)and each nonnegative integerm,
have the same value for any\(\sigma \in S_{n}\).
3 Conclusions
The Bernoulli numbers and polynomials are very important things in the pure and applied mathematics, and closely connected with the Stirling numbers of the first and second kind, harmonic numbers, the Riemann zeta function, and so on. In addition, the Bernoulli numbers and polynomials can represent the power sums of consecutive integers.
In [15], Kim et al. showed that power sums of consecutive positive odd q-integers can be expressed by means of type 2 q-Bernoulli polynomials as follows:
In this paper, we study that the function \(F (w_{\sigma (1)},w_{\sigma (2)},\ldots ,w_{\sigma (n)} )\) about the type 2 q-Bernoulli polynomials is invariant for any \(\sigma \in S_{n}\) where \(S_{n}\) is the symmetry group of degree n. By the those invariance, we derive some symmetric identities for the type 2 q-Bernoulli polynomials arising from the bosonic p-adic q-integral on \({\mathbb{Z}}_{p}\).
If we put \(n=3\) or \(w_{4}=w_{5}=\cdots =w_{n}=1\), then Theorems 2.2 and 2.3 are the results of Kim et al. [28]. In addition, if we put \(w_{2}=w_{3}=\cdots =w_{n}=1\), then we obtain the equation
which is the same result as in [28].
References
Andrews, G.E., Askey, R., Roy, R.: Special functions. In: Encyclopedia of Mathematics and Its Applications, vol.Ā 71. Cambridge University Press, Cambridge (1999)
Arakawa, T., Ibukiyama, T., Kaneko, M.: Bernoulli Numbers and Zeta Functions. Springer, Tokyo (2014)
Carlitz, L.: q-Bernoulli numbers and polynomials. Duke Math. J. 15, 987ā1000 (1948)
Carlitz, L.: q-Bernoulli and Eulerian numbers. Trans. Am. Math. Soc. 76, 332ā350 (1954)
Carlitz, L.: Degenerate Stirling, Bernoulli and Eulerian numbers. Util. Math. 15, 51ā88 (1979)
Duran, U., Acikgoz, M.: New symmetric identities of Carlitzās generalized twisted q-Bernoulli polynomials under \(S_{3}\). Math. Morav. 20(2), 123ā129 (2016)
Gaboury, S., Tremblay, R., Fugere, B.J.: Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials. Proc. Jangjeon Math. Soc. 17(1), 115ā123 (2014)
He, Y., Zhang, W.: Some symmetric identities involving a sequence of polynomials. Electron. J. Comb. 17(1) Note 7, 7 pp. (2010)
Jang, G.W., Kim, T.: A note on type 2 degenerate Euler and Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 29(1), 147ā159 (2019)
Kim, A.H., An, C.K., Lee, H.Y.: Symmetric identities involving the modified \((p,q)\)-Hurwitz Euler zeta function. J. Appl. Math. Inform. 36(5ā6), 555ā565 (2010)
Kim, D.S.: Symmetry identities for generalized twisted Euler polynomials twisted by unramified roots of unity. Proc. Jangjeon Math. Soc. 15(3), 303ā316 (2012)
Kim, D.S., Kim, H.Y., Kim, D., Kim, T.: Identities of symmetry for type 2 Bernoulli and Euler polynomials. Symmetry 11, 613 (2019)
Kim, D.S., Kim, T.: Some identities of symmetry for q-Bernoulli polynomials under symmetric group of degree n. Ars Comb. 126, 435ā441 (2016)
Kim, D.S., Kim, T.: Some p-adic integrals on \({\mathbb{Z}}_{p}\) associated with trigonometric functions. Russ. J. Math. Phys. 25(3), 300ā308 (2018)
Kim, D.S., Kim, T., Kim, H.Y., Kwon, J.: A note on type 2 q-Bernoulli and type 2 q-Euler polynomials. J. Inequal. Appl. 2019, 181 (2019)
Kim, D.S., Lee, N., Na, J., Park, H.K.: Abundant symmetry for higher-order Bernoulli polynomials (I). Adv. Stud. Contemp. Math. (Kyungshang) 23, 461ā482 (2013)
Kim, D.S., Lee, N., Na, J., Park, K.H.: Identities of symmetry for higher-order Bernoulli polynomials in three variables (II). Proc. Jangjeon Math. Soc. 16(3), 359ā378 (2013)
Kim, T.: On explicit formulas of p-adic q-integral L-functions. Kyushu J. Math. 48(1), 73ā86 (1994)
Kim, T.: On q-analogue of the p-adic log gamma functions and related integral. J. Number Theory 76(2), 320ā329 (1999)
Kim, T.: q-Volkenborn integration. Russ. J. Math. Phys. 9(3), 288ā299 (2002)
Kim, T.: Sums of powers of consecutive q-integers. Adv. Stud. Contemp. Math. (Kyungshang) 9(1), 15ā18 (2004)
Kim, T.: Analytic continuation of multiple q-zeta functions and their values at negative integers. Russ. J. Math. Phys. 11(1), 71ā76 (2004)
Kim, T.: A note on exploring the sums of powers of consecutive q-integers. Adv. Stud. Contemp. Math. (Kyungshang) 11(1), 137ā140 (2005)
Kim, T.: Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on \({\mathbb{Z}}_{p}\). Russ. J. Math. Phys. 16(1), 93ā96 (2009)
Kim, T., Dolgy, D.V., Jang, L.C., Kwon, H.I.: Some identities of degenerate q-Euler polynomials under the symmetry group of degree n. J. Nonlinear Sci. Appl. 9(6), 4707ā4712 (2016)
Kim, T., Kim, D.S.: Identities of symmetry for degenerate Euler polynomials and alternating generalized falling factorial sums. Iran. J. Sci. Technol. Trans. A, Sci. 41(4), 939ā949 (2017)
Kim, T., Kim, D.S.: A note on type 2 Changhee and Daehee polynomials. Rev. R. Acad. Cienc. Exactas FĆs. Nat., Ser. A Mat. 113(3), 2763ā2771 (2019)
Kim, T., Kim, D.S., Dolgy, D.V., Pyo, S.S.: Identities of symmetry for type 2 q-Bernoulli polynomials under symmetry group \(S_{3}\). Submitted
Kim, T., Kwon, H.I.: Revisit symmetric identities for the Ī»-Catalan polynomials under the symmetry group of degree n. Proc. Jangjeon Math. Soc. 19(4), 711ā716 (2016)
Kim, T., Kwon, H.I., Mansour, T., Rim, S.H.: Symmetric identities for the fully degenerate Bernoulli polynomials and degenerate Euler polynomials under symmetric group of degree n. Util. Math. 103, 61ā72 (2017)
Kim, T., Ryoo, C.S., Jang, L.C., Rim, S.H.: Exploring the sums of powers of consecutive q-integers. Int. J. Math. Educ. Sci. Technol. 36(8), 947ā956 (2005)
Kim, W.J., Jang, L.C., Kim, B.M.: On symmetric identities of Carlitzās type q-Daehee polynomials. Discrete Dyn. Nat. Soc. 2019, Article ID 1890489 (2019)
Kim, Y.J., Kim, B.M., Park, J.W.: Symmetric properties of Carlitzās type q-Changhee polynomials. Symmetry 10, 634 (2018)
Park, J.W., Rim, S.H.: On the modified q-Bernoulli polynomials with weight. Proc. Jangjeon Math. Soc. 17(2), 231ā236 (2014)
Sharma, A.: q-Bernoulli and Euler numbers of higher order. Duke Math. J. 25, 343ā353 (1958)
Simsek, Y.: Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions. Adv. Stud. Contemp. Math. (Kyungshang) 16(2), 251ā278 (2008)
Simsek, Y.: Complete sum of product of \((h,q)\)-extension of Euler polynomials and numbers. J. Differ. Equ. Appl. 16(11), 1331ā1348 (2010)
Simsek, Y.: Explicit formulas for p-adic integrals: approach to p-adic distribution and some families of special numbers and polynomials. Montes Taurus J. Pure Appl. Math. 1(1), 1ā76 (2019)
Simsek, Y., Kim, D.S., Kim, T. Rim, S.H.: A note on the sums of powers of consecutive q-integers. J. Appl. Funct. Differ. Equ. 1(1), 81ā88 (2006)
Simsek, Y., Srivastava, H.M.: A family of p-adic twisted interpolation functions associated with the modified Bernoulli numbers. Appl. Math. Comput. 216, 2976ā2987 (2010)
Srivastava, H.: Some generalizations and basic (or q-)extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 5, 390ā444 (2011)
Acknowledgements
Authors are thankful to the referees for their useful suggestions.
Availability of data and materials
Not applicable.
Funding
This research was supported by the Daegu University Research Grant, 2019.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this work; All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare to have no conflict of interest.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the articleās Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the articleās Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Yun, S.J., Park, JW. Some identities of type 2 q-Bernoulli polynomials. J Inequal Appl 2020, 154 (2020). https://doi.org/10.1186/s13660-020-02413-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-020-02413-w
Keywords
- Bosonic p-adic q-integral
- Type 2 q-Bernoulli numbers
- Symmetry group of degree n