- Research
- Open access
- Published:
On Hardy-type integral inequalities in the whole plane related to the extended Hurwitz-zeta function
Journal of Inequalities and Applications volume 2020, Article number: 94 (2020)
Abstract
Using weight functions, we establish a few equivalent statements of two kinds of Hardy-type integral inequalities with nonhomogeneous kernel in the whole plane. The constant factors related to the extended Hurwitz-zeta function are proved to be the best possible. In the form of applications, we deduce some special cases involving homogeneous kernel. We additionally consider some particular inequalities and operator expressions.
1 Introduction
If \(f(x),g(y)\geq0\),
we have the following well-known Hilbert integral inequality (see [1]):
with the best possible constant factor π.
Recently, by the use of weight functions, several extensions of (1) have been established in [2] and [3]. Some Hilbert-type inequalities were also presented in [4–9]. Furthermore, Hong [10] considered as well an equivalent condition between a Hilbert-type inequality with homogenous kernel and a few parameters. Some additional kinds of Hilbert-type inequalities were also obtained in [11–19]. Most of these results are constructed in the quarter plane of the first quadrant.
In 2007, Yang [20] proved the following Hilbert-type integral inequality in the whole plane:
with the best possible constant factor \(B (\frac{\lambda}{2},\frac {\lambda}{2} )\) (\(\lambda>0\), where \(B(u,v)\) stands for the beta function) (see [21]). He et al. [22–35] also established some Hilbert-type integral inequalities in the whole plane with the best possible constant factors.
In the present paper, using weight functions, we establish a few equivalent statements of two kinds of Hardy-type integral inequalities with nonhomogeneous kernel and multi-parameters in the whole plane. The constant factors related to the extended Hurwitz-zeta function are proved to be the best possible. In the form of applications, we deduce a few equivalent statements of two kinds of Hardy-type integral inequalities with homogeneous kernel in the whole plane. As corollaries, we also consider some particular cases and operator expressions.
2 An example and two lemmas
Example 1
We set
wherefrom
and
For \(\beta>0\), \(\sigma>-\alpha-1\), it follows that
By the Lebesgue term-by-term integration theorem (cf. [36]), for \(v=-(2k+\sigma+\alpha+1)\ln u\), we obtain
where
stands for the Hurwitz-zeta function. Note that
is the Riemann-zeta function. Moreover,
stands for the extended Hurwitz-zeta function (cf. [21]).
In particular, for \(\sigma=-\alpha+1\) (\(>-\alpha-1\)), it follows that
Similarly, for \(\beta>0\), \(\mu>-\alpha-1\) (\(\sigma+\mu=\lambda\)), we obtain that
Remark 1
For \(\sigma+\mu=\lambda\), it is clear that
if and only if \(\sigma>-\alpha-1\) and \(\beta>0\) (resp. \(\mu>-\alpha-1\) and \(\beta >0\)).
In the sequel, we assume that \(p>1\), \(\frac{1}{p}+\frac{1}{q}=1\), \(\sigma+\mu =\lambda\).
Lemma 1
If\(\sigma_{1}\in\mathbf{R}\), there exists a constant\(M_{1}\)such that, for any nonnegative measurable functions\(f(x)\)and\(g(y)\)inR, the following inequality
holds true, then we have\(\sigma_{1}=\sigma>-\alpha-1\)and\(\beta>0\).
Proof
If \(\sigma_{1}>\sigma\), then for \(n\geq\frac{1}{\sigma _{1}-\sigma}\) (\(n\in\mathbf{N}\)) we consider the following functions:
and derive that
We obtain
and then by (5) we get
Since \((\sigma_{1}-\sigma)-\frac{1}{n}\geq0\), it follows that
By (7), for \(K^{(1)}(\sigma+\frac{1}{pn})>0\), we have \(\infty\leq 2M_{1}n<\infty\), which is a contradiction.
If \(\sigma_{1}<\sigma\), then for \(n\geq\frac{1}{\sigma-\sigma_{1}}\) (\(n\in\mathbf{N}\)) we consider the following functions:
and derive that
We obtain
and thus, by Fubini’s theorem (cf. [36]) and (5), it follows that
Since \((\sigma-\sigma_{1})-\frac{1}{n}\geq0\), it follows that
By (9), for \(K^{(1)}(\sigma_{1}+\frac{1}{qn})>0\), we get that \(\infty\leq 2M_{1}n<\infty\), which is a contradiction.
Hence, we conclude that \(\sigma_{1}=\sigma\).
For \(\sigma_{1}=\sigma\), we reduce (9) as follows:
Since \(\{(H(-u)+H(u))u^{\sigma+\frac{1}{qn}-1}\}_{n=1}^{\infty}\) is increasing in \((0,1)\), by Levi’s theorem (cf. [36]), we obtain that
By Remark 1, it follows that \(\sigma>-\alpha-1\) and \(\beta>0\).
This completes the proof of the lemma. □
Lemma 2
If\(\sigma_{1}\in\mathbf{R}\)and there exists a constant\(M_{2}\)such that, for any nonnegative measurable functions\(f(x)\)and\(g(y)\)inR, the following inequality
holds true, then we have\(\sigma_{1}=\sigma\), \(\mu>-\alpha-1\), and\(\beta >0\).
Proof
If \(\sigma_{1}<\sigma\), then for \(n\geq\frac{1}{\sigma-\sigma _{1}}\) (\(n\in\mathbf{N}\)) we consider the functions \(\widetilde {f}_{n}(x)\) and \(\widetilde{g}_{n}(y)\) as in Lemma 1 and get
We obtain
and then by (10) it follows that
Since \((\sigma_{1}-\sigma)+\frac{1}{n}\leq0\), it follows that
By (11), for \(K^{(2)}(\sigma-\frac{1}{pn})>0\), we have \(\infty\leq 2M_{2}n<\infty\), which is a contradiction.
If \(\sigma_{1}>\sigma\), then for \(n\geq\frac{1}{\sigma_{1}-\sigma}\) (\(n\in\mathbf{N}\)) we consider the functions \(f_{n}(x)\) and \(g_{n}(y)\) as in Lemma 1 and derive that
We obtain
and then, by Fubini’s theorem (cf. [36]) and (8), it follows that
Since \((\sigma-\sigma_{1})+\frac{1}{n}\leq0\), we get that
By (12), for \(K^{(2)}(\sigma_{1}-\frac{1}{qn})>0\), we deduce that \(\infty\leq 2M_{2}n<\infty\), which is a contradiction.
Hence, we conclude the fact that \(\sigma_{1}=\sigma\).
For \(\sigma_{1}=\sigma\), we reduce (12) as follows:
Since \(\{(H(-u)+H(u))u^{\sigma-\frac{1}{qn}-1}\}_{n=1}^{\infty}\) is increasing in \([1,\infty)\), applying again Levi’s theorem (cf. [36]), we have that
By Remark 1, we get that \(\mu>-\alpha-1\) and \(\beta>0\).
This completes the proof of the lemma. □
3 Main results and some corollaries
Theorem 1
If\(\sigma_{1}\in\mathbf{R,}\)then the following statements (i), (ii), and (iii) are equivalent:
- (i)
There exists a constant\(M_{1}\)such that, for any\(f(x)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\,dx< \infty , $$we have the following Hardy-type integral inequality of the first kind with the nonhomogeneous kernel:
$$\begin{aligned} J :=& \biggl\{ \int_{-\infty}^{\infty} \vert y \vert ^{p\sigma_{1}-1} \biggl[ \int_{ \frac{-1}{ \vert y \vert }}^{\frac{1}{ \vert y \vert }}\frac{(\min\{ \vert xy \vert ,1\})^{1+\alpha} \vert \ln \vert xy \vert \vert ^{\beta}}{(\max\{ \vert xy \vert ,1\})^{\lambda+\alpha} \vert xy-1 \vert }f(x)\, dx \biggr] ^{p}\,dy \biggr\} ^{\frac{1}{p}} \\ < &M_{1} \biggl[ \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\, dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$(14) - (ii)
There exists a constant\(M_{1}\)such that, for any\(f(x),g(y)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\,dx< \infty\quad \textit{and}\quad 0< \int_{-\infty}^{\infty} \vert y \vert ^{q(1-\sigma_{1})-1}g^{q}(y)\,dy< \infty , $$we have the following inequality:
$$\begin{aligned} I :=& \int_{-\infty}^{\infty}g(y) \biggl[ \int_{\frac{-1}{ \vert y \vert }}^{\frac {1}{ \vert y \vert }}\frac{(\min\{ \vert xy \vert ,1\})^{1+\alpha} \vert \ln \vert xy \vert \vert ^{\beta}}{(\max \{ \vert xy \vert ,1\})^{\lambda+\alpha} \vert xy-1 \vert }f(x)\,dx \biggr] \,dy \\ < &M_{1} \biggl[ \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\, dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{-\infty}^{\infty} \vert y \vert ^{q(1-\sigma _{1})-1}g^{q}(y)\,dy \biggr] ^{\frac{1}{q}}. \end{aligned}$$(15) - (iii)
\(\sigma_{1}=\sigma>-\alpha-1\)and\(\beta>0\).
If statement (iii) holds true, then the constant\(M_{1}=K^{(1)}(\sigma )\) (\(\in \mathbf{R}_{+}\)) in (14) and (15) (for\(\sigma _{1}=\sigma\)) is the best possible.
Proof
(i) ⇒ (ii). By Hölder’s inequality (cf. [37]), we have
(ii) ⇒ (iii). By Lemma 1, we have \(\sigma_{1}=\sigma >-\alpha-1\) and \(\beta>0\).
(iii) ⇒ (i). We obtain the following weight function:
For \(y\neq0\),
By the weighted Hölder inequality and (17), we obtain
If (18) takes the form of equality for some \(y\in\mathbf {R}\setminus \{0\}\), then (cf. [37]) there exist constants A and B such that they are not both zero and
Let us assume that \(A\neq0\) (otherwise \(B=A=0\)). It follows that
which contradicts the fact that
Hence, (18) takes the form of strict inequality.
For \(\sigma_{1}=\sigma>-\alpha-1\) and \(\beta>0\), we have \(K^{(1)}(\sigma )\in\mathbf{R}_{+}\). In view of Fubini’s theorem (cf. [36]), we obtain
Setting \(M_{1}\geq K^{(1)}(\sigma)\), we have
namely, (14) follows.
Therefore, statements (i), (ii), and (iii) are equivalent.
When statement (iii) is satisfied, if there exists a constant \(M_{1}\leq K^{(1)}(\sigma)\) such that (15) is valid, then by the proof of Lemma 1, we have \(K^{(1)}(\sigma)\leq M_{1}\). It follows that the constant factor \(M_{1}=K^{(1)}(\sigma)\) in (15) is the best possible. The constant factor \(M_{1}=K^{(1)}(\sigma)\) in (14) is still the best possible. Otherwise, by (16) (for \(\sigma _{1}=\sigma\)), we would conclude that the constant factor \(M_{1}=K^{(1)}(\sigma)\) in (15) was not the best possible.
This completes the proof of the theorem. □
In particular, for \(\sigma=\sigma_{1}=\frac{1}{p}>-\alpha-1\) in Theorem 1, the following corollary holds true.
Corollary 1
The following statements (i), (ii), and (iii) are equivalent:
- (i)
There exists a constant\(M_{1}\)such that, for any\(f(x)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty} \vert x \vert ^{p-2}f^{p}(x)\,dx< \infty, $$the following inequality is satisfied:
$$\begin{aligned} \begin{aligned}[b] & \biggl\{ \int_{-\infty}^{\infty} \biggl[ \int_{\frac{-1}{ \vert y \vert }}^{\frac {1}{ \vert y \vert }}\frac{(\min\{ \vert xy \vert ,1\})^{1+\alpha} \vert \ln \vert xy \vert \vert ^{\beta}}{(\max \{ \vert xy \vert ,1\})^{\lambda+\alpha} \vert xy-1 \vert }f(x)\,dx \biggr] ^{p}\,dy \biggr\} ^{\frac{1}{p}} \\ &\quad< M_{1} \biggl( \int_{-\infty}^{\infty} \vert x \vert ^{p-2}f^{p}(x)\,dx \biggr) ^{\frac{1}{p}}.\end{aligned} \end{aligned}$$(19) - (ii)
There exists a constant\(M_{1}\)such that, for any\(f(x), g(y)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty} \vert x \vert ^{p-2}f^{p}(x)\,dx< \infty\quad \textit{and}\quad 0< \int _{-\infty}^{\infty}g^{q}(y)\,dy< \infty, $$we have the following inequality:
$$\begin{aligned} & \int_{-\infty}^{\infty}g(y) \biggl[ \int_{\frac{-1}{ \vert y \vert }}^{\frac {1}{ \vert y \vert }}\frac{(\min\{ \vert xy \vert ,1\})^{1+\alpha} \vert \ln \vert xy \vert \vert ^{\beta}}{(\max \{ \vert xy \vert ,1\})^{\lambda+\alpha} \vert xy-1 \vert }f(x) \,dx \biggr] \,dy \\ &\quad< M_{1} \biggl( \int_{-\infty}^{\infty} \vert x \vert ^{p-2}f^{p}(x)\,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{-\infty}^{\infty}g^{q}(y)\,dy \biggr) ^{\frac{1}{q}}. \end{aligned}$$(20) - (iii)
\(\alpha>-\frac{1}{p}-1\)and\(\beta>0\).
If statement (iii) holds true, then the constant\(M_{1}=K^{(1)}(\frac {1}{p})\) (\(\in\mathbf{R}_{+}\)) in (19) and (20) is the best possible.
Setting \(y=\frac{1}{Y}\), \(G(Y)=g(\frac{1}{Y})\frac{1}{Y^{2}}\) in Theorem 1, and then replacing Y by y, we obtain the following corollary.
Corollary 2
If\(\sigma_{1}\in\mathbf{R,}\)then the following statements (i), (ii), and (iii) are equivalent:
- (i)
There exists a constant\(M_{1}\)such that, for any\(f(x)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\,dx< \infty , $$we have the following inequality:
$$\begin{aligned} & \biggl\{ \int_{-\infty}^{\infty} \vert y \vert ^{-p\sigma_{1}-1} \biggl[ \int_{- \vert y \vert }^{ \vert y \vert }\frac{(\min\{ \vert x/y \vert ,1\})^{1+\alpha} \vert \ln \vert x/y \vert \vert ^{\beta }}{(\max\{ \vert x/y \vert ,1\})^{\lambda+\alpha} \vert x/y-1 \vert }f(x)\,dx \biggr] ^{p}\, dy \biggr\} ^{\frac{1}{p}} \\ &\quad< M_{1} \biggl[ \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\, dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$(21) - (ii)
There exists a constant\(M_{1}\)such that, for any\(f(x),G(y)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\,dx< \infty\quad \textit{and}\quad 0< \int_{-\infty}^{\infty}y^{q(1+\sigma_{1})-1}G^{q}(y) \, dy< \infty, $$we have the following inequality:
$$\begin{aligned} \begin{aligned}[b] & \int_{-\infty}^{\infty}G(y) \biggl[ \int_{- \vert y \vert }^{ \vert y \vert }\frac{(\min \{ \vert x/y \vert ,1\})^{1+\alpha} \vert \ln \vert x/y \vert \vert ^{\beta}}{(\max\{ \vert x/y \vert ,1\} )^{\lambda +\alpha} \vert x/y-1 \vert }f(x)\,dx \biggr] \,dy \\ &\quad< M_{1} \biggl[ \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\, dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{-\infty}^{\infty} \vert y \vert ^{q(1+\sigma _{1})-1}G^{q}(y)\,dy \biggr] ^{\frac{1}{q}}.\end{aligned} \end{aligned}$$(22) - (iii)
\(\sigma_{1}=\sigma>-\alpha-1\)and\(\beta>0\).
If statement (iii) holds true, then the constant\(M_{1}=K^{(1)}(\sigma )\) (\(\in \mathbf{R}_{+}\)) in (21) and (22) (for\(\sigma _{1}=\sigma\)) is the best possible.
For \(g(y)=y^{\lambda}G(y)\) and \(\mu_{1}=\lambda-\sigma_{1}\) in Corollary 2, we deduce the following corollary.
Corollary 3
If\(\mu_{1}\in\mathbf{R}\), then the following statements (i), (ii), and (iii) are equivalent:
- (i)
There exists a constant\(M_{1}\)such that, for any\(f(x)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\,dx< \infty , $$we have the following Hardy-type integral inequality of the first kind with homogeneous kernel:
$$\begin{aligned} & \biggl\{ \int_{-\infty}^{\infty}y^{p\mu_{1}-1} \biggl[ \int _{- \vert y \vert }^{ \vert y \vert }\frac{(\min\{ \vert x \vert , \vert y \vert \})^{1+\alpha} \vert \ln \vert x/y \vert \vert ^{\beta}}{(\max \{ \vert x \vert , \vert y \vert \})^{\lambda+\alpha} \vert x-y \vert }f(x) \,dx \biggr] ^{p}\,dy \biggr\} ^{\frac{1}{p}} \\ &\quad< M_{1} \biggl[ \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\, dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$(23) - (ii)
There exists a constant\(M_{1}\)such that, for any\(f(x),g(y)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\,dx< \infty\quad \textit{and}\quad 0< \int_{-\infty}^{\infty} \vert y \vert ^{q(1-\mu_{1})-1}g^{q}(y)\, dy< \infty, $$we have the following inequality:
$$\begin{aligned} & \int_{-\infty}^{\infty}g(y) \biggl[ \int_{- \vert y \vert }^{ \vert y \vert }\frac{(\min \{ \vert x \vert , \vert y \vert \})^{1+\alpha} \vert \ln \vert x/y \vert \vert ^{\beta}}{(\max\{ \vert x \vert , \vert y \vert \} )^{\lambda +\alpha} \vert x-y \vert }f(x)\,dx \biggr] \,dy \\ &\quad< M_{1} \biggl[ \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\, dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{-\infty}^{\infty} \vert y \vert ^{q(1-\mu _{1})-1}g^{q}(y)\,dy \biggr] ^{\frac{1}{q}}. \end{aligned}$$(24) - (iii)
\(\mu_{1}=\mu<\lambda+\alpha+1\)and\(\beta>0\).
If statement (iii) holds true, then the constant\(M_{1}=K^{(1)}(\sigma )\) (\(\in \mathbf{R}_{+}\)) in (23) and (24) (for\(\mu_{1}=\mu\)) is the best possible.
In particular, for \(\lambda=1\), \(\sigma=\frac{1}{q}\), \(\mu=\frac{1}{p}\) in Corollary 3, we get the following corollary.
Corollary 4
The following statements (i), (ii), and (iii) are equivalent:
- (i)
There exists a constant\(M_{1}\)such that, for any\(f(x)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty}f^{p}(x)\,dx< \infty, $$the following inequality holds true:
$$\begin{aligned} & \biggl\{ \int_{-\infty}^{\infty} \biggl[ \int_{- \vert y \vert }^{ \vert y \vert } \biggl( \frac {\min \{ \vert x \vert , \vert y \vert \}}{\max\{ \vert x \vert , \vert y \vert \}} \biggr) ^{1+\alpha}\frac{ \vert \ln \vert x/y \vert \vert ^{\beta}}{ \vert x-y \vert }f(x)\,dx \biggr] ^{p} \,dy \biggr\} ^{\frac{1}{p}} \\ &\quad< M_{1} \biggl( \int_{-\infty}^{\infty}f^{p}(x)\,dx \biggr) ^{\frac{1}{p}}. \end{aligned}$$(25) - (ii)
There exists a constant\(M_{1}\)such that, for any\(f(x),g(y)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty}f^{p}(x)\,dx< \infty \quad \textit{and}\quad 0< \int_{-\infty }^{\infty}g^{q}(y)\,dy< \infty, $$we have the following inequality:
$$\begin{aligned} & \int_{-\infty}^{\infty}g(y) \biggl[ \int_{- \vert y \vert }^{ \vert y \vert } \biggl( \frac{\min \{ \vert x \vert , \vert y \vert \}}{\max\{ \vert x \vert , \vert y \vert \}} \biggr) ^{1+\alpha}\frac{ \vert \ln \vert x/y \vert \vert ^{\beta}}{ \vert x-y \vert }f(x)\,dx \biggr] \,dy \\ &\quad< M_{1} \biggl( \int_{-\infty}^{\infty}f^{p}(x)\,dx \biggr) ^{\frac {1}{p}} \biggl( \int_{-\infty}^{\infty}g^{q}(y)\,dy \biggr) ^{\frac{1}{q}}. \end{aligned}$$(26) - (iii)
\(\alpha>-\frac{1}{q}-1\)and\(\beta>0\).
If statement (iii) holds true, then the constant factor\(M_{1}=K^{(1)}(\frac{1}{q})\) (\(\in\mathbf{R}_{+}\)) in (25) and (26) is the best possible.
Remark 2
-
(i)
For \(\sigma_{1}=\sigma=-\alpha+1\) in (14), we have the following inequality with the best possible constant factor \(\frac{\varGamma(\beta+1)}{2^{\beta}}\zeta(\beta+1)\) (\(\beta>0\)):
$$\begin{aligned} & \biggl\{ \int_{-\infty}^{\infty} \vert y \vert ^{p(1-\alpha)-1} \biggl[ \int _{\frac{-1}{ \vert y \vert }}^{\frac{1}{ \vert y \vert }}\frac{(\min\{ \vert xy \vert ,1\})^{1+\alpha} \vert \ln \vert xy \vert \vert ^{\beta}}{(\max\{ \vert xy \vert ,1\})^{\lambda+\alpha} \vert xy-1 \vert }f(x)\,dx \biggr] ^{p}\, dy \biggr\} ^{\frac{1}{p}} \\ &\quad< \frac{\varGamma(\beta+1)}{2^{\beta}}\zeta(\beta+1) \biggl[ \int _{-\infty }^{\infty} \vert x \vert ^{p\alpha-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$(27) -
(ii)
For \(\mu_{1}=\mu=\lambda+\alpha-1\) in (23), we have the following inequality with the best possible constant factor \(\frac {\varGamma (\beta+1)}{2^{\beta}}\zeta(\beta+1)\) (\(\beta>0\)):
$$\begin{aligned} & \biggl\{ \int_{-\infty}^{\infty}y^{p(\lambda+\alpha-1)-1} \biggl[ \int_{- \vert y \vert }^{ \vert y \vert }\frac{(\min\{ \vert x \vert , \vert y \vert \})^{1+\alpha} \vert \ln \vert x/y \vert \vert ^{\beta }}{(\max\{ \vert x \vert , \vert y \vert \})^{\lambda+\alpha} \vert x-y \vert }f(x)\,dx \biggr] ^{p}\, dy \biggr\} ^{\frac{1}{p}} \\ &\quad< \frac{\varGamma(\beta+1)}{2^{\beta}}\zeta(\beta+1) \biggl[ \int _{-\infty }^{\infty} \vert x \vert ^{p\alpha-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$(28) -
(iii)
For \(\alpha=-1\) in (25), we have the following inequality with the best possible constant factor \(\frac{\varGamma(\beta +1)}{2^{\beta}}\zeta(\beta+1,\frac{1}{2q})\) (\(\beta>0\)):
$$\begin{aligned} & \biggl\{ \int_{-\infty}^{\infty} \biggl[ \int_{- \vert y \vert }^{ \vert y \vert }\frac{ \vert \ln \vert x/y \vert \vert ^{\beta}}{ \vert x-y \vert }f(x)\,dx \biggr] ^{p}\,dy \biggr\} ^{\frac{1}{p}} \\ &\quad< \frac{\varGamma(\beta+1)}{2^{\beta}}\zeta\biggl(\beta+1,\frac {1}{2q}\biggr) \biggl( \int_{-\infty}^{\infty}f^{p}(x)\,dx \biggr) ^{\frac{1}{p}}. \end{aligned}$$(29)
Similarly, in view of Lemma 2, we obtain the following weight function:
For \(y\neq0\),
and then similarly, we derive the following results.
Theorem 2
If\(\sigma_{1}\in\mathbf{R,}\)then the following statements (i), (ii), and (iii) are equivalent:
- (i)
There exists a constant\(M_{2}\)such that, for any\(f(x)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\,dx< \infty , $$the following Hardy-type integral inequality of the second kind with nonhomogeneous kernel is satisfied:
$$\begin{aligned} & \biggl\{ \int_{-\infty}^{\infty}y^{p\sigma_{1}-1} \biggl[ \int_{\{x; \vert x \vert \geq\frac{1}{ \vert y \vert }\}}\frac{(\min\{ \vert xy \vert ,1\})^{1+\alpha } \vert \ln \vert xy \vert \vert ^{\beta}}{(\max\{ \vert xy \vert ,1\})^{\lambda+\alpha} \vert xy-1 \vert }f(x)\, dx \biggr] ^{p}\,dy \biggr\} ^{\frac{1}{p}} \\ &\quad< M_{2} \biggl[ \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\, dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$(30) - (ii)
There exists a constant\(M_{2}\)such that, for any\(f(x),g(y)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\,dx< \infty\quad \textit{and}\quad 0< \int_{-\infty}^{\infty} \vert y \vert ^{q(1-\sigma_{1})-1}g^{q}(y)\, dy< \infty , $$we have the following inequality:
$$\begin{aligned} & \int_{-\infty}^{\infty}g(y) \biggl[ \int_{\{x; \vert x \vert \geq\frac{1}{ \vert y \vert }\}} \frac{(\min\{ \vert xy \vert ,1\})^{1+\alpha} \vert \ln \vert xy \vert \vert ^{\beta}}{(\max \{ \vert xy \vert ,1\})^{\lambda+\alpha} \vert xy-1 \vert }f(x)\,dx \biggr] \,dy \\ &\quad< M_{2} \biggl[ \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\, dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{-\infty}^{\infty}y^{q(1-\sigma _{1})-1}g^{q}(y) \,dy \biggr] ^{\frac{1}{q}}. \end{aligned}$$(31) - (iii)
\(\sigma_{1}=\sigma<\lambda+\alpha+1\)and\(\beta>0\).
If statement (iii) holds true, then the constant\(M_{2}=K^{(2)}(\sigma )\) (\(\in \mathbf{R}_{+}\)) in (30) and (31) (for\(\sigma _{1}=\sigma\)) is the best possible.
In particular, for \(\sigma=\sigma_{1}=\frac{1}{p}\) in Theorem 2, we obtain the following corollary.
Corollary 5
The following statements (i), (ii), and (iii) are equivalent:
- (i)
There exists a constant\(M_{2}\)such that, for any\(f(x)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty} \vert x \vert ^{p-2}f^{p}(x)\,dx< \infty, $$we have the following inequality:
$$\begin{aligned} & \biggl\{ \int_{-\infty}^{\infty} \biggl[ \int_{\{x; \vert x \vert \geq\frac {1}{ \vert y \vert }\}}\frac{(\min\{ \vert xy \vert ,1\})^{1+\alpha} \vert \ln \vert xy \vert \vert ^{\beta}}{(\max \{ \vert xy \vert ,1\})^{\lambda+\alpha} \vert xy-1 \vert }f(x)\,dx \biggr] ^{p}\,dy \biggr\} ^{\frac{1}{p}} \\ &\quad< M_{2} \biggl( \int_{-\infty}^{\infty} \vert x \vert ^{p-2}f^{p}(x)\,dx \biggr) ^{\frac{1}{p}}. \end{aligned}$$(32) - (ii)
There exists a constant\(M_{2}\)such that, for any\(f(x),g(y)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty} \vert x \vert ^{p-2}f^{p}(x)\,dx< \infty\quad \textit{and}\quad 0< \int _{-\infty}^{\infty}g^{q}(y)\,dy< \infty, $$we have the following inequality:
$$\begin{aligned} & \int_{-\infty}^{\infty}g(y) \biggl[ \int_{\{x; \vert x \vert \geq\frac{1}{ \vert y \vert }\}} \frac{(\min\{ \vert xy \vert ,1\})^{1+\alpha} \vert \ln \vert xy \vert \vert ^{\beta}}{(\max \{ \vert xy \vert ,1\})^{\lambda+\alpha} \vert xy-1 \vert }f(x)\,dx \biggr] \,dy \\ &\quad< M_{2} \biggl( \int_{-\infty}^{\infty} \vert x \vert ^{p-2}f^{p}(x)\,dx \biggr) ^{\frac{1}{p}} \biggl( \int_{-\infty}^{\infty}g^{q}(y)\,dy \biggr) ^{\frac{1}{q}}. \end{aligned}$$(33) - (iii)
\(\alpha>-\lambda-\frac{1}{q}\)and\(\beta>0\).
If statement (iii) holds true, then the constant\(M_{2}=K^{(2)}(\frac {1}{p})\) (\(\in\mathbf{R}_{+}\)) in (32) and (33) is the best possible.
Setting \(y=\frac{1}{Y}\), \(G(Y)=g(\frac{1}{Y})\frac{1}{Y^{2}}\) in Theorem 2, and then replacing Y by y, we deduce the following corollary.
Corollary 6
If\(\sigma_{1}\in\mathbf{R,}\)then the following statements (i), (ii), and (iii) are equivalent:
- (i)
There exists a constant\(M_{2}\)such that, for any\(f(x)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\,dx< \infty , $$we have the following inequality:
$$\begin{aligned} & \biggl\{ \int_{-\infty}^{\infty}y^{-p\sigma_{1}-1} \biggl[ \int_{\{x; \vert x \vert \geq \vert y \vert \}}\frac{(\min\{ \vert x/y \vert ,1\})^{1+\alpha} \vert \ln \vert x/y \vert \vert ^{\beta}}{(\max\{ \vert x/y \vert ,1\})^{\lambda+\alpha} \vert x/y-1 \vert }f(x)\, dx \biggr] ^{p}\,dy \biggr\} ^{\frac{1}{p}} \\ &\quad< M_{2} \biggl[ \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\, dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$(34) - (ii)
There exists a constant\(M_{2}\)such that, for any\(f(x),G(y)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\,dx< \infty\quad \textit{and}\quad 0< \int_{-\infty}^{\infty} \vert y \vert ^{q(1+\sigma_{1})-1}G^{q}(y)\, dy< \infty , $$we have the following inequality:
$$\begin{aligned} & \int_{-\infty}^{\infty}G(y) \biggl[ \int_{\{x; \vert x \vert \geq \vert y \vert \}}\frac {(\min \{ \vert x/y \vert ,1\})^{1+\alpha} \vert \ln \vert x/y \vert \vert ^{\beta}}{(\max\{ \vert x/y \vert ,1\} )^{\lambda +\alpha} \vert x/y-1 \vert }f(x)\,dx \biggr] \,dy \\ &\quad< M_{2} \biggl[ \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\, dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{-\infty}^{\infty} \vert y \vert ^{q(1+\sigma _{1})-1}G^{q}(y)\,dy \biggr] ^{\frac{1}{q}}. \end{aligned}$$(35) - (iii)
\(\sigma_{1}=\sigma<\lambda+\alpha+1\)and\(\beta>0\).
If statement (iii) holds true, then the constant\(M_{2}=K^{(2)}(\sigma )\) (\(\in \mathbf{R}_{+}\)) in (34) and (35) (for\(\sigma _{1}=\sigma\)) is the best possible.
For \(g(y)=y^{\lambda}G(y)\) and \(\mu_{1}=\lambda-\sigma_{1}\) in Corollary 6, we deduce the following corollary.
Corollary 7
If\(\mu_{1}\in\mathbf{R,}\)then the following statements (i), (ii), and (iii) are equivalent:
- (i)
There exists a constant\(M_{2}\)such that, for any\(f(x)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\,dx< \infty , $$we have the following inequality:
$$\begin{aligned} & \biggl\{ \int_{-\infty}^{\infty}y^{p\mu_{1}-1} \biggl[ \int_{\{ x; \vert x \vert \geq \vert y \vert \}}\frac{(\min\{ \vert x \vert , \vert y \vert \})^{1+\alpha} \vert \ln \vert x/y \vert \vert ^{\beta}}{(\max \{ \vert x \vert , \vert y \vert \})^{\lambda+\alpha} \vert x-y \vert }f(x)\,dx \biggr] ^{p}\,dy \biggr\} ^{\frac{1}{p}} \\ &\quad< M_{2} \biggl[ \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\, dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$(36) - (ii)
There exists a constant\(M_{2}\)such that, for any\(f(x),g(y)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\,dx< \infty\quad \textit{and}\quad 0< \int_{-\infty}^{\infty} \vert y \vert ^{q(1-\mu_{1})-1}g^{q}(y)\, dy< \infty, $$we have the following inequality:
$$\begin{aligned} & \int_{-\infty}^{\infty}g(y) \biggl[ \int_{\{x; \vert x \vert \geq \vert y \vert \}}\frac {(\min \{ \vert x \vert , \vert y \vert \})^{1+\alpha} \vert \ln \vert x/y \vert \vert ^{\beta}}{(\max\{ \vert x \vert , \vert y \vert \} )^{\lambda +\alpha} \vert x-y \vert }f(x)\,dx \biggr] \,dy \\ &\quad< M_{2} \biggl[ \int_{-\infty}^{\infty} \vert x \vert ^{p(1-\sigma)-1}f^{p}(x)\, dx \biggr] ^{\frac{1}{p}} \biggl[ \int_{-\infty}^{\infty} \vert y \vert ^{q(1-\mu _{1})-1}g^{q}(y)\,dy \biggr] ^{\frac{1}{q}}. \end{aligned}$$(37) - (iii)
\(\mu_{1}=\mu>-\alpha-1\)and\(\beta>0\).
If statement (iii) holds true, then the constant\(M_{2}=K^{(2)}(\sigma )\) (\(\in \mathbf{R}_{+}\)) in (36) and (37) (for\(\mu_{1}=\mu\)) is the best possible.
In particular, for \(\lambda=1\), \(\sigma=\frac{1}{q}\), \(\mu=\frac{1}{p}\) in Corollary 7, we obtain the following corollary.
Corollary 8
The following statements (i), (ii), and (iii) are equivalent:
- (i)
There exists a constant\(M_{2}\)such that, for any\(f(x)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty}f^{p}(x)\,dx< \infty, $$we have the following inequality:
$$\begin{aligned} & \biggl\{ \int_{-\infty}^{\infty} \biggl[ \int_{\{x; \vert x \vert \geq \vert y \vert \}} \biggl( \frac{\min\{ \vert x \vert , \vert y \vert \}}{\max\{ \vert x \vert , \vert y \vert \}} \biggr) ^{1+\alpha}\frac{ \vert \ln \vert x/y \vert \vert ^{\beta}}{ \vert x-y \vert }f(x)\,dx \biggr] ^{p}\,dy \biggr\} ^{\frac{1}{p}} \\ &\quad< M_{2} \biggl( \int_{-\infty}^{\infty}f^{p}(x)\,dx \biggr) ^{\frac{1}{p}}. \end{aligned}$$(38) - (ii)
There exists a constant\(M_{2}\)such that, for any\(f(x),g(y)\geq0\)satisfying
$$0< \int_{-\infty}^{\infty}f^{p}(x)\,dx< \infty \quad \textit{and}\quad 0< \int_{-\infty }^{\infty}g^{q}(y)\,dy< \infty, $$we have the following inequality:
$$\begin{aligned} & \int_{-\infty}^{\infty}g(y) \biggl[ \int_{\{x; \vert x \vert \geq \vert y \vert \}} \biggl( \frac{\min\{ \vert x \vert , \vert y \vert \}}{\max\{ \vert x \vert , \vert y \vert \}} \biggr) ^{1+\alpha}\frac{ \vert \ln \vert x/y \vert \vert ^{\beta}}{ \vert x-y \vert }f(x)\,dx \biggr] \,dy \\ &\quad< M_{2} \biggl( \int_{-\infty}^{\infty}f^{p}(x)\,dx \biggr) ^{\frac {1}{p}} \biggl( \int_{-\infty}^{\infty}g^{q}(y)\,dy \biggr) ^{\frac{1}{q}}. \end{aligned}$$(39) - (iii)
\(\alpha>-\frac{1}{p}-1\)and\(\beta>0\).
If statement (iii) holds true, then the constant\(M_{2}=K^{(2)}(\frac {1}{q})\) (\(\in\mathbf{R}_{+}\)) in (38) and (39) is the best possible.
Remark 3
-
(i)
For \(\sigma_{1}=\sigma=\lambda+\alpha-1\) in (30), we have the following inequality with the best possible constant factor \(\frac{\varGamma(\beta+1)}{2^{\beta}}\zeta(\beta+1)\) (\(\beta>0\)):
$$\begin{aligned} & \biggl\{ \int_{-\infty}^{\infty}y^{p(\lambda+\alpha-1)-1} \biggl[ \int_{\{x; \vert x \vert \geq\frac{1}{ \vert y \vert }\}}\frac{(\min\{ \vert xy \vert ,1\})^{1+\alpha } \vert \ln \vert xy \vert \vert ^{\beta}}{(\max\{ \vert xy \vert ,1\})^{\lambda+\alpha} \vert xy-1 \vert }f(x)\, dx \biggr] ^{p}\,dy \biggr\} ^{\frac{1}{p}} \\ &\quad< \frac{\varGamma(\beta+1)}{2^{\beta}}\zeta(\beta+1) \biggl[ \int _{-\infty }^{\infty} \vert x \vert ^{p(2-\lambda-\alpha)-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$(40) -
(ii)
For \(\mu_{1}=\mu=-\alpha+1\) in (36), we have the following inequality with the best possible constant factor \(\frac{\varGamma(\beta +1)}{2^{\beta}}\zeta(\beta+1)\) (\(\beta>0\)):
$$\begin{aligned} & \biggl\{ \int_{-\infty}^{\infty}y^{p(1-\alpha)-1} \biggl[ \int_{\{x; \vert x \vert \geq \vert y \vert \}}\frac{(\min\{ \vert x \vert , \vert y \vert \})^{1+\alpha} \vert \ln \vert x/y \vert \vert ^{\beta}}{(\max\{ \vert x \vert , \vert y \vert \})^{\lambda+\alpha} \vert x-y \vert }f(x)\, dx \biggr] ^{p}\,dy \biggr\} ^{\frac{1}{p}} \\ &\quad< \frac{\varGamma(\beta+1)}{2^{\beta}}\zeta(\beta+1) \biggl[ \int _{-\infty }^{\infty} \vert x \vert ^{p(2-\lambda-\alpha)-1}f^{p}(x)\,dx \biggr] ^{\frac{1}{p}}. \end{aligned}$$(41) -
(iii)
For \(\alpha=-1\) in (38), we have the following inequality with the best possible constant factor \(\frac{\varGamma(\beta +1)}{2^{\beta}}\zeta(\beta+1,\frac{1}{2p})\) (\(\beta>0\)):
$$\begin{aligned} & \biggl\{ \int_{-\infty}^{\infty} \biggl[ \int_{\{x; \vert x \vert \geq \vert y \vert \}}\frac { \vert \ln \vert x/y \vert \vert ^{\beta}}{ \vert x-y \vert }f(x)\,dx \biggr] ^{p}\,dy \biggr\} ^{\frac{1}{p}} \\ &\quad< \frac{\varGamma(\beta+1)}{2^{\beta}}\zeta\biggl(\beta+1,\frac {1}{2p}\biggr) \biggl( \int_{-\infty}^{\infty}f^{p}(x)\,dx \biggr) ^{\frac{1}{p}}. \end{aligned}$$(42)
4 Operator expressions
We set the following functions:
wherefrom
We also define the following real normed linear spaces:
wherefrom
(a) In view of Theorem 1, for \(\sigma_{1}=\sigma\) and \(f\in L_{p,\varphi }(\mathbf{R})\), setting
by (14), we obtain that
Definition 1
We define a Hardy-type integral operator of the first kind with nonhomogeneous kernel
as follows:
For any \(f\in L_{p,\varphi}(\mathbf{R})\), there exists a unique representation
satisfying \(T_{1}^{(1)}f(y)=h_{1}(y)\) for any \(y\in\mathbf{R}\).
In view of (43), it follows that
and thus the operator \(T_{1}^{(1)}\) is bounded satisfying
If we define the formal inner product of \(T_{1}^{(1)}f\) and g as follows:
we can then rewrite Theorem 1 (for \(\sigma_{1}=\sigma\)) as follows.
Theorem 3
The following statements (i), (ii), and (iii) are equivalent:
- (i)
There exists a constant\(M_{1}\)such that, for any\(f(x)\geq 0\), \(f\in L_{p,\varphi}(\mathbf{R})\), \(\|f\|_{p,\varphi}>0\), we have the following inequality:
$$ \bigl\Vert T_{1}^{(1)}f \bigr\Vert _{p,\psi^{1-p}}< M_{1} \Vert f \Vert _{p,\varphi}. $$(44) - (ii)
There exists a constant\(M_{1}\)such that, for any\(f(x),g(y)\geq 0\), \(f\in L_{p,\varphi}(\mathbf{R})\), \(g\in L_{q,\psi }(\mathbf{R})\), \(\|f\|_{p,\varphi},\|g\|_{q,\psi}>0\), we have the following inequality:
$$ \bigl(T_{1}^{(1)}f,g\bigr)< M_{1} \Vert f \Vert _{p,\varphi} \Vert g \Vert _{q,\psi}. $$(45) - (iii)
\(\sigma>-\alpha-1\)and\(\beta>0\).
If statement (iii) holds true, then it holds that\(\|T_{1}^{(1)}\|=K^{(1)}(\sigma)\).
(b) In view of Corollary 3, for \(\mu_{1}=\mu\) and for \(f\in L_{p,\varphi}(\mathbf{R})\), setting
by (23), we have
Definition 2
We define a Hardy-type integral operator of the first kind with homogeneous kernel
as follows:
For any \(f\in L_{p,\varphi}(\mathbf{R})\), there exists a unique representation
satisfying \(T_{1}^{(2)}f(y)=h_{2}(y)\) for any \(y\in\mathbf{R}\).
In view of (46), it follows that
and thus the operator \(T_{1}^{(2)}\) is bounded satisfying
If we define the formal inner product of \(T_{1}^{(2)}f\) and g in the following manner:
then we can rewrite Corollary 3 (for \(\mu_{1}=\mu\)) as follows.
Corollary 9
The following statements (i), (ii), and (iii) are equivalent:
- (i)
There exists a constant\(M_{1}\)such that, for any\(f(x)\geq 0\), \(f\in L_{p,\varphi}(\mathbf{R})\), \(\|f\|_{p,\varphi}>0\), we have the following inequality:
$$ \bigl\Vert T_{1}^{(2)}f \bigr\Vert _{p,\phi^{1-p}}< M_{1} \Vert f \Vert _{p,\varphi}. $$(47) - (ii)
There exists a constant\(M_{1}\)such that, for any\(f(x),g(y)\geq 0\), \(f\in L_{p,\varphi}(\mathbf{R})\), \(g\in L_{q,\phi }(\mathbf{R})\), \(\|f\|_{p,\varphi},\|g\|_{q,\phi}>0\), we have the following inequality:
$$ \bigl(T_{1}^{(2)}f,g\bigr)< M_{1} \Vert f \Vert _{p,\varphi} \Vert g \Vert _{q,\phi}. $$(48) - (iii)
\(\mu<\lambda+\alpha+1\)and\(\beta>0\).
If statement (iii) holds true, then we have\(\|T_{1}^{(2)}\|=K^{(1)}(\sigma)\).
(c) In view of Theorem 2, for \(\sigma_{1}=\sigma\) and for \(f\in L_{p,\varphi }(\mathbf{R})\), setting
by (30) we obtain that
Definition 3
We define a Hardy-type integral operator of the second kind with nonhomogeneous kernel
as follows:
For any \(f\in L_{p,\varphi}(\mathbf{R})\), there exists a unique representation
satisfying \(T_{2}^{(1)}f(y)=H_{1}(y)\) for any \(y\in\mathbf{R}\).
In view of (49), it follows that
and then the operator \(T_{2}^{(1)}\) is bounded satisfying
If we define the formal inner product of \(T_{2}^{(1)}f\) and g in the following manner:
then we can rewrite Theorem 2 (for \(\sigma_{1}=\sigma\)) as follows.
Theorem 4
The following statements (i), (ii), and (iii) are equivalent:
- (i)
There exists a constant\(M_{2}\)such that, for any\(f(x)\geq 0\), \(f\in L_{p,\varphi}(\mathbf{R})\), \(\|f\|_{p,\varphi}>0\), we have the following inequality:
$$ \bigl\Vert T_{2}^{(1)}f \bigr\Vert _{p,\psi^{1-p}}< M_{2} \Vert f \Vert _{p,\varphi}. $$(50) - (ii)
There exists a constant\(M_{2}\)such that, for any\(f(x),g(y)\geq 0\), \(f\in L_{p,\varphi}(\mathbf{R})\), \(g\in L_{q,\psi }(\mathbf{R})\), \(\|f\|_{p,\varphi},\|g\|_{q,\psi}>0\), we have the following inequality:
$$ \bigl(T_{2}^{(1)}f,g\bigr)< M_{2} \Vert f \Vert _{p,\varphi} \Vert g \Vert _{q,\psi}. $$(51) - (iii)
\(\sigma<\lambda+\alpha+1\)and\(\beta>0\).
If statement (iii) holds true, then we have\(\|T_{2}^{(1)}\|=K^{(2)}(\sigma)\).
(d) In view of Corollary 7 (\(\mu_{1}=\mu\)), for \(f\in L_{p,\varphi}(\mathbf{R})\), setting
by (36) we obtain that
Definition 4
We define a Hardy-type integral operator of the second kind with homogeneous kernel
as follows:
For any \(f\in L_{p,\varphi}(\mathbf{R})\), there exists a unique representation
satisfying \(T_{2}^{(2)}f(y)=H_{2}(y)\) for any \(y\in\mathbf{R}\).
In view of (52), it follows that
and thus the operator \(T_{2}^{(2)}\) is bounded satisfying
If we define the formal inner product of \(T_{1}^{(2)}f\) and g as follows:
then we can rewrite Corollary 7 (for \(\mu_{1}=\mu\)) as follows.
Corollary 10
The following statements (i), (ii), and (iii) are equivalent:
- (i)
There exists a constant\(M_{2}\)such that, for any\(f(x)\geq 0\), \(f\in L_{p,\varphi}(\mathbf{R})\), \(\|f\|_{p,\varphi}>0\), we have the following inequality:
$$ \bigl\Vert T_{2}^{(2)}f \bigr\Vert _{p,\phi^{1-p}}< M_{2} \Vert f \Vert _{p,\varphi}. $$(53) - (ii)
There exists a constant\(M_{2}\)such that, for any\(f(x),g(y)\geq 0\), \(f\in L_{p,\varphi}(\mathbf{R})\), \(g\in L_{q,\phi }(\mathbf{R})\), \(\|f\|_{p,\varphi},\|g\|_{q,\phi}>0\), we have the following inequality:
$$ \bigl(T_{2}^{(2)}f,g\bigr)< M_{2} \Vert f \Vert _{p,\varphi} \Vert g \Vert _{q,\phi}. $$(54) - (iii)
\(\mu>-\alpha-1\)and\(\beta>0\).
If statement (iii) holds true, then we have\(\|T_{2}^{(2)}\|=K^{(2)}(\sigma)\).
5 Conclusions
In the present paper, using weight functions we obtain in Theorems 1, 2 a few equivalent statements of two kinds of Hardy-type integral inequalities with nonhomogeneous kernel and multi-parameters in the whole plane. The constant factors related to the extended Hurwitz-zeta function are proved to be the best possible. In the form of applications, a few equivalent statements of two kinds of Hardy-type integral inequalities with the homogeneous kernel in the whole plane are also deduced in Corollaries 3, 7. We also consider some particular cases in Corollaries 1, 4, 5, 8 and in Remarks 2, 3. We additionally consider operator expressions in Theorems 3, 4 and Corollaries 9, 10. The lemmas and theorems within the present work provide an extensive account of this type of inequalities.
References
Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)
Yang, B.C.: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)
Yang, B.C.: Hilbert-Type Integral Inequalities. Bentham Science Publishers Ltd., Sharjah (2009)
Yang, B.C.: On the norm of an integral operator and applications. J. Math. Anal. Appl. 321, 182–192 (2006)
Xu, J.S.: Hardy–Hilbert’s inequalities with two parameters. Adv. Math. 36(2), 63–76 (2007)
Yang, B.C.: On the norm of a Hilbert’s type linear operator and applications. J. Math. Anal. Appl. 325, 529–541 (2007)
Xin, D.M.: A Hilbert-type integral inequality with the homogeneous kernel of zero degree. Math. Theory Appl. 30(2), 70–74 (2010)
Yang, B.C.: A Hilbert-type integral inequality with the homogenous kernel of degree 0. J. Shandong Univ. Nat. Sci. 45(2), 103–106 (2010)
Debnath, L., Yang, B.C.: Recent developments of Hilbert-type discrete and integral inequalities with applications. Int. J. Math. Math. Sci. 2012, Article ID 871845 (2012)
Hong, Y.: On the structure character of Hilbert’s type integral inequality with homogeneous kernel and applications. J. Jilin Univ. Sci. Ed. 55(2), 189–194 (2017)
Rassias, M.Th., Yang, B.C.: On half-discrete Hilbert’s inequality. Appl. Math. Comput. 220, 75–93 (2013)
Yang, B.C., Krnic, M.: A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree 0. J. Math. Inequal. 6(3), 401–417 (2012)
Rassias, M.Th., Yang, B.C.: A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function. Appl. Math. Comput. 225, 263–277 (2013)
Rassias, M.Th., Yang, B.C.: On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800–813 (2013)
Rassias, M.Th., Yang, B.C., Raigorodskii, A.: Two kinds of the reverse Hardy-type integral inequalities with the equivalent forms related to the extended Riemann zeta function. Appl. Anal. Discrete Math. 12, 273–296 (2018)
Rassias, M.Th., Yang, B.C.: On an equivalent property of a reverse Hilbert-type integral inequality related to the extended Hurwitz-zeta function. J. Math. Inequal. 13, 315–334 (2019)
Hong, Y., He, B., Yang, B.C.: Necessary and sufficient conditions for the validity of Hilbert type integral inequalities with a class of quasi-homogeneous kernels and its application in operator theory. J. Math. Inequal. 12, 777–788 (2018)
Rassias, M.Th., Yang, B.C.: A multidimensional Hilbert-type integral inequality related to the Riemann zeta function. In: Daras, N.J. (ed.) Applications of Mathematics and Informatics in Science and Engineering, pp. 417–433. Springer, New York (2014)
Chen, Q., Yang, B.C.: A survey on the study of Hilbert-type inequalities. J. Inequal. Appl. 2015, Article ID 302 (2015)
Yang, B.C.: A new Hilbert-type integral inequality. Soochow J. Math. 33(4), 849–859 (2007)
Wang, Z.Q., Guo, D.R.: Introduction to Special Functions. Science Press, Beijing (1979)
He, B., Yang, B.C.: On a Hilbert-type integral inequality with the homogeneous kernel of 0-degree and the hypergeometric function. Math. Pract. Theory 40(18), 105–211 (2010)
Yang, B.C.: A new Hilbert-type integral inequality with some parameters. J. Jilin Univ. Sci. Ed. 46(6), 1085–1090 (2008)
Yang, B.C.: A Hilbert-type integral inequality with a non-homogeneous kernel. J. Xiamen Univ. Natur. Sci. 48(2), 165–169 (2008)
Zeng, Z., Xie, Z.T.: On a new Hilbert-type integral inequality with the homogeneous kernel of degree 0 and the integral in whole plane. J. Inequal. Appl. 2010, Article ID 256796 (2010)
Wang, A.Z., Yang, B.C.: A new Hilbert-type integral inequality in whole plane with the non-homogeneous kernel. J. Inequal. Appl. 2011, Article ID 123 (2011)
Xin, D.M., Yang, B.C.: A Hilbert-type integral inequality in whole plane with the homogeneous kernel of degree −2. J. Inequal. Appl. 2011, Article ID 401428 (2011)
He, B., Yang, B.C.: On an inequality concerning a non-homogeneous kernel and the hypergeometric function. Tamsui Oxf. J. Inf. Math. Sci. 27(1), 75–88 (2011)
Yang, B.: A reverse Hilbert-type integral inequality with a non-homogeneous kernel. J. Jilin Univ. Sci. Ed. 49(3), 437–441 (2011)
Xie, Z.T., Zeng, Z., Sun, Y.F.: A new Hilbert-type inequality with the homogeneous kernel of degree −2. Adv. Appl. Math. Sci. 12(7), 391–401 (2013)
Huang, Q.L., Wu, S.H., Yang, B.C.: Parameterized Hilbert-type integral inequalities in the whole plane. Sci. World J. 2014, Article ID 169061 (2014)
Zhen, Z., Raja Rama Gandhi, K., Xie, Z.T.: A new Hilbert-type inequality with the homogeneous kernel of degree −2 and with the integral. Bull. Math. Sci. Appl. 3(1), 11–20 (2014)
Rassias, M.Th., Yang, B.C.: A Hilbert-type integral inequality in the whole plane related to the hyper geometric function and the beta function. J. Math. Anal. Appl. 428(2), 1286–1308 (2015)
Huang, X.Y., Cao, J.F., He, B., Yang, B.C.: Hilbert-type and Hardy-type integral inequalities with operator expressions and the best constants in the whole plane. J. Inequal. Appl. 2015, Article ID 129 (2015)
Gu, Z.H., Yang, B.C.: A Hilbert-type integral inequality in the whole plane with a non-homogeneous kernel and a few parameters. J. Inequal. Appl. 2015, 314 (2015)
Kuang, J.C.: Introduction to Real Analysis. Hunan Educiton Press, Changsha (1996)
Kuang, J.C.: Applied Inequalities. Shangdong Science and Technology Press, Jinan (2004)
Acknowledgements
We are thankful to the mathematicians who have read the manuscript of the paper for their constructive comments that helped improve its presentation.
Availability of data and materials
Not applicable.
Funding
B. Yang’s work is supported by the National Natural Science Foundation (No. 61370186, No. 61640222) and Appropriative Researching Fund for Professors and Doctors, Guangdong University of Education (No. 2015ARF25). We are grateful for this help.
Author information
Authors and Affiliations
Contributions
The authors have contributed equally to the preparation of the present paper. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors of the present paper do not have any competing interests.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Rassias, M.T., Yang, B. & Raigorodskii, A. On Hardy-type integral inequalities in the whole plane related to the extended Hurwitz-zeta function. J Inequal Appl 2020, 94 (2020). https://doi.org/10.1186/s13660-020-02365-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-020-02365-1