Skip to main content

Advertisement

We’d like to understand how you use our websites in order to improve them. Register your interest.

On convex combinations of harmonic mappings

Abstract

Let \(\psi_{\mu,\nu}(z)=(1-2\cos\nu e^{i\mu}z+e^{2i\mu}z^{2})^{-1}\), \(\mu,\nu\in[0,2\pi)\) and p be an analytic mapping with \(\operatorname{Re} p>0\) on the open unit disk. We consider the sense-preserving planar harmonic mappings \(f=h+\overline{g}\), which are shears of the mapping \(\int_{0}^{z} \psi_{\mu,\nu}(\xi) p(\xi)\,{d}\xi\) in the direction μ. These mappings include the harmonic right half-plan mappings, vertical strip mappings, and their rotations. For various choices of dilatations \(g'/h'\) of f, sufficient conditions are found for the convex combinations of these mappings to be univalent and convex in the direction μ.

Introduction

On a simply connected domain \(\varOmega\subset \mathbb{C}\) a complex-valued harmonic mapping f can be written as \(f=h+\overline{g}\), where h and g are analytic mappings. By Lewy [8], it is locally univalent sense-preserving if and only if its Jacobian \(\mathcal{J}_{f}=|h'|^{2}-|g'|^{2}\) is positive or, equivalently, its dilatation \(\omega_{f}:=g'/h'\) lies in \(\mathbb{D}:=\{ z\in\mathbb{C}:|z|<1\}\). Let \(\mathcal{H}\) denote the class of all locally univalent sense-preserving harmonic mappings \(f=h+\overline {g}\) defined on \(\mathbb{D}\). Also, let \(\mathcal{S}_{H}\) denote the subclass of \(\mathcal{H}\) consisting of univalent mappings with normalization \(f(0)=0=f_{z}(0)-1\). Moreover, let \(\mathcal{S}_{H}^{0}\) be the subclass of \(\mathcal{S}_{H}\) that contains all mappings \(f=h+\overline{g}\) such that \(f_{\overline {z}}(0)=0\). For \(0\leq\nu<\pi\), a mapping φ is called convex in the direction ν if \(\varphi(\mathbb{D})\) has connected intersection with every line that is parallel to the line joining \(e^{ i \nu}\) to the origin. Such a mapping is also called a directional convex mapping. If \(\nu=0\) (or \(\pi/2\)), then φ is known as convex in the real (or imaginary) direction. A harmonic mapping \(f=h+\overline{g}\in\mathcal{S}_{H}^{0}\) is said to be a right half-plane or a vertical strip mapping if it maps \(\mathbb{D}\) onto the right half-plane

$$R=\bigl\{ w\in\mathbb{C}: \operatorname {Re}(w)>-1/2\bigr\} $$

or the vertical strip

$$V_{\alpha}:= \biggl\{ w\in\mathbb{C}: \frac{\alpha-\pi}{2\sin \alpha} < \operatorname {Re}w < \frac{\alpha}{2\sin\alpha} \biggr\} , \quad \frac{\pi}{2}< \alpha< \pi, $$

respectively. It is well known [1, 4] that if \(f=h+\overline{g}\) is a right half-plane harmonic mapping then \(h'(z)+g'(z)=(1-z)^{-2}\), and if it is a vertical strip harmonic mapping then \(h'(z)+g'(z)=(1+2z \cos{\alpha}+z^{2})^{-1}\). In this article, we find some sufficient conditions for the convex combination of the right half-plane mappings, the vertical strip mappings, their rotations, and some other harmonic mappings to be univalent and convex in a particular direction. Generally, the convex combination of two analytic/harmonic mappings does not carry the univalency or other geometric properties of individual mappings. One can refer to the survey article by Campbell [2] and the references therein for the univalency and other geometric properties of the convex combination of analytic mappings. However, recently, a convex combination of some harmonic mappings has been studied in [5, 7, 1113]. In particular, Wang et al. [13] and Kumar et al. [7] respectively studied the directional convexity of convex combination of harmonic mappings, which are shears of the analytic mappings \(z/(1-z)\) and \(z(1-\alpha z)/(1-z^{2})\), \(-1\leq\alpha\leq1\). Motivated by the work carried out in [7, 13], we study the convex combination of harmonic mappings which are shears of the analytic mapping \(\psi_{\mu,\nu}p_{k}\), where \(p_{k}\) is analytic with positive real part on \(\mathbb{D}\) and

$$ \psi_{\mu,\nu}(z)=\frac{1}{1-2z e^{ -i \mu}\cos\nu+z^{2} e^{-2 i \mu}},\quad\mu, \nu\in[0, 2\pi). $$
(1.1)

In particular, we show that the combination \(f=tf_{1}+(1-t)f_{2}\), \(0\leq t\leq1\) of the mappings \(f_{k}=h_{k}+\overline{g_{k}}\in\mathcal{S}_{H}\), \(k=1,2\), satisfying \(h_{k}'-e^{2i\mu}g_{k}'=\psi_{\mu,\nu}p_{k}\) is univalent and convex in the direction μ for some specific dilatations of \(f_{1}\) and \(f_{2}\). The following result by Royster and Ziegler [10] is used to check the convexity in a particular direction of analytic mappings.

Lemma 1.1

Letϕbe a non-constant analytic mapping in\(\mathbb{D}\). Thenϕmaps\(\mathbb{D}\)onto a domain convex in the directionγ (\(0\leq\gamma<\pi\)) if and only if there are real numbersμandν (\(0\leq\nu<2\pi\)) such that

$$ \operatorname {Re}\bigl( e^{ i (\mu-\gamma)}\bigl(1-2z e^{- i \mu}\cos \nu+z^{2} e^{-2 i \mu}\bigr)\phi'(z) \bigr) \geq0,\quad z\in\mathbb{D}. $$
(1.2)

Remark 1.2

By taking γ or \(\gamma+\pi\) equal to μ in Lemma 1.1, we see that a non-constant analytic mapping ϕ is convex in the direction μ if, for some real number ν (\(0\leq \nu<2\pi\)), the real part of the mapping \(\phi'/\psi_{\mu,\nu}\), where \(\psi_{\mu,\nu}\) is given by (1.1), is either non-negative or non-positive on \(\mathbb{D}\).

Lemma 1.1 along with the following result due to Clunie and Sheil-Small [3], known as shear construction, is used to check the convexity in a particular direction of harmonic mappings.

Lemma 1.3

A locally univalent and sense-preserving harmonic mapping\(f=h+\overline{g}\)on\(\mathbb{D}\)is univalent and maps\(\mathbb {D}\)onto a domain convex in the directionγ (\(0\leq\gamma <\pi\)) if and only if the analytic mapping\(h-e^{2 i \gamma}g\)is univalent and maps\(\mathbb{D}\)onto a domain convex in the direction γ.

Main results

Theorem 2.1

For\(k=1,2\), let\(f_{k}=h_{k}+\overline{g_{k}}\in\mathcal{S}_{H}\)such that

$$ h_{k}(z)-e^{2i\mu}g_{k}(z)= \int_{0}^{z} \psi_{\mu,\nu}(\xi)p_{k}( \xi)\, {d}\xi,\quad \mu, \nu\in[0,2\pi), $$
(2.1)

where\(p_{k}\)is an analytic mapping with\(\operatorname {Re}p_{k}>0\)on\(\mathbb{D}\)and\(\psi_{\mu, \nu}\)is given by (1.1). Then the mapping\(f=tf_{1}+(1-t)f_{2}\)is univalent and is convex in the directionμfor\(0\leq t \leq1\)if it is locally univalent and sense-preserving.

Proof

Let \(f=h+\overline{g}\), then

$$h=th_{1}+(1-t)h_{2}\quad\text{and}\quad g= tg_{1}+(1-t)g_{2}, $$

and thus

$$h-e^{2i\mu}g=t\bigl(h_{1}-e^{2i\mu}g_{1} \bigr)+(1-t) \bigl(h_{2}-e^{2i\mu}g_{2}\bigr). $$

Therefore, in view of (2.1), it follows that

$$\operatorname {Re}\biggl(\frac{h'-e^{2i\mu}g'}{\psi_{\mu,\nu}} \biggr)=t\operatorname {Re}p_{1}+(1-t)\operatorname {Re}p_{2}>0 $$

on \(\mathbb{D}\) for \(0\leq t\leq1\). Hence, by Lemma 1.1, it follows that the mapping \(h-e^{2i\mu}g\) is convex in the direction μ. The result now follows by Lemma 1.3. □

Theorem 2.1 has the following obvious extension to n mappings.

Theorem 2.2

For\(k=1,2,\dots,n\), let\(f_{k}=h_{k}+\overline{g_{k}}\in\mathcal{S}_{H}\)satisfy (2.1), where\(p_{k}\)is an analytic mapping with\(\operatorname {Re}p_{k}>0\)on\(\mathbb{D}\)and\(\psi_{\mu, \nu}\)is given by (1.1). If\(\sum_{t=1}^{n}t_{k}=1\), \(0\leq t_{k}\leq1\), then the mapping\(f=\sum_{t=1}^{n}t_{k}f_{k}\)is univalent and is convex in the directionμprovided it is locally univalent and sense-preserving.

In Theorems 2.1 and 2.2 we assumed f to be locally univalent and sense-preserving on \(\mathbb{D}\). Next, we will study some cases where this assumption can be relaxed.

Theorem 2.3

For\(k=1,2\), let\(f_{k}=h_{k}+\overline{g_{k}}\in\mathcal{S}_{H}\)satisfy (2.1), where\(p_{k}\)is an analytic mapping with\(\operatorname {Re}p_{k}>0\)on\(\mathbb{D}\)and\(\psi_{\mu, \nu}\)is given by (1.1). Let\(\omega_{f_{k}}\)be the dilatation of\(f_{k}\), then the mapping\(f=tf_{1}+(1-t)f_{2}\)is univalent and is convex in the directionμfor\(0\leq t\leq1\)if\(\omega_{f_{k}}\)and\(p_{k}\)satisfy one of the following:

  1. (i)

    \(\omega_{f_{1}}=\omega_{f_{2}}\),

  2. (ii)

    \(p_{1}/(1-e^{2i\mu}\omega_{f_{1}}) = p_{2}/(1-e^{2i\mu}\omega _{f_{2}})\),

  3. (iii)

    \(p_{1}=p_{2}\),

  4. (iv)

    \(\omega_{f_{2}}=-\omega_{f_{1}}\)and\(\operatorname {Re}(p_{2}(1-e^{2i\mu}\omega_{f_{1}})/(p_{1}(1+e^{2i\mu}\omega _{f_{1}})) )>0\).

Proof

In view of Theorem 2.1, it is enough to show that f is locally univalent and sense-preserving or, equivalently, \(|\omega _{f}|<1\) on \(\mathbb{D}\), where \(\omega_{f}\) is the dilatation of f. Since for \(t=0\) and 1 the result is obvious, we consider \(0< t<1\). On differentiation (2.1) gives

$$h_{k}'-e^{2i\mu}g_{k}'= \psi_{\mu,\nu}p_{k}. $$

The above equation along with \(g_{k}'=\omega_{f_{k}}h_{k}'\) gives

$$ h_{k}'=\frac{\psi_{\mu,\nu} p_{k}}{1- e^{2i\mu}\omega_{f_{k}}}. $$
(2.2)

Since \(f=h+\overline{g}:=th_{1}+(1-t)h_{2}+\overline{tg_{1}+(1-t)g_{2}}\), in view of (2.2), \(\omega_{f}\) is given by

$$\begin{aligned} \omega_{f}&=\frac{g'}{h'}=\frac{tg_{1}'+(1-t)g_{2}'}{th_{1}'+(1-t)h_{2}'} \\ &=\frac{t\omega_{f_{1}}h_{1}'+(1-t)\omega _{f_{2}}h_{2}'}{th_{1}'+(1-t)h_{2}'} \\ &=\frac{t\omega_{f_{1}}(1- e^{2i\mu}\omega_{f_{2}})p_{1}+(1-t)\omega _{f_{2}}(1- e^{2i\mu}\omega_{f_{1}})p_{2}}{t(1- e^{2i\mu}\omega _{f_{2}})p_{1}+(1-t)(1- e^{2i\mu}\omega_{f_{1}})p_{2}}. \end{aligned}$$
(2.3)

Let \(\omega_{f_{1}}=\omega_{f_{2}}\), then (2.3) gives that \(\omega_{f}=\omega_{f_{1}}\) and hence \(|\omega_{f}|<1\). Also, let \(p_{k}\) and \(\omega_{f_{k}}\) be given by (ii), then (2.3) gives that \(\omega_{f}=t\omega_{f_{1}}+(1-t)\omega_{f_{2}}\). Hence, \(|\omega_{f_{k}}|<1\) follows that \(|\omega_{f}|<1\). Moreover, let \(p_{1}=p_{2}\), then (2.3) shows that

$$\omega_{f}=\frac{t\omega_{f_{1}}(1- e^{2i\mu}\omega _{f_{2}})+(1-t)\omega_{f_{2}}(1- e^{2i\mu}\omega_{f_{1}})}{t(1- e^{2i\mu }\omega_{f_{2}})+(1-t)(1- e^{2i\mu}\omega_{f_{1}})}. $$

Therefore, \(|\omega_{f_{k}}|<1\) implies that

$$\operatorname {Re}\biggl(\frac{1+e^{2i\mu}\omega_{f}}{1-e^{2i\mu}\omega_{f}} \biggr)=t\operatorname {Re}\biggl(\frac{1+ e^{2i\mu}\omega_{f_{1}}}{1- e^{2i\mu}\omega _{f_{1}}} \biggr)+(1-t)\operatorname {Re}\biggl(\frac{1+ e^{2i\mu}\omega_{f_{2}}}{1- e^{2i\mu}\omega_{f_{2}}} \biggr)>0. $$

Hence, \(|\omega_{f}|<1\). Lastly, let \(\omega_{f_{2}}=-\omega_{f_{1}}\), then from (2.3) we have

$$\omega_{f}=\omega_{f_{1}}\frac{t(1+ e^{2i\mu}\omega_{f_{1}})p_{1}-(1-t)(1- e^{2i\mu}\omega_{f_{1}})p_{2}}{t(1+ e^{2i\mu}\omega_{f_{1}})p_{1}+(1-t)(1- e^{2i\mu}\omega_{f_{1}})p_{2}}=: \omega_{f_{1}}\varphi. $$

Therefore, \(|\omega_{f}|<1\) if \(|\varphi|<1\). Now, by the assumption in (iv), we have

$$\operatorname {Re}\biggl(\frac{1+\varphi}{1-\varphi} \biggr)=\operatorname {Re}\biggl(\frac {t(1+ e^{2i\mu}\omega_{f_{1}})p_{1}}{(1-t)(1- e^{2i\mu}\omega _{f_{1}})p_{2}} \biggr)>0. $$

Hence, \(|\varphi|<1\). This proves the result when \(\omega_{f_{k}}\) and \(p_{k}\) satisfy condition (iv). This completes the proof. □

From its proof, it is easily seen that Theorem 2.3, except case (iv), has a natural extension to n mappings as follows.

Theorem 2.4

For\(k=1,2,\dots,n\), let\(f_{k}=h_{k}+\overline{g_{k}}\in\mathcal{S}_{H}\)have dilatation\(\omega_{f_{k}}\)and satisfy (2.1), where\(p_{k}\)is an analytic mapping with\(\operatorname {Re}p_{k}>0\)on\(\mathbb{D}\)and\(\psi_{\mu, \nu}\)is given by (1.1). If\(\sum_{t=1}^{n}t_{k}=1\), \(0\leq t_{k}\leq1\), then the mapping\(f=\sum_{t=1}^{n}t_{k}f_{k}\)is univalent and is convex in the directionμprovided\(\omega _{f_{k}}\)and\(p_{k}\)satisfy one of the following:

  1. (i)

    \(\omega_{f_{1}}=\omega_{f_{2}}=\cdots=\omega_{f_{n}}\),

  2. (ii)

    \(p_{1}/(1-e^{2i\mu}\omega_{f_{1}}) = p_{2}/(1-e^{2i\mu}\omega _{f_{2}}) = \cdots= p_{k}/(1-e^{2i\mu}\omega_{f_{k}})\),

  3. (iii)

    \(p_{1}=p_{2}=\cdots=p_{n}\).

The following example gives an illustration of Theorem 2.3.

Example 2.5

For \(k=1, 2\), let \(f_{k}=h_{k}+\overline{g_{k}}\in\mathcal{S}_{H}\) be given by

$$\begin{aligned} f_{1}(z)= h_{1}(z)+\overline{g_{1}(z)}= \frac{1}{2}\log \biggl(\frac {1+z}{1-z} \biggr)+\overline{z- \frac{1}{2}\log \biggl(\frac {1+z}{1-z} \biggr)} \end{aligned}$$

and

$$\begin{aligned} f_{2}(z)= h_{2}(z)+\overline{g_{2}(z)}= \frac{1}{2}\log \biggl(\frac {1+z}{1-z} \biggr)+\overline{ \frac{1}{2}\log\frac{1}{1-z^{2}}}. \end{aligned}$$

Then, \(\omega_{f_{k}}\), the dilatation of \(f_{k}\), is given by \(\omega _{f_{1}}(z)=-z^{2}\) and \(\omega_{f_{2}}(z)=z\). Also, we can see that

$$h_{k}'(z)+g_{k}'(z)= \frac{1+\omega_{f_{k}}(z)}{1-z^{2}}. $$

Thus, \(f_{k}\) satisfies (2.1) with \(\mu=\pi/2\), \(\nu=\pi/2\) and \(p_{k}=1+\omega_{f_{k}}\), where \(\operatorname {Re}p_{k} >0\) on \(\mathbb{D}\). Therefore, it follows from Theorem 2.3 that the mapping \(f=tf_{1}+(1-t)f_{2}\) is univalent and convex in the imaginary direction for \(0\leq t\leq1\). Images of \(\mathbb{D}\) under f at \(t=1\), \(t=0\), and \(t=1/3\) are shown in Fig. 1.

Figure 1
figure1

Images of \(\mathbb{D}\) under f at different values of t

We will use the following lemma to prove our next results.

Lemma 2.6

For\(n\in\mathbb{N}\)and\(k=1,2\), let\(f_{k}=h_{k}+\overline{g_{k}}\in \mathcal{S}_{H}\)such that

$$ h_{k}(z)-g_{k}(z)=\bigl(1+(-1)^{k}a \bigr) \int_{0}^{z} \frac {q(\xi)\,{d}\xi}{\psi_{\mu,\nu_{k}}(\xi^{n})},\quad\mu, \nu_{k}\in [0,2\pi), $$
(2.4)

whereqis an analytic mapping and\(\psi_{\mu,\nu}\)is defined by (1.1). Let\(\omega_{f_{k}}\)be the dilatation of\(f_{k}\). If

$$ \omega_{f_{1}}(z)=-\omega_{f_{2}}(z)= \frac{a+e^{i(\theta-\mu )}z^{n}}{1+ae^{i(\theta-\mu)}z^{n}},\quad a\in(-1,1), \theta\in[0,2\pi), $$
(2.5)

then the mapping\(f=tf_{1}+(1-t)f_{2}\)is locally univalent and sense-preserving for\(0\leq t \leq1\)provided:

  1. (i)

    \(\cos\theta> \max\{\cos\nu_{1},-\cos\nu_{2}\}\)and\(\cos \nu_{1}>\cos\nu_{2}\), or

  2. (ii)

    \(\cos\theta< \min\{\cos\nu_{1}, -\cos\nu_{2}\}\)and\(\cos\nu_{2}>\cos\nu_{1}\).

To prove the above lemma, we will use the following result commonly known as Cohn’s rule [9].

Theorem 2.7

Let\(r(z)=a_{0}+a_{1}z+\cdots+a_{n}z^{n}\)be a polynomial of degreenand

$$r^{*}(z)=z^{n}\overline{r(1/\overline{z})}=\overline{a}_{n}+ \overline {a}_{n-1}z+\cdots+\overline{a}_{0}z^{n}. $$

Letsand\(s_{1}\)be the number of zeros ofrinside and on the unit circle\(|z|=1\), respectively. If\(|a_{0}| < |a_{n}|\), then

$$r_{1}(z)=\frac{\overline{a}_{n}r(z)-a_{0}r^{*}(z)}{z} $$

is a polynomial of degree\(n-1\)and has\(s-1\)and\(s_{1}\)number of zeros inside and on the unit circle\(|z|=1\), respectively.

Proof of Theorem 2.1

Since \(f_{k}\in\mathcal{S}_{H}\), we need to prove the result only for \(0< t<1\). First of all, we will show that both conditions (i) and (ii) imply

$$ \bigl\vert 1-(\cos\nu_{1}-\cos\nu_{2})e^{-i\theta} \bigr\vert < 1 $$
(2.6)

and

$$ \biggl\vert \frac{\cos\nu_{1}+\cos\nu_{2}}{\cos\nu_{1}-\cos\nu_{2}+2\cos \theta} \biggr\vert < 1. $$
(2.7)

We see that \((\cos\nu_{1}-\cos\nu_{2})(\cos\nu_{1}-\cos\nu_{2}-2\cos \theta)<0\) if condition (i) or (ii) is satisfied. Therefore,

$$\begin{aligned} \bigl\vert 1-(\cos\nu_{1}-\cos\nu_{2})e^{-i\theta} \bigr\vert ^{2}-1&=\bigl(1-(\cos\nu_{1}-\cos \nu_{2})\cos\theta\bigr)^{2}+\bigl((\cos\nu_{1}- \cos\nu_{2})\sin\theta\bigr)^{2} \\ &=(\cos\nu_{1}-\cos\nu_{2}) (\cos\nu_{1}-\cos \nu_{2}-2\cos\theta)< 0. \end{aligned}$$

Hence, both (i) and (ii) imply (2.6). Next, let condition (i) be satisfied. Then \(\cos\theta>\cos\nu_{1}\) and \(\cos\theta>-\cos\nu_{2}\), and hence

$$ \cos\nu_{1}-\cos\nu_{2}-2\cos\theta< \cos \nu_{1}+\cos\nu_{2}< -\cos\nu _{1}+\cos \nu_{2}+2\cos\theta. $$
(2.8)

Similarly, if condition (ii) is satisfied, then

$$ -\cos\nu_{1}+\cos\nu_{2}+2\cos\theta < \cos \nu_{1}+\cos\nu_{2} < \cos\nu_{1}-\cos \nu_{2}-2\cos\theta. $$
(2.9)

Therefore, (2.8) and (2.9) show that both (i) and (ii) imply (2.7).

Now, differentiating (2.4), we have

$$\bigl(h_{k}'(z)-g_{k}'(z)\bigr) \psi_{\mu,\nu_{k}}\bigl(z^{n}\bigr)=\bigl(1+(-1)^{k}a\bigr) q(z). $$

The above equation along with \(g_{k}'=\omega_{f_{k}} h_{k}'\) gives

$$h_{k}'(z)=\frac{(1+(-1)^{k}a) q(z)}{\psi_{\mu,\nu_{k}}(z^{n})(1- \omega_{f_{k}}(z))}. $$

Therefore \(\omega_{f}\), the dilatation of \(f=tf_{1}+(1-t)f_{2}\), is given by

$$\begin{aligned} \omega_{f}(z)&=\frac {tg_{1}'(z)+(1-t)g_{2}'(z)}{th_{1}'(z)+(1-t)h_{2}'(z)} \\ &=\frac{t\omega_{f_{1}}(z)h_{1}'(z)+(1-t)\omega _{f_{2}}(z)h_{2}'(z)}{th'_{1}(z)+(1-t)h_{2}'(z)} \\ &=\frac{t\omega_{f_{1}}(z)\psi_{\mu,\nu_{2}}(z^{n})(1- \omega _{f_{2}}(z))(1-a)+(1-t)\omega_{f_{2}}(z)\psi_{\mu,\nu_{1}}(z^{n})(1-\omega _{f_{1}}(z))(1+a)}{t\psi_{\mu,\nu_{2}}(z^{n})(1- \omega _{f_{2}}(z))(1-a)+(1-t)\psi_{\mu,\nu_{1}}(z^{n})(1-\omega _{f_{1}}(z))(1+a)}. \end{aligned}$$
(2.10)

Now, on substituting the values of \(\omega_{f_{k}}\), given by (2.5), in (2.10), we obtain

$$\begin{aligned} \selectfont\begin{aligned} \omega_{f}(z) &=\omega_{f_{1}}(z)\\&\quad\times \biggl(\frac{t(1+ ae^{i(\theta-\mu )}z^{n}+a+e^{i(\theta-\mu)}z^{n})\psi_{\mu,\nu_{2}}(z^{n})(1-a)-(1-t)(1+ ae^{i(\theta-\mu)}z^{n}-a-e^{i(\theta-\mu)}z^{n})\psi_{\mu,\nu _{1}}(z^{n})(1+a)}{t(1+ ae^{i(\theta-\mu)}z^{n}+a+e^{i(\theta-\mu )}z^{n})\psi_{\mu,\nu_{2}}(z^{n})(1-a)+(1-t) (1+ ae^{i(\theta-\mu )}z^{n}-a-e^{i(\theta-\mu)}z^{n})\psi_{\mu,\nu_{1}}(z^{n})(1+a)} \biggr) \\ &=\omega_{f_{1}}(z)\frac{t(1+e^{i(\theta-\mu)}z^{n})\psi_{\mu,\nu _{2}}(z^{n})-(1-t)(1-e^{i(\theta-\mu)}z^{n})\psi_{\mu,\nu _{1}}(z^{n})}{t(1+e^{i(\theta-\mu)}z^{n})\psi_{\mu,\nu_{2}}(z^{n})+(1-t) (1-e^{i(\theta-\mu)}z^{n})\psi_{\mu,\nu_{1}}(z^{n})}.\end{aligned} \end{aligned}$$

The above equation, after substituting the values of \(\psi_{\mu,\nu _{k}}\) and then putting \(e^{-i\mu}z^{n}=w\), is equivalent to

$$\begin{aligned} \begin{aligned}[b] \omega_{f}\bigl(\bigl( e^{i\mu}w\bigr)^{1/n}\bigr) & =\omega_{f_{1}}\bigl( \bigl( e^{i\mu}w\bigr)^{1/n} \bigr) \\&\quad\times\biggl(\frac{t(1+e^{i\theta}w)(1-2w\cos\nu _{1}+w^{2})-(1-t)(1-e^{i\theta}w)(1-2w\cos\nu_{2} +w^{2})}{t(1+e^{i\theta }w)(1-2w\cos\nu_{1} +w^{2})+(1-t)(1-e^{i\theta}w)(1-2w\cos\nu_{2} +w^{2})} \biggr) \\ &=:\omega_{f_{1}}\bigl( \bigl( e^{i\mu}w\bigr)^{1/n} \bigr)W(w).\end{aligned}\hspace{-36pt} \end{aligned}$$
(2.11)

To prove our result, we have to show \(|\omega_{f}|<1\) on \(\mathbb{D}\). Since \(|\omega_{f_{1}}|<1\), in view of (2.11), it is enough to show that \(|W|<1\) on \(\mathbb{D}\). Let

$$\begin{aligned} W(w)= e^{-i\theta}\frac{\mathfrak{p}(w)}{\mathfrak{q}(w)}, \end{aligned}$$

where, after a simplification,

$$\begin{aligned} \mathfrak{p}(w)={}&e^{i\theta}w^{3}+\bigl(2t-1-2te^{i\theta} \cos\nu _{1}-2(1-t)e^{i\theta}\cos\nu_{2} \bigr)w^{2} \\ &+\bigl(e^{i\theta}-2t\cos\nu _{1}+2(1-t)\cos\nu_{2} \bigr)w+2t-1 \end{aligned}$$

and

$$\begin{aligned} \mathfrak{q}(w)={}&(2t-1)w^{3}+\bigl(e^{-i\theta}-2t\cos \nu_{1}+2(1-t)\cos\nu _{2}\bigr)w^{2} \\ &+\bigl(2t-1-2te^{-i\theta}\cos\nu_{1}-2(1-t)e^{-i\theta}\cos \nu _{2}\bigr)w+e^{-i\theta}. \end{aligned}$$

Clearly \(\mathfrak{q}(w)=w^{3}\overline{\mathfrak{p}(1/\overline {w})}\). Hence, we can write W as follows:

$$W(w)=\frac{\mathfrak{p}(w)}{w^{3}\overline{\mathfrak{p}(1/\overline {w})}}=e^{i\theta}\prod_{i=1}^{3} \frac{w-w_{i}}{1-\overline{w_{i}}w}, $$

where \(w_{1}\), \(w_{2}\), and \(w_{3}\) are the zeros of k. Thus, to show \(|W|<1\), it is enough to show \(w_{1},w_{2},w_{3}\in\mathbb{D}\). We will discuss it for the cases \(t=1/2\) and \(t\neq1/2\) separately. For \(t\neq1/2\), we have \(0<|2t-1|<|e^{i\theta}|=1\). Define a polynomial \(\mathfrak{p}_{1}\) by

$$\begin{aligned} \mathfrak{p}_{1}(w)&=\frac{e^{-i\theta}\mathfrak {p}(w)-(2t-1)\mathfrak{q}(w)}{w}. \end{aligned}$$

A calculation gives

$$\begin{aligned} \mathfrak{p}_{1}(w)&=4t(1-t)w^{2}-4t(1-t) (\cos \nu_{1}+\cos\nu _{2})w+4t(1-t) \bigl(1-(\cos \nu_{1}-\cos\nu_{2})e^{-i\theta}\bigr) \\ &=4t(1-t)\tilde{\mathfrak{p}}_{1}(w), \end{aligned}$$

where

$$\tilde{\mathfrak{p}}_{1}(w)=w^{2}-(\cos\nu_{1}+ \cos\nu_{2})w+1-(\cos\nu _{1}-\cos\nu_{2})e^{-i\theta}. $$

Recall that inequality (2.6) holds. Again, define a polynomial \(\mathfrak{p}_{2}\) by

$$\mathfrak{p}_{2}(w)=\frac{\tilde{\mathfrak{p}}_{1}(w)-(1-(\cos\nu _{1}-\cos\nu_{2})e^{-i\theta})\tilde{\mathfrak{p}}_{1}^{*}(w)}{w}, $$

where \(\tilde{\mathfrak{p}}_{1}^{*}(w)=w^{2} \overline{ \tilde{\mathfrak {p}}_{1} (1/\overline{w}) }\). Furthermore, we see that

$$\begin{aligned} \mathfrak{p}_{2}(w)&=\bigl(1- \bigl\vert 1-(\cos\nu_{1}- \cos\nu_{2})e^{-i\theta } \bigr\vert ^{2}\bigr)w-\bigl( \cos^{2}\nu_{1}-\cos^{2}\nu_{2} \bigr)e^{-i\theta} \\ &=-(\cos\nu_{1}-\cos\nu_{2}) \bigl((\cos\nu_{1}- \cos\nu_{2}-2\cos \theta)w+(\cos\nu_{1}+\cos \nu_{2})e^{-i\theta} \bigr). \end{aligned}$$

Since \(\cos\nu_{1} \neq \cos\nu_{2}\), it follows from (2.7) that the only zero of \(\mathfrak{p}_{2}\) lies in \(\mathbb {D}\). Thus, by Theorem 2.7 both the zeros of \(\mathfrak {p}_{1}\) and hence all the three zeros of \(\mathfrak{p}\) lie in \(\mathbb {D}\). This completes the proof for \(t\neq1/2\). Now, for \(t=1/2\), we have

$$ \mathfrak{p}(w) = e^{i \theta} w \mathfrak{p}_{1}(w). $$
(2.12)

Since \(\mathfrak{p}_{1}\) has two zeros and both of them lie in \(\mathbb {D}\), by (2.12), all the three zeros of \(\mathfrak{p}\) lie in \(\mathbb{D}\). This completes the proof of Theorem 2.1. □

Corollary 2.8

For\(n\in\mathbb{N}\)and\(k=1,2\), let\(f_{k}=h_{k}+\overline{g_{k}}\in \mathcal{S}_{H}\)such that

$$ h_{k}(z)-g_{k}(z)=\bigl(1+(-1)^{k}a \bigr) \int_{0}^{z} q(\xi )\psi_{\mu,\nu_{k}}\bigl( \xi^{n}\bigr)\,{d}\xi,\quad\mu, \nu\in[0,2\pi), $$
(2.13)

whereqis an analytic mapping and\(\psi_{\mu,\nu}\)is defined by (1.1). Let\(\omega_{f_{k}}\)be the dilatation of\(f_{k}\). If

$$\omega_{f_{1}}(z)=-\omega_{f_{2}}(z)=\frac{a+e^{i(\theta-\mu )}z^{n}}{1+ae^{i(\theta-\mu)}z^{n}},\quad a \in(-1,1), \theta\in[0,2\pi ), $$

then the mapping\(f=tf_{1}+(1-t)f_{2}\)is locally univalent and sense-preserving for\(0\leq t\leq1\)provided:

  1. (i)

    \(\cos\theta> \max\{\cos\nu_{2},-\cos\nu_{1}\}\)and\(\cos \nu_{2}>\cos\nu_{1}\), or

  2. (ii)

    \(\cos\theta< \min\{\cos\nu_{2}, -\cos\nu_{1}\}\)and\(\cos\nu_{1} >\cos\nu_{2}\).

Proof

Following similarly as in Lemma 2.6, we find the expression for the dilatation \(\omega_{f}\) of \(f=tf_{1}+(1-t)f_{2}\) as follows:

$$\omega_{f}(z)=\frac{t\omega_{f_{1}}(z)\psi_{\mu,\nu_{1}}(z^{n})(1- \omega _{f_{2}}(z))(1-a)+(1-t)\omega_{f_{2}}(z)\psi_{\mu,\nu_{2}}(z^{n})(1-\omega _{f_{1}}(z))(1+a)}{t\psi_{\mu,\nu_{1}}(z^{n})(1- \omega _{f_{2}}(z))(1-a)+(1-t)\psi_{\mu,\nu_{2}}(z^{n})(1-\omega_{f_{1}}(z))(1+a)}. $$

The above equation is identical with (2.10) except that \(\cos \nu_{1}\) and \(\cos\nu_{2} \) are interchanged. Hence, the result follows by Lemma 2.6. □

By using Lemma 2.6, we now examine the local univalence of f in Theorem 2.1 for some specific values of \(p_{k}\).

Theorem 2.9

For\(k=1,2\), let\(f_{k}=h_{k}+\overline{g_{k}}\in\mathcal{S}_{H}\)such that

$$ h_{k}(z)+e^{2i\mu}g_{k}(z)= \bigl(1+(-1)^{k}a\bigr) \int_{0}^{z} \psi_{\mu,\nu_{k}}(\xi)\, {d}\xi, \quad-1< a< 1, $$
(2.14)

where\(\psi_{\mu,\nu_{k}}\)is defined by (1.1). Let\(\omega _{f_{k}}\)be the dilatation of\(f_{k}\). If

$$ \omega_{f_{1}}(z)=-\omega_{f_{2}}(z)=-e^{-2i\mu} \frac{a+e^{i(\theta -\mu)}z}{1+ae^{i(\theta-\mu)}z},\quad0\leq\theta< 2\pi, $$
(2.15)

then the mapping\(f=tf_{1}+(1-t)f_{2}\)is univalent and convex in the direction\(\mu+\pi/2\)for\(0 \leq t \leq1\)providedθand\(\nu_{k}\)are given as in Corollary2.8.

Proof

Let \(F_{k}=H_{k}+\overline{G_{k}}\), where \(H_{k}=h_{k}\) and \(G_{k}=-e^{2i\mu }g_{k}\). Then, in view of (2.14) and (2.15), we have

$$H_{k}(z)-G_{k}(z)=\bigl(1+(-1)^{k}a\bigr) \int_{0}^{z} \psi_{\mu,\nu_{k}}(\xi)\,{d}\xi, $$

and the dilatation of \(\omega_{F_{k}}\) of \(F_{k}\) is given by

$$\omega_{F_{1}}(z)=-\omega_{F_{2}}(z)=\frac{a+e^{i(\theta-\mu )}z}{1+ae^{i(\theta-\mu)}z}. $$

Therefore, by Corollary 2.8, the mapping \(F:=tF_{1}+(1-t)F_{2}\) is locally univalent and sense-preserving. Thus,

$$\biggl\vert \frac{tG_{1}'+(1-t)G_{2}'}{tH_{1}'+(1-t)H_{2}'} \biggr\vert < 1 \quad\text{on } \mathbb{D}. $$

Equivalently,

$$\biggl\vert \frac{tg_{1}'+(1-t)g_{2}'}{th_{1}'+(1-t)h_{2}'} \biggr\vert < 1 \quad\text{on } \mathbb{D}. $$

Hence, f is locally univalent and sense-preserving. Now, we can write (2.14) as

$$ h_{k}(z)-e^{2i(\mu+\pi/2)}g_{k}(z)= \int_{0}^{z} \psi_{\mu+\pi/2,\pi /2}(\xi)p_{k}( \xi)\,{d}\xi, $$
(2.16)

where \(\psi_{\mu+\pi/2,\pi/2}\) is defined by (1.1) and

$$p_{k}(z)=\frac{(1+(-1)^{k}a)\psi_{\mu,\nu_{k}}(z)}{\psi_{\mu+\pi/2,\pi/2}(z)} =: \bigl(1+(-1)^{k}a\bigr) \tilde{p}_{k}\bigl( e^{-i \mu} z\bigr). $$

Therefore, in view of (2.16), Theorem 2.1 follows the result once we show that \(\operatorname {Re}p_{k}\) or, equivalently, \(\operatorname {Re}\tilde {p}_{k}\) is positive on \(\mathbb{D}\). Since

$$ \tilde{p}_{k}(z) = \frac{1-z^{2}}{ 1- 2z\cos\nu_{k} +z^{2}}, $$
(2.17)

we see that

$$\biggl\vert \frac{\tilde{p}_{k}(z)-1}{\tilde{p}_{k}(z)+1} \biggr\vert = \biggl\vert \frac{z (\cos\nu_{k} - z) }{ 1- z\cos\nu_{k} } \biggr\vert < 1, $$

and hence \(\operatorname {Re}\tilde{p}_{k}(z)>0\) on \(\mathbb{D}\). This completes the proof. □

Next, we give an illustration of Theorem 2.9 through an example.

Example 2.10

For \(k=1,2\), let \(f_{k}=h_{k}+\overline{g_{k}}\in\mathcal{S}_{H}\) be such that

$$\begin{gathered} h_{1}(z)=\frac{1}{4}\tan^{-1}z+\frac{3}{8} \log\frac{1+z^{2}}{(1-z)^{2}}, \\ g_{1}(z)=\frac{1}{4}\tan^{-1}z-\frac{3}{8} \log\frac{1+z^{2}}{(1-z)^{2}}, \\ h_{2}(z)=\frac{3}{2\sqrt{2}}\tan^{-1}(\sqrt{2} z-1)+ \frac{1}{8+4\sqrt {2}}\log\frac{(1+z)^{2}}{1-\sqrt{2} z+z^{2}}+\frac{3\pi}{8\sqrt{2}},\end{gathered} $$

and

$$g_{2}(z)=\frac{3}{2\sqrt{2}}\tan^{-1}(\sqrt{2} z-1)- \frac{1}{8+4\sqrt{2}}\log\frac{(1+z)^{2}}{1-\sqrt{2} z+z^{2}}+\frac {3\pi}{8\sqrt{2}}. $$

Then we have

$$\begin{gathered} h_{1}(z)+g_{1}(z)=\frac{1}{2}\tan^{-1}z= \int_{0}^{z} \frac{1/2}{1+\xi ^{2}}\,d\xi, \\ h_{2}(z)+g_{2}(z)=-\frac{3i}{2\sqrt{2}}\log\frac{\sqrt {2}-(1-i)z}{\sqrt{2}-(1+i)z}= \int_{0}^{z} \frac{3/2 }{1-\sqrt{2}\xi +\xi^{2}}\,d\xi,\end{gathered} $$

and

$$\omega_{f_{2}}(z)=\frac{g_{2}'(z)}{h_{2}'(z)}=\frac{1/2+z}{1+z/2} = - \omega_{f_{1}}(z), $$

where \(\omega_{f_{k}}\) is the dilatation of \(f_{k}\). Thus, it is seen that \(f_{k}\) satisfy (2.14) and (2.15) with \(\mu=0\), \(\nu_{1}=\pi/2\), \(\nu_{2}=\pi/4\), \(\theta=0\), and \(a=1/2\). Moreover, since \(\cos\nu_{2} =1/ \sqrt{2} > 0 = \cos\nu _{1}\) and

$$\cos\theta=1 > \frac{1}{\sqrt{2}}= \max\{\cos\nu_{2}, - \cos\nu _{1} \}, $$

condition (i) in Corollary 2.8 holds. Hence, by Theorem 2.9, the mapping \(f=tf_{1}+(1-t)f_{2}\) is univalent and convex in the imaginary direction for \(0\leq t\leq1\). Images of \(\mathbb{D}\) under f at \(t=0\), \(t=1\), and \(t=1/3\) are shown in Fig. 2.

Figure 2
figure2

Images of \(\mathbb{D}\) under f at different values of t

Theorem 2.11

For\(k=1,2\), let\(f=h_{k}+\overline{g_{k}}\in\mathcal{S}_{H}\)such that

$$ h_{k}(z)+e^{2i\mu}g_{k}(z)= \bigl(1+(-1)^{k}a\bigr)\frac{z(1-z e^{-i\mu}\cos\nu _{k})}{1-z^{2} e^{-2i\mu}},\quad -1< a< 1, $$
(2.18)

for\(\mu,\nu_{k}\in[0, 2\pi)\). If\(\omega_{f_{k}}\), the dilatation of\(f_{k}\)is given by

$$ \omega_{f_{1}}(z)=-\omega_{f_{2}}(z)=-e^{-2i\mu} \frac{a+e^{i(\theta -\mu)}z}{1+ae^{i(\theta-\mu)}z},\quad0\leq\theta< 2\pi, $$
(2.19)

then the mapping\(f=tf_{1}+(1-t)f_{2}\)is univalent and convex in the direction\(\mu+\pi/2\)for\(0\leq t\leq1\)providedθand\(\nu_{k}\)are given as in Lemma2.6.

Proof

Differentiating (2.18), we get

$$h_{k}'(z)+e^{2i\mu}g_{k}'(z)= \frac{(1+(-1)^{k}a)(1-2 z e^{-i\mu}\cos\nu _{k}+z^{2} e^{-2i\mu})}{(1-z^{2} e^{-2i\mu})^{2}}. $$

The above equation can be written as

$$ h_{k}(z)+e^{2i\mu}g_{k}(z)= \bigl(1+(-1)^{k}a\bigr) \int_{0}^{z}\frac{q(\xi)}{\psi_{\mu ,\nu_{k}}(\xi)}\,{d}\xi, $$
(2.20)

where \(q(z)=(1-z^{2} e^{-2i\mu})^{-2}\). Similar to the proof of Theorem 2.9, by Lemma 2.6, we obtain that f is locally univalent and sense-preserving. Also, we can write (2.20) as

$$ h_{k}(z)-e^{2i(\mu+\pi/2)}g_{k}(z)= \int_{0}^{z} p_{k}(\xi)\psi_{\mu+\pi /2,\pi/2}( \xi)\,{d}\xi, $$
(2.21)

where

$$p_{k}(z)=\frac{(1+(-1)^{k}a)(1-2 z e^{-i\mu}\cos\nu_{k}+z^{2} e^{-2i\mu })}{1-z^{2} e^{-2i\mu}}. $$

Note that \(p_{k}(z) = (1+(-1)^{k}a)/\tilde{p}_{k}(e^{-i\mu}z)\), where \(\tilde{p}_{k}\) is defined by (2.17) and thus \(\operatorname {Re}\tilde {p}_{k}\) or equivalently \(\operatorname {Re}p_{k}\) is positive on \(\mathbb{D}\). Therefore, in view of (2.21), Theorem 2.1 follows the result. □

Remark 2.12

If we put \(a=\theta=\mu=0\) in Theorem 2.11, we get Theorem 7 of Kumar et al. [7].

For \(\mu,\nu\in[0, 2\pi)\), define \(\varPhi_{\mu,\nu}\) by

$$ \varPhi_{\mu,\nu}(z)=\frac{1-\cos\nu}{4 e^{-i\mu}}\log \biggl( \frac{1+ e^{-i\mu} z}{1- e^{-i\mu} z} \biggr)+\frac{(1+\cos\nu )z}{2(1+ e^{-2i\mu} z^{2})}. $$
(2.22)

The mapping \(\varPhi_{0,\nu}\) maps \(\mathbb{D}\) onto a domain with parallel slits along the real direction and its harmonic shears along the real direction were studied in [6]. In the next result we find sufficient conditions for the directional convexity of the convex combination of harmonic shears of \(\varPhi_{\mu,\nu}\).

Theorem 2.13

For\(k=1,2\), let\(f_{k}=h_{k}+\overline{g_{k}}\in\mathcal{S}_{H}\)such that

$$ h_{k}(z)-e^{2i\mu}g_{k}(z)= \bigl(1+(-1)^{k}a\bigr)\varPhi_{\mu,\nu_{k}}(z), \quad a\in(-1,1), \mu, \nu_{k}\in[0, 2\pi), $$
(2.23)

where\(\varPhi_{\mu,\nu_{k}}\)is defined by (2.22). If\(\omega_{f_{k}}\), the dilatation of\(f_{k}\)is given by

$$\omega_{f_{1}}(z)=-\omega_{f_{2}}(z)=e^{-2i\mu} \frac{a+e^{i(\theta -2\mu)}z^{2}}{1+ae^{i(\theta-2\mu)}z^{2}},\quad0\leq\theta< 2\pi, $$

then the mapping\(f=tf_{1}+(1-t)f_{2}\)is univalent and convex in the directionμfor\(0\leq t\leq1\)providedθand\(\nu_{k}\)are given as in Lemma2.6.

Proof

On differentiating (2.23), we have

$$\begin{aligned} h'_{k}(z)-e^{2i\mu}g'_{k}(z)&= \bigl(1+(-1)^{k}a\bigr) \biggl(\frac{1-\cos\nu_{k}}{2(1- e^{-2i\mu}z^{2})}+\frac{(1+\cos\nu_{k})(1- e^{-2i\mu} z^{2})}{2(1+ e^{-2i\mu} z^{2})^{2}} \biggr) \\ &=\bigl(1+(-1)^{k}a\bigr)\frac{1-2\cos\nu_{k} e^{-2i\mu}z^{2}+e^{-4i\mu}z^{4}}{(1- e^{-2i\mu} z^{2})(1+ e^{-2i\mu} z^{2})^{2}}. \end{aligned}$$

Therefore,

$$ h_{k}(z)-e^{2i\mu}g_{k}(z)= \bigl(1+(-1)^{k}a\bigr) \int_{0}^{z}\frac{q(\xi)}{\psi_{2\mu ,\nu_{k}}(\xi^{2})}\,d\xi, $$
(2.24)

where

$$q(z)=\frac{1}{(1- e^{-2i\mu} z^{2})(1+ e^{-2i\mu} z^{2})^{2}}. $$

Hence, following similarly as in the proof of Theorem 2.9, we see by using Lemma 2.6 that f is locally univalent and sense-preserving. Moreover, (2.24) can also be written as

$$ h_{k}(z)-e^{2i\mu}g_{k}(z)= \int_{0}^{z}p_{k}(\xi)\psi_{\mu,\pi/2}( \xi)\,d\xi, $$
(2.25)

where

$$p_{k}(z)=\bigl(1+(-1)^{k}a\bigr)\frac{1-2\cos\nu_{k} e^{-2i\mu}z^{2}+e^{-4i\mu }z^{4}}{1- e^{-4i\mu} z^{4}}. $$

Since \(p_{k}(z) = (1+(-1)^{k}a)/\tilde{p}_{k}(e^{-2i\mu}z^{2})\), where \(\tilde{p}_{k}\) is defined by (2.17) and thus \(\operatorname {Re}\tilde {p}_{k}\) or equivalently \(\operatorname {Re}p_{k}\) is positive on \(\mathbb{D}\). Therefore, in view of (2.25), the result follows from Theorem 2.1. □

Theorem 2.14

For\(k=1,2\), let\(f_{k}=h_{k}+\overline{g_{k}}\in\mathcal{S}_{H}\)such that

$$h_{k}(z)-e^{2i\mu}g_{k}(z)=\bigl(1+(-1)^{k}a \bigr) \int_{0}^{z}\varPsi_{k}(\xi)\,d\xi, \quad a \in(-1,1), $$

where

$$\varPsi_{k}(z)=\frac{1-2\cos\nu_{k} e^{-i n\mu}z^{n}+e^{-2i n\mu }z^{2n}}{(1-e^{-2i n\mu}z^{2n})(1-2\cos\nu e^{-i\mu}z+e^{-2i\mu }z^{2})},\quad n\in\mathbb{N}, \mu, \nu, \nu_{k}\in[0, 2\pi). $$

If\(\omega_{f_{k}}\), the dilatation of\(f_{k}\)is given by

$$\omega_{f_{1}}(z)=-\omega_{f_{2}}(z)=e^{-2i\mu} \frac{a+e^{i(\theta -n\mu)}z^{n}}{1+ae^{i(\theta-n\mu)}z^{n}},\quad0\leq\theta< 2\pi, $$

then the mapping\(f=tf_{1}+(1-t)f_{2}\)is univalent and convex in the directionμfor\(0\leq t\leq1\)providedθand\(\nu_{k}\)are given as in Lemma2.6.

The proof of the above theorem is similar to that of Theorem 2.13 and is thus omitted here.

References

  1. 1.

    Abu-Muhanna, Y., Schober, G.: Harmonic mappings onto convex domains. Can. J. Math. 39(6), 1489–1530 (1987)

  2. 2.

    Campbell, D.M.: A survey of properties of the convex combination of univalent functions. Rocky Mt. J. Math. 5(4), 475–492 (1975)

  3. 3.

    Clunie, J., Sheil-Small, T.: Harmonic univalent functions. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 9, 3–25 (1984)

  4. 4.

    Dorff, M.: Harmonic univalent mappings onto asymmetric vertical strips. In: Computational Methods and Function Theory 1997. Series in Approximations and Decompositions, vol. 11, pp. 171–175. World Scientific, River Edge (1999)

  5. 5.

    Ferrada-Salas, Á., Hernández, R., Martín, M.J.: On convex combinations of convex harmonic mappings. Bull. Aust. Math. Soc. 96(2), 256–262 (2017)

  6. 6.

    Ganczar, A., Widomski, J.: Univalent harmonic mappings into two-slit domains. J. Aust. Math. Soc. 88(1), 61–73 (2010)

  7. 7.

    Kumar, R., Gupta, S., Singh, S.: Linear combinations of univalent harmonic mappings convex in the direction of the imaginary axis. Bull. Malays. Math. Sci. Soc. 39(2), 751–763 (2016)

  8. 8.

    Lewy, H.: On the non-vanishing of the Jacobian in certain one-to-one mappings. Bull. Am. Math. Soc. 42(10), 689–692 (1936)

  9. 9.

    Rahman, Q.I., Schmeisser, G.: Analytic Theory of Polynomials. London Mathematical Society Monographs. New Series, vol. 26. Oxford University Press, Oxford (2002)

  10. 10.

    Royster, W.C., Ziegler, M.: Univalent functions convex in one direction. Publ. Math. (Debr.) 23(3–4), 339–345 (1976)

  11. 11.

    Subzar, B., Ravichandran, V.: Convolution and convex combination of harmonic mappings. Bull. Iran. Math. Soc. 45, 1467–1486 (2019)

  12. 12.

    Sun, Y., Rasila, A., Jiang, Y.-P.: Linear combinations of harmonic quasiconformal mappings convex in one direction. Kodai Math. J. 39(2), 366–377 (2016)

  13. 13.

    Wang, Z.-G., Liu, Z.-H., Li, Y.-C.: On the linear combinations of harmonic univalent mappings. J. Math. Anal. Appl. 400(2), 452–459 (2013)

Download references

Acknowledgements

Not applicable.

Availability of data and materials

Not applicable.

Funding

The second author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP; Ministry of Science, ICT & Future Planning) (No. NRF-2017R1C1B5076778). The third author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (No. 2019R1I1A3A01050861).

Author information

Affiliations

Authors

Contributions

All authors worked in coordination. All authors carried out the proof, read and approved the current version of the manuscript.

Corresponding author

Correspondence to Nak Eun Cho.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beig, S., Sim, Y.J. & Cho, N.E. On convex combinations of harmonic mappings. J Inequal Appl 2020, 84 (2020). https://doi.org/10.1186/s13660-020-02350-8

Download citation

MSC

  • 31A05
  • 30C45

Keywords

  • Harmonic mappings
  • Convex combination
  • Directional convexity