Skip to main content

Lyapunov-type inequalities for higher-order half-linear difference equations

Abstract

In this paper, we will establish some new Lyapunov-type inequalities for some higher-order superlinear–sublinear difference equations with boundary conditions. Our results not only complement the existing results established in the literature, but also furnish a handy tool for the study of qualitative properties of solutions of some difference equations.

1 Introduction

In recent years, there has been an increasing interest in obtaining various classes of inequalities, which play an important role in qualitative analysis of solutions to differential and difference equations; see [1–27]. In the field of inequalities, the Lyapunov-type inequality is one of the fundamental inequalities, which was initially investigated by Lyapunov in 1907. After having been discovered, the Lyapunov inequality and its various generalizations were extensively studied by numerous mathematicians. This is due to the fact that these inequalities have proved to be useful tools in the study of oscillation theory, disconjugacy, eigenvalue problems, and many directions of mathematics research areas. For some recent work, the reader is referred to [28–45] and the references therein. In particular, Liu and Tang [37] studied the following m-order p-Laplace difference equation:

$$ \bigl\vert \Delta^{m} u(n) \bigr\vert ^{p-2} \Delta^{m} u(n)+r(n) \bigl\vert u(n) \bigr\vert ^{p-2} u(n)=0, $$
(1)

where \(m\in \mathbb{N}\), \(n\in \mathbb{Z}\) and \(r(n)\) is a real-valued function defined on \(\mathbb{Z}\), \(p>1\) is a constant, Δ denotes the forward difference operator defined by \(\Delta x(n)=x(n+1)-x(n)\), and \(u(n)\) satisfies the following anti-periodic boundary conditions:

$$ \Delta^{i} u(a)+\Delta^{i} u(b)=0,\quad i=0,1,\ldots,m-1;\qquad u(n)\not \equiv0, \quad n\in \mathbb{Z}[a,b]. $$
(2)

Recently, Liu [43] established a new discrete Lyapunov-type inequality for the following generalized m-order p-Laplace difference equation with mixed non-linearities:

$$ \bigl\vert \Delta^{m} u(n) \bigr\vert ^{p-2} \Delta^{m} u(n)+\sum_{i=0}^{m-1} r_{i}(n) \bigl\vert \Delta^{i} u(n) \bigr\vert ^{p-2}\Delta^{i} u(n)=0, $$
(3)

with the anti-periodic boundary conditions (2), where \(m\in \mathbb{N}\), \(n\in \mathbb{Z}\), \(p>1\) is a constant and \(r_{i}(n)\) (\(i=0,1,\ldots,m-1\)) are real-valued functions defined on \(\mathbb{Z}\).

However, to the best of our knowledge, Lyapunov-type inequalities for the superlinear–sublinear difference equation have received less attention. The main goal of this paper is to use the Hölder inequality and other inequalities to establish Lyapunov-type inequalities for superlinear–sublinear difference equation of the form

$$\begin{aligned} & \bigl\vert \Delta^{m} u(n) \bigr\vert ^{\alpha-2} \Delta^{m} u(n)+q(n) \bigl\vert \Delta ^{m} u(n) \bigr\vert ^{\beta-2}\Delta^{m} u(n) -r(n) \bigl\vert u(n) \bigr\vert ^{\gamma-2}u(n)=0, \\ &\quad n\in \mathbb{Z}[a,b], \end{aligned}$$
(4)

with the anti-periodic boundary conditions (2), and superlinear–sublinear difference equation of the form

$$\begin{aligned} & \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\alpha-2}\Delta ^{2m}u(n)+q(n) \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\beta-2}\Delta^{2m} u(n) -r(n) \bigl\vert u(n) \bigr\vert ^{\gamma-2}u(n)=0, \\ &\quad n\in \mathbb{Z}[a,b], \end{aligned}$$
(5)

with the following boundary conditions:

$$ \Delta^{2i}u(a)=\Delta^{2i}u(b)=0,\quad i=0,1,\ldots,m-1;\qquad u(n)\not \equiv0,\quad n\in \mathbb{Z}[a,b], $$
(6)

where \(m\in \mathbb{N}\), \(1<\alpha<\gamma<\beta\) are constants, \(r(n)\) and \(q(n)\) are real-valued functions defined on \(\mathbb{Z}\) with \(q(n)>0\).

Our results not only complement the existing results established in the literature, such as those in [37, 39, 43], but also furnish a handy tool for the study of qualitative properties of solutions of some difference equations.

2 Main results

In what follows, we always assume that \(a, b\in \mathbb{N}\), \(\mathbb{Z}[a,b]=\{a,a+1,\ldots,b-1,b\}\) and \(\mathbb{Z}(a,b)=\{a+1,a+2,\ldots,b-2,b-1\} \).

Lemma 2.1

Let\(M>0\), \(N>0\), \(\lambda>0\)and\(\theta>0\)be given and\(1<\lambda<\theta \). Then, for each\(x\geq0\),

$$ Mx^{\lambda}-Nx^{\theta}\leq\frac{M(\theta-\lambda)}{\theta-1} \biggl( \frac{(\theta-1)N}{(\lambda-1)M} \biggr)^{(\lambda-1)/(\lambda-\theta)}x $$
(7)

holds.

Proof

If \(x=0\), then it is easy to see that the inequality (7) holds. So we only prove the inequality (7) holds in the case of \(x>0\). Set \(F(x)=Mx^{\lambda -1}-Nx^{\theta-1}\), \(x>0\). Let \(F'(x)=0\), we get \(x_{0}= (\frac{M(\lambda-1)}{N(\theta-1)} )^{1/(\theta-\lambda)}\). Since \(\forall x\in(0,x_{0})\), \(F'(x)>0\); \(\forall x\in(x_{0},+\infty)\), \(F'(x)<0\), F obtains its maximum at \(x_{0}= (\frac{M(\lambda-1)}{N(\theta -1)} )^{1/(\theta-\lambda)}\) and \(F_{\max}=F(x_{0})=\frac{M(\theta -\lambda)}{\theta-1} (\frac{(\theta-1)N}{(\lambda-1)M} )^{(\lambda-1)/(\lambda-\theta)}\). Hence we get

$$Mx^{\lambda-1}-Nx^{\theta-1}\leq\frac{M(\theta-\lambda)}{\theta-1} \biggl( \frac{(\theta-1)N}{(\lambda-1)M} \biggr)^{(\lambda-1)/(\lambda-\theta)}, $$

i.e.,

$$Mx^{\lambda}-Nx^{\theta}\leq\frac{M(\theta-\lambda)}{\theta-1} \biggl( \frac{(\theta-1)N}{(\lambda-1)M} \biggr)^{(\lambda-1)/(\lambda-\theta)}x, $$

then (7) holds. The proof is complete. □

Lemma 2.2

([39])

Assume that\(u(n)\)is a real-valued function on\(\mathbb{Z}[a,b]\), \(u(a)=u(b)=0\). Then

$$\begin{aligned}& \bigl\vert u(n) \bigr\vert \leq\frac{(n-a)(b-n)}{b-a}\sum _{s=a}^{b-1} \bigl\vert \Delta ^{2} u(s) \bigr\vert ,\quad \forall n\in \mathbb{Z}[a,b-1], \end{aligned}$$
(8)
$$\begin{aligned}& \sum_{n=a}^{b-1} \bigl\vert u(n) \bigr\vert \leq\frac{1}{2}\sum_{n=a}^{b-1} \bigl[(n-a+1) (b-n-1) \bigl\vert \Delta^{2} u(n) \bigr\vert \bigr] \leq\frac{(b-a)^{2}}{8}\sum_{n=a}^{b-1} \bigl\vert \Delta^{2} u(n) \bigr\vert , \\& \quad\forall n\in \mathbb{Z}[a,b-1]. \end{aligned}$$
(9)

Theorem 2.1

If\(u(n)\)is a nonzero solution of Eq. (4) satisfying the anti-periodic boundary conditions (2), then

$$\begin{aligned} 1 \leq&\varTheta \biggl(\frac{\gamma-\alpha}{q_{0}(\beta-\alpha)} \biggr)^{(\gamma-\alpha )/(\beta-\gamma)}\frac{(\beta-\gamma)}{\beta-\alpha} \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(\alpha-1)(\beta-\alpha )/[\alpha(\beta-\gamma)]}, \end{aligned}$$
(10)

where

$$\begin{aligned}& q_{0}=\min_{n\in \mathbb{Z}[a,b]}\bigl\{ q(n)\bigr\} , \end{aligned}$$
(11)
$$\begin{aligned}& \varTheta=(b-a)^{(\beta-\alpha)(m\alpha\gamma-m\alpha+1-\alpha)/[\alpha (\beta-\gamma)]} 2^{m(\gamma-1)(\alpha-\beta)/(\beta-\gamma)}. \end{aligned}$$
(12)

Proof

Since the nonzero solution \(u(n)\) of Eq. (4) satisfies the anti-periodic boundary conditions (2), then \(u(a)+u(b)=0\). For \(n\in \mathbb{Z}[a,b]\), we have

$$\begin{aligned} u(n) =&u(n)-\frac{1}{2}\bigl[u(a)+u(b)\bigr]=\frac{1}{2}\sum _{k=a}^{n-1}\bigl[u(k+1)-u(k)\bigr]- \frac{1}{2}\sum_{k=n}^{b-1} \bigl[u(k+1)-u(k)\bigr] \\ =&\frac{1}{2}\sum_{k=a}^{n-1}\Delta u(k)-\frac{1}{2}\sum_{k=n}^{b-1}\Delta u(k). \end{aligned}$$
(13)

Then

$$ \bigl\vert u(n) \bigr\vert \leq\frac{1}{2}\sum _{k=a}^{b-1} \bigl\vert \Delta u(k) \bigr\vert . $$
(14)

Similarly, we get

$$\begin{aligned} \bigl\vert \Delta^{i}u(n) \bigr\vert \leq&\frac{1}{2}\sum _{k=a}^{b-1} \bigl\vert \Delta ^{i+1} u(k) \bigr\vert ,\quad i=1,2,\ldots,m-1. \end{aligned}$$
(15)

Then, from (14) and (15), we have

$$ \bigl\vert u(n) \bigr\vert \leq \biggl(\frac{1}{2} \biggr)^{m}(b-a)^{m-1}\sum_{k=a}^{b-1} \bigl\vert \Delta^{m} u(k) \bigr\vert . $$
(16)

Multiplying (4) by \(\Delta^{m}u(n)\), we obtain

$$ \bigl\vert \Delta^{m} u(n) \bigr\vert ^{\alpha}=r(n) \bigl\vert u(n) \bigr\vert ^{\gamma-2}u(n)\Delta ^{m} u(n)-q(n) \bigl\vert \Delta^{m} u(n) \bigr\vert ^{\beta},\quad n\in \mathbb{Z}[a,b]. $$
(17)

Then we get

$$\begin{aligned} \bigl\vert \Delta^{m} u(n) \bigr\vert ^{\alpha} =&r(n) \bigl\vert u(n) \bigr\vert ^{\gamma -2}u(n)\Delta^{m} u(n)-q(n) \bigl\vert \Delta^{m} u(n) \bigr\vert ^{\beta} \\ \leq& \bigl\vert r(n) \bigr\vert \bigl\vert u(n) \bigr\vert ^{\gamma-1} \bigl\vert \Delta^{m} u(n) \bigr\vert -q(n) \bigl\vert \Delta^{m} u(n) \bigr\vert ^{\beta }. \end{aligned}$$
(18)

Summing (18) from a to \(b-1\), we have

$$\begin{aligned} \sum_{n=a}^{b-1} \bigl\vert \Delta^{m} u(n) \bigr\vert ^{\alpha} \leq&\sum _{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \bigl\vert u(n) \bigr\vert ^{\gamma-1} \bigl\vert \Delta^{m} u(n) \bigr\vert -\sum_{n=a}^{b-1}q(n) \bigl\vert \Delta^{m} u(n) \bigr\vert ^{\beta}. \end{aligned}$$
(19)

For the first summation on the right-hand side of (19), from (16) we obtain

$$\begin{aligned} &\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \bigl\vert u(n) \bigr\vert ^{\gamma-1} \bigl\vert \Delta^{m}u(n) \bigr\vert \\ &\quad\leq \biggl(\frac{1}{2} \biggr)^{m(\gamma-1)}(b-a)^{(m-1)(\gamma-1)} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \Delta^{m}u(n) \bigr\vert \Biggr)^{\gamma-1} \sum _{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \bigl\vert \Delta^{m}u(n) \bigr\vert . \end{aligned}$$
(20)

On the other hand, from the discrete Hölder inequality,

$$\begin{aligned} \sum_{n=a}^{b-1} \bigl\vert f(n)g(n) \bigr\vert \leq \Biggl(\sum_{n=a}^{b-1} \bigl\vert f(n) \bigr\vert ^{\rho}\Biggr)^{1/\rho} \Biggl(\sum _{n=a}^{b-1} \bigl\vert g(n) \bigr\vert ^{\nu}\Biggr)^{1/\nu}, \end{aligned}$$
(21)

with \(f(n)=1\), \(g(n)=|\Delta^{m}u(n)|\), \(\rho=\alpha/(\alpha-1)\) and \(\nu =\alpha\), we have

$$\begin{aligned} \sum_{n=a}^{b-1} \bigl\vert \Delta^{m}u(n) \bigr\vert \leq& \Biggl(\sum _{n=a}^{b-1}1^{\alpha /(\alpha-1)} \Biggr)^{(\alpha-1)/\alpha} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \Delta ^{m}u(n) \bigr\vert ^{\alpha}\Biggr)^{1/\alpha} \\ =& (b-a )^{(\alpha-1)/\alpha} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \Delta ^{m}u(n) \bigr\vert ^{\alpha}\Biggr)^{1/\alpha}, \end{aligned}$$
(22)

and, with \(f(n)=| r(n)|\), \(g(n)=|\Delta^{m}u(n)|\), \(\rho=\alpha/(\alpha-1)\) and \(\nu=\alpha\), we get

$$\begin{aligned} \sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \bigl\vert \Delta^{m}u(n) \bigr\vert \leq& \Biggl(\sum _{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(\alpha-1)/\alpha} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \Delta^{m}u(n) \bigr\vert ^{\alpha}\Biggr)^{1/\alpha}. \end{aligned}$$
(23)

Then, from (20), (22) and (23), we obtain

$$\begin{aligned} &\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \bigl\vert u(n) \bigr\vert ^{\gamma-1} \bigl\vert \Delta^{m}u(n) \bigr\vert \\ &\quad\leq \biggl(\frac{1}{2} \biggr)^{m(\gamma-1)} (b-a )^{(m-1/\alpha )(\gamma-1)} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \Delta^{m}u(n) \bigr\vert ^{\alpha}\Biggr)^{(\gamma -1)/\alpha} \\ &\qquad {}\cdot\Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(\alpha -1)/\alpha} \Biggl(\sum _{n=a}^{b-1} \bigl\vert \Delta^{m}u(n) \bigr\vert ^{\alpha}\Biggr)^{1/\alpha } \\ &\quad = \biggl(\frac{1}{2} \biggr)^{m(\gamma-1)} (b-a )^{(m-1/\alpha )(\gamma-1)} \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(\alpha-1)/\alpha} \Biggl(\sum _{n=a}^{b-1} \bigl\vert \Delta^{m}u(n) \bigr\vert ^{\alpha}\Biggr)^{\gamma/\alpha} . \end{aligned}$$
(24)

Combining (11), (19) with (24), we get

$$\begin{aligned} &\sum_{n=a}^{b-1} \bigl\vert \Delta^{m} u(n) \bigr\vert ^{\alpha} \\ &\quad\leq \biggl(\frac{1}{2} \biggr)^{m(\gamma-1)} (b-a )^{(m-1/\alpha )(\gamma-1)} \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(\alpha-1)/\alpha} \Biggl(\sum _{n=a}^{b-1} \bigl\vert \Delta^{m}u(n) \bigr\vert ^{\alpha}\Biggr)^{\gamma/\alpha} \\ &\qquad{}-\sum_{n=a}^{b-1}q(n) \bigl\vert \Delta^{m} u(n) \bigr\vert ^{\beta} \\ &\quad\leq \biggl(\frac{1}{2} \biggr)^{m(\gamma-1)} (b-a )^{(m-1/\alpha )(\gamma-1)} \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(\alpha-1)/\alpha} \Biggl(\sum _{n=a}^{b-1} \bigl\vert \Delta^{m}u(n) \bigr\vert ^{\alpha}\Biggr)^{\gamma/\alpha} \\ &\qquad{}-q_{0}\sum_{n=a}^{b-1} \bigl\vert \Delta^{m} u(n) \bigr\vert ^{\beta}. \end{aligned}$$
(25)

On the other hand, by Hölder inequality (21) with \(f(n)=1\), \(g(n)=|\Delta^{m}u(n)|^{\alpha}\), \(\rho=\beta/(\beta-\alpha)\) and \(\nu=\beta/\alpha\), we have

$$\begin{aligned} \sum_{n=a}^{b-1} \bigl\vert \Delta^{m}u(n) \bigr\vert ^{\alpha} \leq& \Biggl(\sum _{n=a}^{b-1} 1^{\beta/(\beta-\alpha)} \Biggr)^{(\beta-\alpha)/\beta} \Biggl(\sum_{n=a}^{b-1} \bigl( \bigl\vert \Delta^{m}u(n) \bigr\vert ^{\alpha}\bigr)^{\beta/\alpha} \Biggr)^{\alpha/\beta} \\ =&(b-a)^{(\beta-\alpha)/\beta} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \Delta^{m} u(n) \bigr\vert ^{\beta} \Biggr)^{\alpha/\beta}. \end{aligned}$$
(26)

Therefore,

$$\begin{aligned} (b-a)^{(\alpha-\beta)/\alpha} \Biggl( \sum_{n=a}^{b-1} \bigl\vert \Delta^{m}u(n) \bigr\vert ^{\alpha}\Biggr)^{\beta/\alpha}\leq \sum_{n=a}^{b-1} \bigl\vert \Delta^{m} u(n) \bigr\vert ^{\beta}. \end{aligned}$$
(27)

From (25) and (27), we get

$$\begin{aligned} &\sum_{n=a}^{b-1} \bigl\vert \Delta^{m} u(n) \bigr\vert ^{\alpha} \\ &\quad\leq \biggl(\frac{1}{2} \biggr)^{m(\gamma-1)} (b-a )^{(m-1/\alpha )(\gamma-1)} \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(\alpha-1)/\alpha} \Biggl(\sum _{n=a}^{b-1} \bigl\vert \Delta^{m}u(n) \bigr\vert ^{\alpha}\Biggr)^{\gamma/\alpha} \\ &\qquad{}-(b-a)^{(\alpha-\beta)/\alpha}q_{0} \Biggl(\sum _{n=a}^{b-1} \bigl\vert \Delta^{m}u(n) \bigr\vert ^{\alpha}\Biggr)^{\beta/\alpha}. \end{aligned}$$
(28)

For the right-hand of (28), from the inequality (7) in Lemma 2.1, with

$$M= \biggl(\frac{1}{2} \biggr)^{m(\gamma-1)} (b-a )^{(m-1/\alpha)(\gamma-1)} \Biggl( \sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1) } \Biggr)^{(\alpha-1)/\alpha}, $$

\(x=\sum_{n=a}^{b-1}|\Delta^{m} u(n)|^{\alpha}\), \(N=(b-a)^{(\alpha-\beta)/\alpha}q_{0}\), \(\lambda=\frac{\gamma}{\alpha}\), and \(\theta=\frac{\beta}{\alpha}\), we get

$$\begin{aligned} & \biggl(\frac{1}{2} \biggr)^{m(\gamma-1)} (b-a )^{(m-1/\alpha)(\gamma-1)} \Biggl( \sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\frac{\alpha }{\alpha-1}} \Biggr)^{(\alpha-1)/\alpha} \Biggl(\sum _{n=a}^{b-1} \bigl\vert \Delta ^{m}u(n) \bigr\vert ^{\alpha}\Biggr)^{\gamma/\alpha} \\ &\qquad{}-(b-a)^{(\alpha-\beta)/\alpha}q_{0} \Biggl(\sum _{n=a}^{b-1} \bigl\vert \Delta^{m}u(n) \bigr\vert ^{\alpha}\Biggr)^{\beta/\alpha } \\ &\quad\leq\varTheta \biggl(\frac{\gamma-\alpha}{q_{0}(\beta-\alpha)} \biggr)^{(\gamma-\alpha )/(\beta-\gamma)}\frac{(\beta-\gamma)}{\beta-\alpha} \\ &\qquad{} \cdot \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(\alpha -1)(\beta-\alpha)/[\alpha(\beta-\gamma)]}\sum _{n=a}^{b-1} \bigl\vert \Delta ^{m}u(n) \bigr\vert ^{\alpha}, \end{aligned}$$
(29)

where Θ is defined as in (12). From (28) and (29), we have

$$\begin{aligned} &\sum_{n=a}^{b-1} \bigl\vert \Delta^{m} u(n) \bigr\vert ^{\alpha} \\ &\quad\leq\varTheta \biggl(\frac{\gamma-\alpha}{q_{0}(\beta-\alpha)} \biggr)^{(\gamma-\alpha )/(\beta-\gamma)}\frac{(\beta-\gamma)}{\beta-\alpha} \\ &\qquad{} \cdot \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(\alpha -1)(\beta-\alpha)/[\alpha(\beta-\gamma)]}\sum _{n=a}^{b-1} \bigl\vert \Delta ^{m}u(n) \bigr\vert ^{\alpha}. \end{aligned}$$
(30)

Now, we claim that \(\sum_{n=a}^{b-1}| \Delta^{m} u(n)|^{\alpha}>0\). In fact, if the above inequality is not true, we have \(\sum_{n=a}^{b-1}| \Delta^{m} u(n)|^{\alpha}=0\). From (16) and (22), we obtain \(u(n)=0\) for \(n\in \mathbb{Z}[a,b]\), which contradicts \(u(n)\not \equiv0\), \(n\in \mathbb{Z}[a,b]\). Thus dividing both sides of (30) by \(\sum_{n=a}^{b-1}| \Delta^{m}u(n)|^{\alpha}\), we obtain (10) holds. This completes the proof of Theorem 2.1. □

Next, we establish a Lyapunov-type inequality for Eq. (5) under the boundary condition (6).

Theorem 2.2

If\(u(n)\)is a nonzero solution of Eq. (5) satisfying the boundary conditions (6), then

$$\begin{aligned} 1 \leq&\varUpsilon \biggl(\frac{\gamma-\alpha}{q_{0}(\beta-\alpha)} \biggr)^{(\gamma-1)/(\beta -\gamma)} \frac{\beta-\gamma}{\beta-\alpha} \\ & {}\cdot\Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(\alpha -1)(\beta-1)/[\alpha(\beta-\gamma)]}, \end{aligned}$$
(31)

where\(q_{0}\)is defined as in (11) and

$$\begin{aligned} \varUpsilon=\frac{(b-a)^{(\gamma-1)(2m-2m\beta+\alpha -1)/[\alpha(\gamma-\beta)]}}{2^{(3m-1)(\gamma-1)(\beta-1)/(\beta-\gamma )}}. \end{aligned}$$
(32)

Proof

Choose \(c\in \mathbb{Z}[a, b]\) such that \(|u(c)|=\max_{n\in \mathbb{Z}[a,b]}|u(n)|\). Since (6), it follows from Lemma 2.2 that

$$\begin{aligned} \bigl\vert u(c) \bigr\vert \leq\frac{(c-a)(b-c)}{b-a}\sum _{n=a}^{b-1} \bigl\vert \Delta ^{2} u(n) \bigr\vert \leq\frac{b-a}{4}\sum_{n=a}^{b-1} \bigl\vert \Delta^{2} u(n) \bigr\vert \end{aligned}$$
(33)

and

$$\begin{aligned} \sum_{n=a}^{b-1} \bigl\vert \Delta^{2i}u(n) \bigr\vert \leq\frac {(b-a)^{2}}{8}\sum _{n=a}^{b-1} \bigl\vert \Delta^{2i+2} u(n) \bigr\vert ,\quad i=1,2,\ldots,m-1. \end{aligned}$$
(34)

From (33) and (34), we obtain

$$\begin{aligned} \bigl\vert u(c) \bigr\vert \leq&\frac{b-a}{4}\sum _{n=a}^{b-1} \bigl\vert \Delta^{2} u(n) \bigr\vert \\ \leq&\frac{b-a}{4}\frac{(b-a)^{2}}{8}\sum_{n=a}^{b-1} \bigl\vert \Delta^{4} u(n) \bigr\vert \\ \leq&\frac{b-a}{4}\frac{(b-a)^{4}}{8^{2}}\sum_{n=a}^{b-1} \bigl\vert \Delta^{6} u(n) \bigr\vert \\ \leq&\cdots \\ \leq&\frac{b-a}{4}\frac{(b-a)^{2(m-1)}}{8^{m-1}}\sum_{n=a}^{b-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert . \end{aligned}$$
(35)

Multiplying (5) by \(\Delta^{2m}u(n)\), we have

$$ \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\alpha}=r(n) \bigl\vert u(n) \bigr\vert ^{\gamma -2}u(n)\Delta^{2m} u(n)-q(n) \bigl\vert \Delta^{2m}u(n) \bigr\vert ^{\beta},\quad n\in \mathbb{Z}[a,b]. $$
(36)

Then we get

$$\begin{aligned} \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\alpha} =&r(n) \bigl\vert u(n) \bigr\vert ^{\gamma -2}u(n)\Delta^{2m} u(n)-q(n) \bigl\vert \Delta^{2m}u(n) \bigr\vert ^{\beta} \\ \leq& \bigl\vert r(n) \bigr\vert \bigl\vert u(n) \bigr\vert ^{\gamma-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert -q(n) \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\beta}. \end{aligned}$$
(37)

Summing (37) from a to \(b-1\), we have

$$\begin{aligned} \sum_{n=a}^{b-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\alpha} \leq&\sum _{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \bigl\vert u(n) \bigr\vert ^{\gamma-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert -\sum_{n=a}^{b-1}q(n) \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\beta}. \end{aligned}$$
(38)

For the first summation on the right-hand side of (38), from (35) we obtain

$$\begin{aligned} &\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \bigl\vert u(n) \bigr\vert ^{\gamma-1} \bigl\vert \Delta^{2m}u(n) \bigr\vert \\ &\quad\leq \biggl(\frac{b-a}{4} \biggr)^{\gamma-1}\frac{(b-a)^{2(m-1)(\gamma -1)}}{8^{(m-1)(\gamma-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \Delta^{2m}u(n) \bigr\vert \Biggr)^{\gamma-1} \sum _{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \bigl\vert \Delta^{2m}u(n) \bigr\vert . \end{aligned}$$
(39)

On the other hand, from the discrete Hölder inequality (21) with \(f(n)=1\), \(g(n)=|\Delta^{2m}u(n)|\), \(\rho =\alpha/(\alpha-1)\) and \(\nu=\alpha\), we have

$$\begin{aligned} \sum_{n=a}^{b-1} \bigl\vert \Delta^{2m}u(n) \bigr\vert \leq& \Biggl(\sum _{n=a}^{b-1}1^{\alpha /(\alpha-1)} \Biggr)^{(\alpha-1)/\alpha} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \Delta ^{2m}u(n) \bigr\vert ^{\alpha}\Biggr)^{1/\alpha} \\ =& (b-a )^{(\alpha-1)/\alpha} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \Delta ^{2m}u(n) \bigr\vert ^{\alpha}\Biggr)^{1/\alpha}, \end{aligned}$$
(40)

and with \(f(n)=| r(n)|\), \(g(n)=|\Delta^{2m}u(n)|\), \(\rho=\alpha/(\alpha-1)\) and \(\nu=\alpha\), we get

$$\begin{aligned} \sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \bigl\vert \Delta^{2m}u(n) \bigr\vert \leq& \Biggl(\sum _{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(\alpha-1)/\alpha} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \Delta^{2m}u(n) \bigr\vert ^{\alpha}\Biggr)^{1/\alpha}. \end{aligned}$$
(41)

From (39)–(41), we have

$$\begin{aligned} &\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert \bigl\vert u(n) \bigr\vert ^{\gamma-1} \bigl\vert \Delta^{2m}u(n) \bigr\vert \\ &\quad\leq\frac{(b-a)^{(\gamma-1)[2m-1+(\alpha-1)/\alpha]}}{4^{\gamma -1}8^{(m-1)(\gamma-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \Delta^{2m}u(n) \bigr\vert ^{\alpha}\Biggr)^{(\gamma-1)/\alpha } \\ &\qquad{}\cdot \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(\alpha -1)/\alpha} \Biggl(\sum _{n=a}^{b-1} \bigl\vert \Delta^{2m}u(n) \bigr\vert ^{\alpha}\Biggr)^{1/\alpha } \\ &\quad=\frac{(b-a)^{(\gamma-1)[2m-1+(\alpha-1)/\alpha]}}{4^{\gamma -1}8^{(m-1)(\gamma-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(\alpha-1)/\alpha } \Biggl(\sum _{n=a}^{b-1} \bigl\vert \Delta^{2m}u(n) \bigr\vert ^{\alpha}\Biggr)^{\gamma/\alpha} . \end{aligned}$$
(42)

By (38) and (42), we get

$$\begin{aligned} &\sum_{n=a}^{b-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\alpha} \\ &\quad\leq\frac{(b-a)^{(\gamma-1)[2m-1+(\alpha-1)/\alpha]}}{4^{\gamma -1}8^{(m-1)(\gamma-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha -1)} \Biggr)^{(\alpha-1)/\alpha} \Biggl(\sum _{n=a}^{b-1} \bigl\vert \Delta ^{2m}u(n) \bigr\vert ^{\alpha}\Biggr)^{\gamma/\alpha} \\ &\qquad{}-\sum_{n=a}^{b-1}q(n) \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\beta} \\ &\quad\leq\frac{(b-a)^{(\gamma-1)[2m-1+(\alpha-1)/\alpha]}}{4^{\gamma -1}8^{(m-1)(\gamma-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha -1)} \Biggr)^{(\alpha-1)/\alpha} \Biggl(\sum _{n=a}^{b-1} \bigl\vert \Delta ^{2m}u(n) \bigr\vert ^{\alpha}\Biggr)^{\gamma/\alpha} \\ &\qquad{}-q_{0}\sum_{n=a}^{b-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\beta} , \end{aligned}$$
(43)

where \(q_{0}\) is defined as in (11). On the other hand, by using Hölder inequality (21) with \(f(n)=1\), \(g(n)=|\Delta^{2m} u(n)|\), \(\rho=\beta/(\beta-\alpha)\) and \(\nu=\beta/\alpha\), we obtain

$$\begin{aligned} \sum_{n=a}^{b-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\alpha} \leq& \Biggl(\sum _{n=a}^{b-1} 1^{\beta/(\beta-\alpha)} \Biggr)^{(\beta-\alpha)/\beta} \Biggl(\sum_{n=a}^{b-1} \bigl( \bigl\vert \Delta^{2m}u(n) \bigr\vert ^{\alpha}\bigr)^{\beta/\alpha} \Biggr)^{\alpha/\beta} \\ =&(b-a)^{(\beta-\alpha)/\beta} \Biggl(\sum_{n=a}^{b-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\beta} \Biggr)^{\alpha/\beta}. \end{aligned}$$
(44)

Therefore,

$$\begin{aligned} (b-a)^{(\alpha-\beta)/\alpha} \Biggl( \sum_{n=a}^{b-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\alpha}\Biggr)^{\beta/\alpha }\leq\sum_{n=a}^{b-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\beta}. \end{aligned}$$
(45)

From (43) and (45), we get

$$\begin{aligned} &\sum_{n=a}^{b-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\alpha} \\ &\quad\leq\frac{(b-a)^{(\gamma-1)[2m-1+(\alpha-1)/\alpha]}}{4^{\gamma -1}8^{(m-1)(\gamma-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha -1)} \Biggr)^{(\alpha-1)/\alpha} \Biggl(\sum _{n=a}^{b-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\alpha}\Biggr)^{\gamma/\alpha} \\ &\qquad{}-(b-a)^{(\alpha-\beta)/\alpha}q_{0} \Biggl(\sum _{n=a}^{b-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\alpha}\Biggr)^{\beta/\alpha}. \end{aligned}$$
(46)

For the right-hand of (46), from the inequality (7) in Lemma 2.1 with

$$M=\frac{(b-a)^{(\gamma-1)[2m-1+(\alpha-1)/\alpha]}}{4^{\gamma -1}8^{(m-1)(\gamma-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1) } \Biggr)^{(\alpha-1)/\alpha}, $$

\(x=\sum_{n=a}^{b-1}|\Delta^{2m} u(n)|^{\alpha}\), \(N=(b-a)^{(\alpha-\beta)/\alpha}q_{0}\), \(\lambda=\gamma/\alpha\), and \(\theta=\beta/\alpha\), we have

$$\begin{aligned} &\frac{(b-a)^{(\gamma-1)[2m-1+(\alpha-1)/\alpha ]}}{4^{\gamma-1}8^{(m-1)(\gamma-1)}} \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha /(\alpha-1)} \Biggr)^{(\alpha-1)/\alpha} \Biggl(\sum _{n=a}^{b-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\alpha}\Biggr)^{\gamma/\alpha} \\ &\qquad{}-(b-a)^{(\alpha-\beta)/\alpha}q_{0} \Biggl(\sum _{n=a}^{b-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\alpha}\Biggr)^{\beta/\alpha } \\ &\quad\leq\varUpsilon \biggl(\frac{\gamma-\alpha}{q_{0}(\beta-\alpha)} \biggr)^{(\gamma-1)/(\beta -\gamma)}\frac{\beta-\gamma}{\beta-\alpha} \\ &\qquad{} \cdot \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(\alpha -1)(\beta-1)/[\alpha(\beta-\gamma)]} \sum _{n=a}^{b-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\alpha}, \end{aligned}$$
(47)

where Ï’ is defined as in (32). From (46) and (47), we have

$$\begin{aligned} &\sum_{n=a}^{b-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\alpha} \\ &\quad\leq\varUpsilon \biggl(\frac{\gamma-\alpha}{q_{0}(\beta-\alpha)} \biggr)^{(\gamma-1)/(\beta -\gamma)} \frac{\beta-\gamma}{\beta-\alpha} \\ & \qquad{}\cdot\Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(\alpha -1)(\beta-1)/[\alpha(\beta-\gamma)]} \sum _{n=a}^{b-1} \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\alpha}. \end{aligned}$$
(48)

Now, we claim that \(\sum_{n=a}^{b-1}| \Delta^{2m} u(n)|^{\alpha}>0\). In fact, if the above inequality is not true, we have \(\sum_{n=a}^{b-1}| \Delta^{2m} u(n)|^{\alpha}=0\), then \(|\Delta^{2m} u(n)|=0\) for \(n\in \mathbb{Z}[a,b-1]\). So we get \(\sum_{n=a}^{b-1}|\Delta^{2m} u(n)|=0\). From (35), we obtain \(u(c)=0\), then we have \(u(n)=0\) for \(n\in \mathbb{Z}[a,b]\), which contradicts \(u(n)\not \equiv0\), \(n\in \mathbb{Z}[a,b]\). Thus dividing both sides of (48) by \(\sum_{n=a}^{b-1}| \Delta^{2m} u(n)|^{\alpha}\), we obtain (31) holds. This completes the proof of Theorem 2.2. □

3 Applications

In this section, we present some examples and applications of our main results. First, we consider the nonexistence for solutions of the BVP consisting of Eq. (4) and the boundary conditions (2).

Theorem 3.1

Assume

$$\begin{aligned} \varTheta \biggl(\frac{\gamma-\alpha}{q_{0}(\beta-\alpha)} \biggr)^{(\gamma-\alpha )/(\beta-\gamma)}\frac{(\beta-\gamma)}{\beta-\alpha} \Biggl( \sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(\alpha-1)(\beta-\alpha )/[\alpha(\beta-\gamma)]}< 1, \end{aligned}$$
(49)

where\(q_{0}\)andΘare defined as in (11) and (12). Then BVP (4), (2) has no nontrivial solution.

Proof

Assume the contrary. Then BVP (4), (2) has a nontrivial solution \(u(n)\). By Theorem 2.1, inequality (10) holds. This contradicts assumption (49). This completes the proof of Theorem 3.1. □

Next, we give an application of the obtained Lyapunov-type inequality for the following eigenvalue problem:

$$\begin{aligned} & \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\alpha-2} \Delta^{2m}u(n)+ q(n) \bigl\vert \Delta^{2m} u(n) \bigr\vert ^{\beta-2}\Delta^{2m} u(n) -\lambda r(n) \bigl\vert u(n) \bigr\vert ^{\gamma-2}u(n)=0, \\ &\quad n\in \mathbb{Z}[a,b], \end{aligned}$$
(50)

with the following boundary conditions:

$$ \Delta^{2i}u(a)=\Delta^{2i}u(b)=0,\quad i=0,1,\ldots,m-1;\qquad u(n)\not \equiv0,\quad n\in \mathbb{Z}[a,b], $$
(51)

where \(m\in \mathbb{N}\), \(\lambda>0\) is a parameter, \(1<\alpha<\gamma<\beta\) are constants, \(r(n)\) and \(q(n)\) are real-valued functions defined on \(\mathbb{Z}\) with \(q(n)>0\). Thus, if there exists a nontrivial solution \(u(n)\) of BVP (50), (51), from Theorem 2.2, we have

$$\begin{aligned} \lambda \geq& \Biggl(\sum_{n=a}^{b-1} \bigl\vert r(n) \bigr\vert ^{\alpha/(\alpha-1)} \Biggr)^{(1-\alpha)/\alpha} \biggl( \frac{\gamma-\alpha}{q_{0}(\beta-\alpha)} \biggr)^{(1-\gamma)/(\beta-1)} \\ & {}\cdot\biggl(\frac{\beta-\gamma}{\varUpsilon(\beta-\alpha)} \biggr)^{(\beta-\gamma )/(\beta-1)}, \end{aligned}$$
(52)

where \(q_{0}\) and Ï’ are defined as in (11) and (32).

References

  1. Agarwal, R.P., Bohner, M., Peterson, A.: Inequalities on time scales: a survey. Math. Inequal. Appl. 4, 535–557 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Liu, H.D.: On some nonlinear retarded Volterra–Fredholm type integral inequalities on time scales and their applications. J. Inequal. Appl. 2018, Article ID 211 (2018)

    Article  MathSciNet  Google Scholar 

  3. Zhao, D.L., Yuan, S.L., Liu, H.D.: Stochastic dynamics of the delayed chemostat with Lévy noises. Int. J. Biomath. 12(5), Article ID 1950056 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Liu, H.D., Meng, F.W.: Some new generalized Volterra–Fredholm type discrete fractional sum inequalities and their applications. J. Inequal. Appl. 2016, Article ID 213 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Li, Y.N., Sun, Y.G., Meng, F.W.: Exponential stabilization of switched time-varying systems with delays and disturbances. Appl. Math. Comput. 324, 131–140 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Zou, C., Xia, Y., Pinto, M.: Hölder continuity of topological equivalence functions of DEPCAGs. Sci. China Math. (2019). https://doi.org/10.1007/s11425-018-9483-x

    Article  Google Scholar 

  7. Liu, H.D.: Some new half-linear integral inequalities on time scales and applications. Discrete Dyn. Nat. Soc. 2019, Article ID 9860302 (2019)

    MathSciNet  Google Scholar 

  8. Saker, S.H.: Some nonlinear dynamic inequalities on time scales. Math. Inequal. Appl. 14, 633–645 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Liu, H.D.: Some new integral inequalities with mixed nonlinearities for discontinuous functions. Adv. Differ. Equ. 2018, Article ID 22 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Xia, Y., Cheng, S.: Quasi-uniformly asymptotic stability and existence of almost periodic solutions of difference equations with applications in population dynamic systems. J. Differ. Equ. Appl. 14, 59–81 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, H.D., Meng, F.W.: Some new nonlinear integral inequalities with weakly singular kernel and their applications to FDEs. J. Inequal. Appl. 2015, Article ID 209 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Y.N., Sun, Y.G., Meng, F.W.: New criteria for exponential stability of switched time-varying systems with delays and nonlinear disturbances. Nonlinear Anal. Hybrid Syst. 26, 284–291 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhao, D.L., Liu, H.D.: Coexistence in a two species chemostat model with Markov switchings. Appl. Math. Lett. 94, 266–271 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sun, Y.G., Tian, Y.Z., Xie, X.J.: Stabilization of positive switched linear systems and its application in consensus of multiagent systems. IEEE Trans. Autom. Control 62, 6608–6613 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, H.D., Meng, F.W.: Existence of positive periodic solutions for a predator–prey system of Holling type IV function response with mutual interference and impulsive effects. Discrete Dyn. Nat. Soc. 2015, Article ID 138984 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Wang, J.F., Meng, F.W., Gu, J.: Estimates on some power nonlinear Volterra–Fredholm type dynamic integral inequalities on time scales. Adv. Differ. Equ. 2017, Article ID 257 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, H.D., Meng, F.W., Liu, P.C.: Oscillation and asymptotic analysis on a new generalized Emden–Fowler equation. Appl. Math. Comput. 219(5), 2739–2748 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Zhao, D.L., Yuan, S.L., Liu, H.D.: Random periodic solution for a stochastic SIS epidemic model with constant population size. Adv. Differ. Equ. 2018, Article ID 64 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zou, C., Xia, Y., Pinto, M., Shi, J., Bai, Y.: Boundness and linearisation of a class of differential equations with piecewise constant argument. Qual. Theory Dyn. Syst. 18(2), 495–531 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, H.D., Li, C.Y., Shen, F.C.: A class of new nonlinear dynamic integral inequalities containing integration on infinite interval on time scales. Adv. Differ. Equ. 2019, Article ID 311 (2019)

    Article  MathSciNet  Google Scholar 

  21. Sun, Y.G., Meng, F.W.: Reachable set estimation for a class of nonlinear time-varying systems. Complexity 2017, Article ID 5876371 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tunç, E., Liu, H.D.: Oscillatory behavior for second-order damped differential equation with nonlinearities including Riemann–Stieltjes integrals. Electron. J. Differ. Equ. 2018, Article ID 54 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, H.D.: A class of retarded Volterra–Fredholm type integral inequalities on time scales and their applications. J. Inequal. Appl. 2017, Article ID 293 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Feng, Q.H., Meng, F.W., Zheng, B.: Gronwall–Bellman type nonlinear delay integral inequalities on time scale. J. Math. Anal. Appl. 382, 772–784 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, H.D., Meng, F.W.: Interval oscillation criteria for second-order nonlinear forced differential equations involving variable exponent. Adv. Differ. Equ. 2016, Article ID 291 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tian, Y.Z., Fan, M., Meng, F.W.: A generalization of retarded integral inequalities in two independent variables and their applications. Appl. Math. Comput. 221, 239–248 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Liu, H.D., Meng, F.W.: Nonlinear retarded integral inequalities on time scales and their applications. J. Math. Inequal. 12(1), 219–234 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Lyapunov, A.M.: Probleme général de la stabilité du mouvement. Ann. Fac. Sci. Univ. Toulouse 2, 27–247 (1907) (French translation of a Russian paper dated 1893). Reprinted as Ann. Math. Stud., vol. 17, Princeton University Press (1947)

    Google Scholar 

  29. Agarwal, R.P., Özbekler, A.: Disconjugacy via Lyapunov and Vallée–Poussin type inequalities for forced differential equations. Appl. Math. Comput. 265, 456–468 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Liu, H.D.: Lyapunov-type inequalities for certain higher-order half-linear differential equations. J. Math. Inequal. 13(4), 1159–1170 (2019)

    MathSciNet  MATH  Google Scholar 

  31. Cheng, S.S.: Lyapunov inequalities for differential and difference equations. Fasc. Math. 23, 25–41 (1991)

    MathSciNet  MATH  Google Scholar 

  32. Dhar, S., Kong, Q.K.: Lyapunov-type inequalities for α-th order fractional differential equations with \(2<\alpha\leq3\) and fractional boundary conditions. Electron. J. Differ. Equ. 2017, Article ID 203 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Eliason, S.B.: Lyapunov inequalities and bounds on solutions of certain second order equations. Can. Math. Bull. 17(4), 499–504 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  34. Guseinov, G.S., Kaymakcalan, B.: Lyapunov inequalities for discrete linear Hamiltonian systems. Comput. Math. Appl. 45, 1399–1416 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Unal, M., Çakmak, D., Tiryaki, A.: A discrete analogue of Lyapunov-type inequalities for nonlinear systems. Comput. Math. Appl. 55, 2631–2642 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu, H.D.: Lyapunov-type inequalities for second-order boundary value problems with a parameter. Discrete Dyn. Nat. Soc. 2020, Article ID 1209260 (2020)

    Google Scholar 

  37. Liu, X.G., Tang, M.L.: Lyapunov-type inequality for higher order difference equations. Appl. Math. Comput. 232, 666–669 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Tang, X.H., Zhang, M.: Lyapunov inequalities and stability for linear Hamiltonian systems. J. Differ. Equ. 252, 358–381 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, Q.M., Tang, X.H.: Lyapunov-type inequalities for even order difference equations. Appl. Math. Lett. 25, 1830–1834 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Tiryaki, A., Çakmak, D., Aktas, M.F.: Lyapunov-type inequalities for a certain class of nonlinear systems. Comput. Math. Appl. 64, 1804–1811 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, X.J., Lo, K.M.: Lyapunov-type inequalities for a class of higher-order linear differential equations with anti-periodic boundary conditions. Appl. Math. Lett. 34, 33–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, Q.M., Tang, X.H.: Lyapunov inequalities and stability for discrete linear Hamiltonian system. Appl. Math. Comput. 218, 574–582 (2011)

    MathSciNet  MATH  Google Scholar 

  43. Liu, H.D.: Lyapunov-type inequalities for certain higher-order difference equations with mixed non-linearities. Adv. Differ. Equ. 2018, Article ID 229 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, H.D.: An improvement of the Lyapunov inequality for certain higher order differential equations. J. Inequal. Appl. 2018, Article ID 215 (2018)

    Article  MathSciNet  Google Scholar 

  45. Jleli, M., Samet, B.: On Lyapunov-type inequalities for \((p,q)\)-Laplacian systems. J. Inequal. Appl. 2017, Article ID 100 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is indebted to the anonymous referees for their valuable suggestions and helpful comments which helped improve the paper significantly.

Funding

This research was supported by the Natural Science Foundation of Shandong Province (China) (No. ZR2018MA018), and the National Natural Science Foundation of China (No. 61873144).

Author information

Authors and Affiliations

Authors

Contributions

HL organized and wrote this paper. Further, he examined all the steps of the proofs in this research. The author read and approved the final manuscript.

Corresponding author

Correspondence to Haidong Liu.

Ethics declarations

Competing interests

The author declares that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H. Lyapunov-type inequalities for higher-order half-linear difference equations. J Inequal Appl 2020, 80 (2020). https://doi.org/10.1186/s13660-020-02336-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-020-02336-6

Keywords