Skip to main content

Hermite–Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications

Abstract

In the article, we present several Hermite–Hadamard type inequalities for the co-ordinated convex and quasi-convex functions and give an application to the product of the moment of two continuous and independent random variables. Our results are generalizations of some earlier results. Additionally, an illustrative example on the probability distribution is given to support our results.

Introduction

Let \(\mathcal{I}\subseteq \mathbb{R}\) be a nonempty interval. Then a real-valued function \(\varPhi :\mathcal{I}\rightarrow \mathbb{R}\) is said to be convex (concave) if the inequality

$$ \varPhi \bigl[\varrho \mu + (1-\varrho )\nu \bigr]\leq ( \geq )\ \varrho \varPhi (\mu )+ (1-\varrho ) \varPhi (\nu ) $$

holds for all \(\mu ,\nu \in \mathcal{I}\) and \(\varrho \in [0, 1 ]\).

It is a fact that the convex (concave) function is one of the most basic and important functions in the theory of geometric function, it has widely applications in pure and applied mathematics, physics, mechanics, statistics and economics, and meteorology [130]. Recently, the generalizations, extensions, variants and refinements for the convexity (concavity) have attracted the interest of several researchers [3140]. In particular, many remarkable inequalities and properties in many branches of mathematics can be found in the literature [4170] using the convexity (concavity) theory. The well-known Hermite–Hadamard inequality states that the double inequality

$$ \varPhi \biggl(\frac{\lambda _{1}+\lambda _{2}}{2} \biggr)\leq (\geq )\ \frac{1}{ \lambda _{2}-\lambda _{1}} \int _{\lambda _{1}}^{\lambda _{2}}\varPhi (\mu )\,dx \leq (\geq )\ \frac{\varPhi (\lambda _{1} )+\varPhi (\lambda _{2} )}{2} $$
(1.1)

holds for all \(\lambda _{1}, \lambda _{2}\in \mathcal{I}\) with \(\lambda _{1}\neq \lambda _{2}\) if \(\varPhi :\mathcal{I}\rightarrow \mathbb{R}\) is a convex (concave) function.

In the past hundred years, inequality (1.1) has inspired many researchers to estimate the bounds for

$$ \biggl\vert \frac{\varPhi (\lambda _{1} )+\varPhi (\lambda _{2} )}{2}-\frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}} ^{\lambda _{2}}\varPhi (\mu )\,d\mu \biggr\vert $$

and

$$ \biggl\vert \varPhi \biggl(\frac{\lambda _{1}+\lambda _{2}}{2} \biggr)-\frac{1}{ \lambda _{2}-\lambda _{1}} \int _{\lambda _{1}}^{\lambda _{2}}\varPhi (\mu ) \,d\mu \biggr\vert , $$

and all the obtained results are called Hermite–Hadamard type inequalities.

It is well known that the multivariable functions also have the concept of convexity (concavity). An an example, we recall the definition of convexity (concavity) for the bivariate functions.

Let \(\lambda _{1}, \lambda _{2}, \xi _{1}, \xi _{2}\in \mathbb{R}\) such that \(\lambda _{1}<\lambda _{2}\) and \(\xi _{1}<\xi _{2}\). Then a bivariate real-valued function \(\varPhi :[\lambda _{1},\lambda _{2}]\times [\xi _{1}, \xi _{2}]\rightarrow \mathbb{R}\) is said to be convex (concave) if the inequality

$$ \varPhi \bigl(\varrho \mu +(1-\varrho )\rho ,\varrho \nu +(1-\varrho )\omega \bigr) \leq (\geq )\ \varrho \varPhi (\mu ,\nu )+(1-\varrho )\varPhi (\rho ,\omega ) $$

holds for all \((\mu ,\nu ),(\rho ,\omega )\in [\lambda _{1},\lambda _{2}]\times [\xi _{1},\xi _{2}]\) and \(\varrho \in [0,1]\).

In order to establish the relation involving the convexity between the bivariate and univariate functions, Dragomir [71] introduced the definition of the bivariate co-ordinated convex function as follows.

Definition 1.1

(See [71])

Let \(\lambda _{1}, \lambda _{2}, \xi _{1}, \xi _{2}\in \mathbb{R}\) such that \(\lambda _{1}<\lambda _{2}\) and \(\xi _{1}<\xi _{2}\). Then a bivariate real-valued function \(\varPhi :[\lambda _{1},\lambda _{2}] \times [\xi _{1},\xi _{2}]\rightarrow \mathbb{R}\) is said to be convex on the co-ordinates if both of the partial mappings \(\varPhi _{\nu }:[\lambda _{1},\lambda _{2}]\rightarrow \mathbb{R}\) and \(\varPhi _{\mu }:[\xi _{1},\xi _{2}]\rightarrow \mathbb{R}\) defined by

$$ \varPhi _{\nu }(\delta )=\varPhi (\delta ,\nu ) $$

and

$$ \varPhi _{\mu }(\theta )=\varPhi (\mu ,\theta ) $$

are convex for all \(\mu \in [\lambda _{1},\lambda _{2}]\) and \(\nu \in [\xi _{1},\xi _{2}]\).

Latif and Alomari [72] proved that the bivariate real-valued function \(\varPhi :[\lambda _{1},\lambda _{2}]\times [\xi _{1},\xi _{2}]\rightarrow \mathbb{R}\) is convex on the co-ordinates if and only if

$$\begin{aligned}& \varPhi \bigl(\varrho \mu +(1-\varrho )\nu ,\varsigma \rho +(1-\varsigma ) \omega \bigr) \\& \quad \leq \varrho \varsigma \varPhi (\mu ,\rho )+\varrho (1-\varsigma )\varPhi ( \mu , \omega )+\varsigma (1-\varrho )\varPhi (\nu ,\rho )+(1-\varrho ) (1- \varsigma )\varPhi (\nu ,\omega ) \end{aligned}$$

for all \(\varrho ,\varsigma \in [0,1]\times {}[ 0,1]\) and \((\mu ,\rho ),(\nu ,\omega )\in [\lambda _{1},\lambda _{2}]\times {}[ \xi _{1},\xi _{2}]\).

Dragomir [71] proved that every convex mapping \(\varPhi :[\lambda _{1}, \lambda _{2}]\times {}[ \xi _{1},\xi _{2}]\rightarrow \mathbb{R}\) is convex on the co-ordinates and the reverse is not true, and established the Hermite–Hadamard type inequality for the co-ordinated convex function on the rectangle of the plane \({\mathbb{R}}^{2}\).

Theorem 1.2

(See [71])

Let \(\lambda _{1}, \lambda _{2}, \xi _{1}, \xi _{2}\in \mathbb{R}\)such that \(\lambda _{1}<\lambda _{2}\)and \(\xi _{1}<\xi _{2}\), and \(\varPhi :[\lambda _{1},\lambda _{2}]\times [\xi _{1},\xi _{2}]\rightarrow \mathbb{R}\)be a co-ordinated convex function. Then one has

$$\begin{aligned}& \varPhi \biggl(\frac{\lambda _{1}+\lambda _{2}}{2}, \frac{\xi _{1}+\xi _{2}}{2} \biggr) \\& \quad \leq \frac{1}{2} \biggl[ \frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}}^{\lambda _{2}}\varPhi \biggl( \mu , \frac{\xi _{1}+\xi _{2}}{2} \biggr)\,d\mu +\frac{1}{\xi _{2}-\xi _{1}} \int _{\xi _{1}}^{\xi _{2}}\varPhi \biggl(\frac{\lambda _{1}+\lambda _{2}}{2}, \nu \biggr) \,d\nu \biggr] \\& \quad \leq \frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \varPhi (\mu ,\nu )\,d\nu \,d\mu \\& \quad \leq \frac{1}{4} \biggl[\frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}}^{\lambda _{2}}\varPhi ( \mu ,\xi _{1} ) \,d\mu +\frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \varPhi (\mu ,\xi _{2} ) \,d\mu \\& \qquad {}+\frac{1}{\xi _{2}-\xi _{1}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\lambda _{1},\nu )\,d\nu +\frac{1}{\xi _{2}-\xi _{1}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\lambda _{2},\nu )\,d\nu \biggr] \\& \quad \leq \frac{\varPhi (\lambda _{1},\xi _{1} )+\varPhi (\lambda _{1},\xi _{2} )+\varPhi (\lambda _{2},\xi _{1} ) +\varPhi (\lambda _{2},\xi _{2} )}{4} \end{aligned}$$
(1.2)

with the best possible constant \(1/4\).

In [73], Latif et al. derived the variants of the Hermite–Hadamard type inequality (1.2), which are the weighted generalizations of (1.2).

Theorem 1.3

(See [73])

Let \(\triangle \subseteq {\mathbb{R}}^{2}\), \(\triangle ^{ \circ }\)be the interior of , \(\lambda _{1}<\lambda _{2}\)and \(\xi _{1}<\xi _{2}\)such that \([\lambda _{1}, \lambda _{2}] \times [\xi _{1}, \xi _{2}]\in \triangle ^{\circ }\), \(\varPhi :\Delta \rightarrow \mathbb{R}\)be a twice differentiable mapping on \(\triangle ^{\circ }\), \(p: [\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\rightarrow [0,\infty )\)be a continuous function symmetric with respect to \((\lambda _{1}+\lambda _{2})/2\)and \((\xi _{1}+\xi _{2})/2\), \(\varPhi _{\varrho \varsigma }\in L ( [\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ] )\)and \(\vert \varPhi _{\varrho \varsigma } \vert \)be a co-ordinated convex function on \([\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\). Then

$$\begin{aligned}& \biggl\vert \varPhi \biggl(\frac{\lambda _{1}+\lambda _{2}}{2},\frac{\xi _{1}+\xi _{2}}{2} \biggr) \int _{\xi _{1}}^{\xi _{2}} \int _{\lambda _{1}} ^{\lambda _{2}}p (\mu ,\nu )\,d\mu \,d\nu + \int _{\xi _{1}}^{\xi _{2}} \int _{\lambda _{1}}^{\lambda _{2}}\varPhi (\mu ,\nu )p (\mu ,\nu )\,d\mu \,d\nu \\& \qquad {}- \int _{\xi _{1}}^{\xi _{2}} \int _{\lambda _{1}}^{\lambda _{2}} \varPhi \biggl(\mu , \frac{\xi _{1}+\xi _{2}}{2} \biggr)p (\mu ,\nu )\,d\mu \,d\nu - \int _{\xi _{1}}^{\xi _{2}} \int _{\lambda _{1}}^{\lambda _{2}} \varPhi \biggl(\frac{\lambda _{1}+\lambda _{2}}{2}, \nu \biggr)p (\mu , \nu )\,d\mu \,d\nu \biggr\vert \\& \quad \leq \frac{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )}{4} \bigl[ \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{1},\xi _{1} ) \bigr\vert + \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{1},\xi _{2} ) \bigr\vert + \bigl\vert \varPhi _{ \varrho \varsigma } (\lambda _{2},\xi _{1} ) \bigr\vert + \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{1},\xi _{2} ) \bigr\vert \bigr] \\& \qquad {}\times \int _{0}^{1} \int _{0}^{1} \biggl( \int _{\xi _{1}}^{L_{2} (\varsigma )} \int _{\lambda _{1}}^{L_{1} (\varrho )}p (\mu ,\nu ) \,d\mu \,d\nu \biggr)\,d\varrho \,d\varsigma , \end{aligned}$$
(1.3)

where \(L_{1} (\varrho )=\frac{1-\varrho }{2}\lambda _{1}+\frac{1+ \varrho }{2}\lambda _{2}\)and \(L_{2} (\varsigma )=\frac{1- \varsigma }{2}\xi _{1}+\frac{1+\varsigma }{2}\xi _{2}\).

Theorem 1.4

(See [73])

Let \(q>1\), \(\triangle \subseteq {\mathbb{R}}^{2}\), \(\triangle ^{\circ }\)be the interior of , \(\lambda _{1}<\lambda _{2}\)and \(\xi _{1}<\xi _{2}\)such that \([\lambda _{1}, \lambda _{2}]\times [\xi _{1}, \xi _{2}]\in \triangle ^{\circ }\), \(\varPhi :\Delta \rightarrow \mathbb{R}\)be a twice differentiable mapping on \(\triangle ^{\circ }\), \(p: [\lambda _{1},\lambda _{2} ] \times [\xi _{1},\xi _{2} ]\rightarrow [0,\infty )\)be a continuous function symmetric with respect to \((\lambda _{1}+ \lambda _{2})/2\)and \((\xi _{1}+\xi _{2})/2\), \(\varPhi _{\varrho \varsigma } \in L ( [\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ] )\)and \(\vert \varPhi _{\varrho \varsigma } \vert ^{q} \)be a co-ordinated convex function on \([\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\). Then we have

$$\begin{aligned}& \biggl\vert \varPhi \biggl(\frac{\lambda _{1}+\lambda _{2}}{2},\frac{\xi _{1}+\xi _{2}}{2} \biggr) \int _{\xi _{1}}^{\xi _{2}} \int _{\lambda _{1}} ^{\lambda _{2}}p (\mu ,\nu )\,d\mu \,d\nu + \int _{\xi _{1}}^{\xi _{2}} \int _{\lambda _{1}}^{\lambda _{2}}\varPhi (\mu ,\nu )p (\mu ,\nu )\,d\mu \,d\nu \\& \qquad {}- \int _{\xi _{1}}^{\xi _{2}} \int _{\lambda _{1}}^{\lambda _{2}} \varPhi \biggl(\mu , \frac{\xi _{1}+\xi _{2}}{2} \biggr)p (\mu ,\nu )\,d\mu \,d\nu - \int _{\xi _{1}}^{\xi _{2}} \int _{\lambda _{1}}^{\lambda _{2}} \varPhi \biggl(\frac{\lambda _{1}+\lambda _{2}}{2}, \nu \biggr)p (\mu , \nu )\,d\mu \,d\nu \biggr\vert \\& \quad \leq (\lambda _{2}-\lambda _{1} ) (\xi _{2}- \xi _{1} ) \biggl[\frac{ \vert \varPhi _{\varrho \varsigma } (\lambda _{1}, \xi _{1} ) \vert + \vert \varPhi _{\varrho \varsigma } (\lambda _{1},\xi _{2} ) \vert + \vert \varPhi _{\varrho \varsigma } (\lambda _{2},\xi _{1} ) \vert + \vert \varPhi _{\varrho \varsigma } (\lambda _{2},\xi _{2} ) \vert }{4} \biggr] ^{\frac{1}{q}} \\& \qquad {}\times \int _{0}^{1} \int _{0}^{1} \biggl( \int _{\xi _{1}}^{L_{2} (\varsigma )} \int _{\lambda _{1}}^{L_{1} (\varrho )} p (\mu ,\nu ) \,d\mu \,d\nu \biggr)\,d\varrho \,d\varsigma , \end{aligned}$$
(1.4)

where \(L_{1} (\varrho )\)and \(L_{2} (\varsigma )\)are defined as in Theorem 1.3.

Özdemir et al. [74] generalized the co-ordinated convex function to the co-ordinated quasi-convex function.

Definition 1.5

(See [74])

A real-valued function \(\varPhi : [\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\subset \mathbb{R} ^{2}\rightarrow \mathbb{R}\) is said to be quasi-convex if the inequality

$$ \varPhi \bigl(\varrho \mu +(1-\varrho )\rho ,\varrho \nu +(1-\varrho )\omega \bigr) \leq \max \bigl\{ \varPhi (\mu ,\nu ),\varPhi (\rho ,\omega ) \bigr\} $$

holds for all \((\mu ,\nu ),(\rho ,\omega )\in [\lambda _{1}, \lambda _{2} ]\times [\xi _{1},\xi _{2} ]\) and \(\varrho \in [0,1]\).

Definition 1.6

(See [74])

A real-valued function \(\varPhi : [\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\rightarrow \mathbb{R}\) is said to be quasi-convex on the co-ordinates if both of the partial mappings \(\varPhi _{\nu }:[\lambda _{1},\lambda _{2}]\rightarrow \mathbb{R}\) and \(\varPhi _{\mu }:[\xi _{1},\xi _{2}]\rightarrow \mathbb{R}\) defined by

$$ \varPhi _{\nu }(\delta )=\varPhi (\delta ,\nu ), \qquad \varPhi _{\mu }( \theta )= \varPhi (\mu ,\theta ) $$

are quasi-convex for all \(\mu \in [\lambda _{1},\lambda _{2}]\) and \(\nu \in [\xi _{1},\xi _{2}]\).

In [75], Latif et al. provided an equivalent definition for the co-ordinated quasi-convex function as follows.

Definition 1.7

(See [75])

A real-valued function \(\varPhi : [\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\subseteq \mathbb{R} ^{2}\rightarrow \mathbb{R}\) is said to be quasi-convex on the co-ordinates if the inequality

$$ \varPhi \bigl(\varrho \mu +(1-\varrho )\rho ,\varsigma \nu +(1-\varsigma ) \omega \bigr) \leq \max \bigl\{ \varPhi (\mu ,\nu ),\varPhi (\mu , \omega ),\varPhi (\rho ,\nu ) , \varPhi (\rho , \omega ) \bigr\} $$

holds for all \((\mu ,\nu ),(\rho ,\omega )\in [\lambda _{1}, \lambda _{2} ]\times [ \xi _{1},\xi _{2} ]\) and \((\varsigma ,\varrho ) \in [0,1]\times [0,1]\).

The class of co-ordinated quasi-convex functions on \([\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\) is denoted \(QC( [\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ])\). Özdemir [74] proved that every quasi-convex function is also a co-ordinated quasi-convex function, but the converse does not hold true. The Hermite–Hadamard type inequality (1.2) was generalized to the co-ordinated quasi-convex function by Latif et al. [75].

Theorem 1.8

(See [75])

Let \(\triangle \subseteq {\mathbb{R}}^{2}\), \(\triangle ^{ \circ }\)be the interior of , \(\lambda _{1}<\lambda _{2}\)and \(\xi _{1}<\xi _{2}\)such that \([\lambda _{1}, \lambda _{2}] \times [\xi _{1}, \xi _{2}]\in \triangle ^{\circ }\), \(\varPhi :\Delta \rightarrow \mathbb{R}\)be a differentiable mapping on \(\triangle ^{ \circ }\), \(\varPhi _{\varrho \varsigma }\in L ( [\lambda _{1}, \lambda _{2} ]\times [\xi _{1},\xi _{2} ] )\)and \(\vert \varPhi _{\varrho \varsigma } \vert \)be a co-ordinated quasi-convex function on \([\lambda _{1},\lambda _{2} ] \times [\xi _{1},\xi _{2} ]\). Then

$$\begin{aligned}& \biggl\vert \frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}} ^{\xi _{2}}\varPhi (\mu ,\nu )\,d\mu \,d\nu \\& \qquad {}+\frac{\varPhi (\lambda _{1},\xi _{1} )+\varPhi (\lambda _{1},\xi _{2} )+\varPhi (\lambda _{2},\xi _{1} ) +\varPhi (\lambda _{2},\xi _{2} )}{4} \\& \qquad {}-\frac{1}{2} \biggl[\frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \bigl[\varPhi (\mu ,\xi _{1} ) +\varPhi (\mu ,\xi _{2} ) \bigr]\,d\mu \\& \qquad {} + \frac{1}{\xi _{2}-\xi _{1}} \int _{\lambda _{1}}^{\mathfrak{q_{\lambda _{2}}}} \bigl[\varPhi (\lambda _{1},\nu )+\varPhi (\lambda _{2},\nu ) \bigr]\,d\nu \biggr] \biggr\vert \\& \quad \leq K \biggl[\sup \biggl\{ \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{1},\xi _{1} ) \bigr\vert , \biggl\vert \varPhi _{\varrho \varsigma } \biggl(\lambda _{1},\frac{\xi _{1}+\xi _{2}}{2} \biggr) \biggr\vert , \\& \qquad \biggl\vert \varPhi _{\varrho \varsigma } \biggl(\frac{\lambda _{1}+\lambda _{2}}{2}, \xi _{1} \biggr) \biggr\vert , \biggl\vert \varPhi _{\varrho \varsigma } \biggl(\frac{\lambda _{1}+\lambda _{2}}{2},\frac{\xi _{1}+\xi _{2}}{2} \biggr) \biggr\vert \biggr\} \\& \qquad {}+\sup \biggl\{ \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{1},\xi _{2} ) \bigr\vert , \biggl\vert \varPhi _{\varrho \varsigma } \biggl( \lambda _{1},\frac{\xi _{1}+\xi _{2}}{2} \biggr) \biggr\vert , \\& \qquad \biggl\vert \varPhi _{\varrho \varsigma } \biggl(\frac{\lambda _{1}+\lambda _{2}}{2}, \xi _{2} \biggr) \biggr\vert , \biggl\vert \varPhi _{\varrho \varsigma } \biggl( \frac{\lambda _{1}+\lambda _{2}}{2}, \frac{\xi _{1}+\xi _{2}}{2} \biggr) \biggr\vert \biggr\} \\& \qquad {}+\sup \biggl\{ \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{2},\xi _{1} ) \bigr\vert , \biggl\vert \varPhi _{\varrho \varsigma } \biggl( \lambda _{2},\frac{\xi _{1}+\xi _{2}}{2} \biggr) \biggr\vert , \\& \qquad \biggl\vert \varPhi _{\varrho \varsigma } \biggl(\frac{\lambda _{1}+\lambda _{2}}{2},\xi _{1} \biggr) \biggr\vert , \biggl\vert \varPhi _{\varrho \varsigma } \biggl( \frac{\lambda _{1}+\lambda _{2}}{2},\frac{\xi _{1}+\xi _{2}}{2} \biggr) \biggr\vert \biggr\} \\& \qquad {}+\sup \biggl\{ \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{2},\xi _{2} ) \bigr\vert , \biggl\vert \varPhi _{\varrho \varsigma } \biggl( \lambda _{2},\frac{\xi _{1}+\xi _{2}}{2} \biggr) \biggr\vert , \\& \qquad \biggl\vert \varPhi _{\varrho \varsigma } \biggl(\frac{\lambda _{1}+\lambda _{2}}{2},\xi _{2} \biggr) \biggr\vert , \biggl\vert \varPhi _{\varrho \varsigma } \biggl( \frac{\lambda _{1}+\lambda _{2}}{2},\frac{\xi _{1}+\xi _{2}}{2} \biggr) \biggr\vert \biggr\} \biggr] , \end{aligned}$$
(1.5)

where \(K= (\lambda _{2}-\lambda _{1} ) ( \xi _{2}-\xi _{1} )/64\).

More recent results on Hermite–Hadamard type inequalities and their applications can be found in the literature [7696].

Motivated by Theorems 1.21.4 and 1.8, it is natural to ask the question: what are the weighted versions of the Hermite–Hadamard type inequality for the co-ordinated convex and quasi-convex functions?

The main purpose of the article is to present several weighted versions of the Hermite–Hadamard type inequality for the co-ordinated convex and quasi-convex functions, and give an application to the moment of continuous random variables of bivariate distribution functions in the probability theory. Finally, we provide an example on the probability distribution to support our results.

Some auxiliary results

First of all, we introduce several symbols as follows.

Let \(\omega (\mu ,\nu ): [\lambda _{1},\lambda _{2} ] \times [\xi _{1},\xi _{2} ]\rightarrow [0,\infty )\) be a continuous real-valued function such that \(\int _{\lambda _{1}}^{\lambda _{2}}\int _{\xi _{1}}^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu =1\). Then we denote the integral \(\int _{\lambda _{1}}^{\lambda _{2}}\int _{\xi _{1}}^{\xi _{2}} \mu \omega (\mu ,\nu )\,d\nu \,d\mu \) by \(\varUpsilon _{1}\), the integral \(\int _{\lambda _{1}}^{\lambda _{2}}\int _{\xi _{1}} ^{\xi _{2}}\nu \omega (\mu ,\nu )\,d\nu \,d\mu \) by \(\varUpsilon _{2}\) and the integral \(\int _{\lambda _{1}}^{\lambda _{2}}\int _{\xi _{1}}^{\xi _{2}}\mu \nu \omega (\mu ,\nu )\,d\nu \,d\mu \) by \(\varUpsilon _{3}\), that is,

$$\begin{aligned}& \varUpsilon _{1}= \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\mu \omega (\mu ,\nu )\,d\nu \,d\mu , \qquad \varUpsilon _{2}= \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\mu \nu \omega (\mu ,\nu ) \,d\nu \,d\mu , \\& \varUpsilon _{3}= \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\nu \omega (\mu ,\nu )\,d\mu . \end{aligned}$$

We show an outcome in which the function \(\omega ( \mu ,\nu )\) is symmetric on the co-ordinates with respect to \(\frac{\lambda _{1}+\lambda _{2}}{2}\) and \(\frac{\xi _{1}+\xi _{2}}{2}\).

Lemma 2.1

If \(\omega (\mu ,\nu ): [\lambda _{1},\lambda _{2} ] \times [\xi _{1},\xi _{2} ]\rightarrow [0,\infty )\)is symmetric on the co-ordinates with respect to the midpoints \(\frac{\lambda _{1}+\lambda _{2}}{2}\)and \(\frac{\xi _{1}+\xi _{2}}{2}\). Then

$$ \varUpsilon _{1}=\frac{\lambda _{1}+\lambda _{2}}{2},\qquad \varUpsilon _{3}= \frac{ \xi _{1}+\xi _{2}}{2},\qquad \varUpsilon _{2}= \biggl( \frac{\lambda _{1}+ \lambda _{2}}{2} \biggr) \biggl(\frac{\xi _{1}+\xi _{2}}{2} \biggr). $$

Proof

It follows from the hypothesis that

$$\begin{aligned} \varUpsilon _{1}&= \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\mu \omega (\mu ,\nu )\,d\nu \,d\mu = \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \mu w (\lambda _{1}+ \lambda _{2}-\mu ,\nu )\,d\nu \,d\mu \\ &= \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{1}+\lambda _{2}-\mu )\omega (\mu , \nu )\,d\nu \,d\mu , \end{aligned}$$

which gives the desired result due to

$$ \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \omega (\mu ,\nu ) \,d\nu \,d\mu =1. $$

Similarly, one can prove that

$$ \varUpsilon _{3}=\frac{\xi _{1}+\xi _{2}}{2} $$

and

$$ \varUpsilon _{3}= \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\mu \nu \omega (\mu ,\nu )\,d\nu \,d\mu = \biggl(\frac{\lambda _{1}+\lambda _{2}}{2} \biggr) \biggl(\frac{\xi _{1}+ \xi _{2}}{2} \biggr). $$

 □

Lemma 2.2

Let \(\varOmega \subseteq \mathbb{R}^{2}\), \(\varOmega ^{\circ }\)be the interior ofΩ, \(\lambda _{1}<\lambda _{2}\)and \(\xi _{1}<\xi _{2}\)such that \([\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ] \subseteq \varOmega ^{\circ }\), \(\omega : [\lambda _{1},\lambda _{2} ] \times [ \xi _{1},\xi _{2} ]\rightarrow [0,\infty )\)be a continuous mapping, and \(\varPhi :\varOmega \rightarrow \mathbb{R}\)be a twice partially differentiable mapping on \(\varOmega ^{\circ }\)such that \(\varPhi _{\varrho \varsigma }\in L ( [\lambda _{1},\lambda _{2} ] \times [\xi _{1},\xi _{2} ] )\). Then

$$\begin{aligned}& \frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \biggl[\varPhi (\lambda _{1},\xi _{1} ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}- \mu ) ( \xi _{2}-\nu )\omega (\mu ,\nu ) \,d\nu \,d\mu \\& \qquad {}+\varPhi (\lambda _{1},\xi _{2} ) \int _{\lambda _{1}}^{ \lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}-\mu ) ( \nu -\xi _{1} )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+\varPhi (\lambda _{2},\xi _{1} ) \int _{\lambda _{1}} ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) ( \xi _{2}-\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+\varPhi (\lambda _{2},\xi _{2} ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) ( \nu -\xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \biggr] \\& \qquad {}+ \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\mu ,\nu )\omega (\mu ,\nu ) \,d\nu \,d\mu \\& \qquad {}-\frac{1}{\xi _{2}-\xi _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}-\mu ) \varPhi (\lambda _{1},\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {} - \frac{1}{\xi _{2}-\xi _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) \varPhi (\lambda _{2},\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\xi _{2}-\nu ) \varPhi ( \mu ,\xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}} ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\nu -\xi _{1} ) \varPhi (\mu ,\xi _{2} )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \quad =\frac{ (\varUpsilon _{1}-\lambda _{1} ) (\varUpsilon _{3}-\xi _{1} )}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{0}^{1} \int _{0}^{1} H (\omega ,\lambda _{1},\xi _{1},\varUpsilon _{1},\varUpsilon _{3};r,\rho ) \\& \qquad {}\times\varPhi _{r\rho } \bigl( (1-r ) \lambda _{1}+\varUpsilon _{1}r, (1-\rho )\xi _{1}+ \varUpsilon _{3} \rho \bigr)\,d\rho \,dr \\& \qquad {}+\frac{ (\lambda _{2}-\varUpsilon _{1} ) (\varUpsilon _{3}-\xi _{1} )}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}- \xi _{1} )} \int _{0}^{1} \int _{0}^{1}H (\omega ,\varUpsilon _{1}, \xi _{1},\lambda _{2},\varUpsilon _{3};r,\rho ) \\& \qquad {}\times\varPhi _{r\rho } \bigl( (1-r ) \varUpsilon _{1}+\lambda _{2}r, (1-\rho )\xi _{1}+ \varUpsilon _{3} \rho \bigr)\,d\rho \,dr \\& \qquad {}+\frac{ (\varUpsilon _{1}-\lambda _{1} ) (\xi _{2}-\varUpsilon _{3} )}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{0}^{1} \int _{0}^{1} H (\omega ,\lambda _{1}, \varUpsilon _{3},\varUpsilon _{1},\xi _{2};r,\rho ) \\& \qquad {}\times\varPhi _{r\rho } \bigl( (1-r ) \lambda _{1}+\varUpsilon _{1}r, (1-\rho )\varUpsilon _{3}+ \xi _{2} \rho \bigr)\,d\rho \,dr \\& \qquad {}+\frac{ (\lambda _{2}-\varUpsilon _{1} ) (\xi _{2}-\varUpsilon _{3} )}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}- \xi _{1} )} \int _{0}^{1} \int _{0}^{1}H (\omega ,\varUpsilon _{1}, \varUpsilon _{3},\lambda _{2},\xi _{2};r,\rho ) \\& \qquad {}\times\varPhi _{r\rho } \bigl( (1-r ) \varUpsilon _{1}+\lambda _{2}r, (1-\rho )\varUpsilon _{3}+ \xi _{2} \rho \bigr)\,d\rho \,dr, \end{aligned}$$
(2.1)

where

$$\begin{aligned}& H (w,\varUpsilon _{1},\gamma ,\beta ,\epsilon ;r,\rho ) \\& \quad = \int _{ ( 1-r )\alpha +\beta r}^{\lambda _{2}} \int _{ (1-\rho )\gamma +\epsilon \rho }^{\xi _{2}} (\lambda _{2}-\mu ) ( \xi _{2}-\nu ) \omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {}- \int _{ (1-r )\alpha +\beta r}^{\lambda _{2}} \int _{\xi _{1}} ^{ (1-z ) \gamma +\epsilon \rho } (\lambda _{2}-\mu ) (\nu -\xi _{1} )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{ (1-r )\alpha +\beta r} \int _{ (1-\rho )\gamma +\epsilon \rho }^{\xi _{2}} (\mu - \lambda _{1} ) (\xi _{2}-\nu )\omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\lambda _{1}}^{ (1-r )\alpha +\beta r} \int _{\xi _{1}} ^{ (1-\rho )\gamma +\epsilon \rho } (\mu -\lambda _{1} ) (\nu -\xi _{1} )\omega (\mu ,\nu )\,d\nu \,d\mu \end{aligned}$$

and \((\alpha ,\gamma ), (\beta ,\epsilon ) \in [\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\).

Proof

Let

$$ \sigma (\delta )= \textstyle\begin{cases} 0, & \delta < 0, \\ 1, & \delta >0. \end{cases} $$

Then we clearly see that

$$\begin{aligned}& \varPhi (\mu ,\nu )-\varPhi (\lambda _{1},\nu )- \varPhi (\mu ,\xi _{1} )+\varPhi (\lambda _{1},\xi _{1} ) \\& \quad = \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\sigma (\mu -\varrho )\sigma (\nu - \varsigma )\varPhi _{\varrho \varsigma } (\varrho ,\varsigma )\,d\varsigma \,d\varrho , \end{aligned}$$
(2.2)
$$\begin{aligned}& \varPhi (\mu ,\nu )-\varPhi (\lambda _{1},\nu )- \varPhi (\mu ,\xi _{2} )+\varPhi (\lambda _{1},\xi _{2} ) \\& \quad =- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\sigma (\mu -\varrho ) \sigma ( \varsigma - \nu )\varPhi _{\varrho \varsigma } (\varrho ,\varsigma )\,d\varsigma \,d \varrho , \end{aligned}$$
(2.3)
$$\begin{aligned}& \varPhi (\mu ,\nu )-\varPhi (\lambda _{2},\nu )- \varPhi (\mu ,\xi _{1} )+\varPhi (\lambda _{2},\xi _{1} ) \\& \quad =- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\sigma (\varrho -\mu ) \sigma (\nu -\varsigma )\varPhi _{\varrho \varsigma } (\varrho ,\varsigma )\,d\varsigma \,d\varrho \end{aligned}$$
(2.4)

and

$$\begin{aligned}& \varPhi (\mu ,\nu )-\varPhi (\lambda _{2},\nu )- \varPhi (\mu ,\xi _{2} )+\varPhi (\lambda _{2},\xi _{2} ) \\& \quad = \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\sigma (\varrho -\mu )\sigma ( \varsigma - \nu )\varPhi _{\varrho \varsigma } (\varrho ,\varsigma )\,d\varrho \,d \varsigma . \end{aligned}$$
(2.5)

It follows from (2.2) that

$$\begin{aligned}& \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}-\mu ) ( \xi _{2}-\nu )\varPhi (\mu , \nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}-\mu ) ( \xi _{2}-\nu ) \varPhi (\lambda _{1},\nu )\omega (\mu ,\nu ) \,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}-\mu ) ( \xi _{2}-\nu ) \varPhi (\mu ,\xi _{1} )\omega (\mu ,\nu ) \,d \nu \,d\mu \\& \qquad {}+\varPhi (\lambda _{1},\xi _{1} ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}-\mu ) ( \xi _{2}-\nu ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \quad = \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}-\mu ) ( \xi _{2}-\nu ) \biggl( \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \sigma (\mu -\varrho )\sigma (\nu -\varsigma ) \varPhi _{\varrho \varsigma } (\varrho ,\varsigma )\,d\varsigma \,d\varrho \biggr) \\& \qquad {}\times\omega (\mu ,\nu )\,d\nu \,d\mu \\& \quad = \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl( \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} (\lambda _{2}-\mu ) ( \xi _{2}-\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \biggr)\varPhi _{\varrho \varsigma } (\varrho ,\varsigma )\,d\varsigma \,d\varrho . \end{aligned}$$
(2.6)

Similarly, from (2.3)–(2.5) we have

$$\begin{aligned}& \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}-\mu ) ( \nu -\xi _{1} ) \varPhi (\mu , \nu ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} ( \lambda _{2}-\mu ) ( \nu -\xi _{1} ) \varPhi (\lambda _{1},\nu )\omega (\mu ,\nu ) \,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}-\mu ) ( \nu -\xi _{1} ) \varPhi (\mu ,\xi _{1} )\omega (\mu ,\nu )\,d \nu \,d\mu \\& \qquad {}+\varPhi (\lambda _{1},\xi _{2} ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}-\mu ) ( \nu -\xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \quad =- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl( \int _{\varrho }^{\lambda _{2}} \int _{\xi _{1}}^{\varsigma } (\lambda _{2}-\mu ) ( \nu -\xi _{1} )\omega (\mu ,\nu )\,d\nu \,d\mu \biggr)\varPhi _{\varrho \varsigma } (\varrho ,\varsigma )\,d\varsigma \,d\varrho , \end{aligned}$$
(2.7)
$$\begin{aligned}& \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) ( \xi _{2}-\nu )\varPhi (\mu , \nu )\omega ( \mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) ( \xi _{2}-\nu ) \varPhi (\lambda _{2},\nu )\omega (\mu ,\nu ) \,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) ( \xi _{2}-\nu ) \varPhi (\mu ,\xi _{1} )\omega (\mu ,\nu )\,d \nu \,d\mu \\& \qquad {}+\varPhi (\lambda _{2},\xi _{1} ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) ( \xi _{2}-\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \quad =- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl( \int _{\lambda _{1}}^{\varrho } \int _{\varsigma }^{\xi _{2}} (\mu -\lambda _{1} ) ( \xi _{2}-\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \biggr)\varPhi _{\varrho \varsigma } (\varrho ,\varsigma )\,d\varsigma \,d\varrho \end{aligned}$$
(2.8)

and

$$\begin{aligned}& \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) ( \nu -\xi _{1} )\varPhi (\mu , \nu ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) ( \nu -\xi _{1} ) \varPhi (\lambda _{2},\nu )\omega (\mu ,\nu ) \,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) ( \nu -\xi _{1} ) \varPhi (\mu ,\xi _{2} )\omega (\mu ,\nu )\,d \nu \,d\mu \\& \qquad {}+\varPhi (\lambda _{2},\xi _{2} ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) ( \nu -\xi _{1} )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \quad = \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl( \int _{\lambda _{1}}^{\varrho } \int _{\xi _{1}}^{\varsigma } (\mu -\lambda _{1} ) (\nu -\xi _{1} )\omega (\mu ,\nu )\,d\nu \,d\mu \biggr)\varPhi _{\varrho \varsigma } (\varrho ,\varsigma )\,d\varsigma \,d\varrho . \end{aligned}$$
(2.9)

From (2.6)–(2.9), we get

$$\begin{aligned}& \frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \biggl[\varPhi (\lambda _{1},\xi _{1} ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}- \mu ) ( \xi _{2}-\nu )w (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+\varPhi (\lambda _{1},\xi _{2} ) \int _{\lambda _{1}}^{ \lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}-\mu ) ( \nu -\xi _{1} )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+\varPhi (\lambda _{2},\xi _{1} ) \int _{\lambda _{1}} ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) ( \xi _{2}-\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+\varPhi (\lambda _{2},\xi _{2} ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} ( \mu -\lambda _{1} ) (\nu -\xi _{1} )\omega ( \mu ,\nu )\,d\nu \,d\mu \biggr] \\& \qquad {}-\frac{1}{\xi _{2}-\xi _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\xi _{2}-\nu ) \varPhi ( \mu , \xi _{1} )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\frac{1}{\xi _{2}-\xi _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\nu -\xi _{1} )\varPhi ( \mu , \xi _{2} )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}-\mu ) \varPhi (\lambda _{1},\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) \varPhi (\lambda _{1},\nu ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\mu ,\nu )\omega (\mu ,\nu ) \,d\nu \,d\mu \\& \quad =\frac{1}{ ( \lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}} ^{\xi _{2}} \biggl[ \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} (\lambda _{2}-\mu ) ( \xi _{2}-\nu ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\varrho }^{\lambda _{2}} \int _{\xi _{1}}^{\varsigma } (\lambda _{2}- \mu ) (\nu -\xi _{1} )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\varrho } \int _{\varsigma }^{\xi _{2}} (\mu - \lambda _{1} ) (\xi _{2}-\nu )\omega (\mu , \nu ) \,d\nu \,d\mu \\& \qquad {}+ \int _{\lambda _{1}}^{\varrho } \int _{\xi _{1}}^{\varsigma } (\mu - \lambda _{1} ) (\nu -\xi _{1} )\omega (\mu , \nu )\,d\nu \,d\mu \biggr] \varPhi _{\varrho \varsigma } (\varrho ,\varsigma )\,d\varsigma \,d\varrho \end{aligned}$$
(2.10)

and

$$\begin{aligned}& \frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl[ \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} (\lambda _{2}-\mu ) ( \xi _{2}-\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\varrho }^{\lambda _{2}} \int _{\xi _{1}}^{\varsigma } (\lambda _{2}- \mu ) (\nu -\xi _{1} )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\varrho } \int _{\varsigma }^{\xi _{2}} (\mu - \lambda _{1} ) (\xi _{2}-\nu )\omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\lambda _{1}}^{\varrho } \int _{\xi _{1}}^{\varsigma } (\mu - \lambda _{1} ) (\nu -\xi _{1} )\omega (\mu , \nu ) \,d\nu \,d\mu \biggr]\varPhi _{\varrho \varsigma } (\varrho , \varsigma )\,d\varsigma \,d\varrho \\& \quad =\frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\xi _{1}}^{ \varUpsilon _{3}} \biggl[ \int _{\varrho }^{\lambda _{2}} \int _{\varsigma } ^{\xi _{2}} (\lambda _{2}-\mu ) ( \xi _{2}-\nu ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\varrho } \int _{\varsigma }^{\xi _{2}} (\mu - \lambda _{1} ) (\xi _{2}-\nu )\omega (\mu , \nu )\,d\nu \,d\mu - \int _{\varrho }^{\lambda _{2}} \int _{\xi _{1}} ^{\varsigma } (\lambda _{2}-\mu ) (\nu -\xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\lambda _{1}}^{\varrho } \int _{\xi _{1}}^{\varsigma } (\mu - \lambda _{1} ) (\nu -\xi _{1} )\omega (\mu , \nu )\,d\nu \,d\mu \biggr]\varPhi _{\varrho \varsigma } (\varrho ,\varsigma )\,d\varsigma \,d\varrho \\& \qquad {}+\frac{1}{ (\lambda _{2}-\lambda _{1} ) ( \xi _{2}-\xi _{1} )} \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{ \varUpsilon _{3}} \biggl[ \int _{\varrho }^{\lambda _{2}} \int _{\varsigma } ^{\xi _{2}} (\lambda _{2}-\mu ) ( \xi _{2}-\nu ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\varrho } \int _{\varsigma }^{\xi _{2}} (\mu - \lambda _{1} ) (\xi _{2}-\nu )\omega (\mu , \nu )\,d\nu \,d\mu - \int _{\varrho }^{\lambda _{2}} \int _{\xi _{1}} ^{\varsigma } (\lambda _{2}-\mu ) (\nu -\xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\lambda _{1}}^{\varrho } \int _{\xi _{1}}^{\varsigma } (\mu - \lambda _{1} ) (\nu -\xi _{1} )\omega (\mu , \nu )\,d\nu \,d\mu \biggr]\varPhi _{\varrho \varsigma } (\varrho ,\varsigma )\,d\varsigma \,d\varrho \\& \qquad {}+\frac{1}{ ( \lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\varUpsilon _{3}} ^{\xi _{2}} \biggl[ \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} (\lambda _{2}-\mu ) ( \xi _{2}-\nu ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\varrho } \int _{\varsigma }^{\xi _{2}} (\mu - \lambda _{1} ) (\xi _{2}-\nu )\omega (\mu , \nu )\,d\nu \,d\mu - \int _{\varrho }^{\lambda _{2}} \int _{\xi _{1}} ^{\varsigma } (\lambda _{2}-\mu ) (\nu -\xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\lambda _{1}}^{\varrho } \int _{\xi _{1}}^{\varsigma } (\mu -\lambda _{1} ) (\nu -\xi _{1} )\omega (\mu ,\nu )\,d\nu \,d\mu \biggr]\varPhi _{\varrho \varsigma } (\varrho ,\varsigma )\,d\varsigma \,d\varrho \\& \qquad {}+\frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\varUpsilon _{3}} ^{\xi _{2}} \biggl[ \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} (\lambda _{2}-\mu ) ( \xi _{2}-\nu ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\varrho } \int _{\varsigma }^{\xi _{2}} (\mu - \lambda _{1} ) (\xi _{2}-\nu )\omega ( \mu , \nu )\,d\nu \,d\mu - \int _{\varrho }^{\lambda _{2}} \int _{\xi _{1}} ^{\varsigma } (\lambda _{2}-\mu ) (\nu -\xi _{1} ) \omega (\mu ,\nu ) \,d\nu \,d\mu \\& \qquad {}+ \int _{\lambda _{1}}^{\varrho } \int _{\xi _{1}}^{\varsigma } (\mu - \lambda _{1} ) (\nu -\xi _{1} )\omega (\mu , \nu )\,d\nu \,d\mu \biggr]\varPhi _{\varrho \varsigma } (\varrho ,\varsigma )\,d\varsigma \,d\varrho . \end{aligned}$$
(2.11)

Therefore, inequality (2.1) follows from (2.10) and (2.11). □

Remark 2.3

Let \(\omega (\mu ,\nu )=\frac{1}{ (\lambda _{2}- \lambda _{1} ) (\xi _{2}-\xi _{1} )}\). Then (2.1) reduces to

$$\begin{aligned}& \frac{\varPhi (\lambda _{1},\xi _{1} )+\varPhi (\lambda _{1}, \xi _{2} ) +\varPhi (\lambda _{2},\xi _{1} )+\varPhi (\lambda _{2},\xi _{2} )}{4} \\& \qquad {}+\frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\frac{1}{2 ( \lambda _{2}-\lambda _{1} ) } \int _{\lambda _{1}}^{\lambda _{2}} \bigl[\varPhi (\mu ,\xi _{1} )+ \varPhi (\mu ,\xi _{2} ) \bigr]\,d\mu \\& \qquad {}- \frac{1}{2 (\xi _{2}-\xi _{1} )} \int _{\lambda _{1}}^{\lambda _{2}} \bigl[\varPhi (\lambda _{1},\nu ) +\varPhi (\lambda _{2},\nu ) \bigr]\,d\mu \\& \quad = \frac{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )}{16} \biggl[ \int _{0}^{1} \int _{0}^{1}\varrho \varsigma \varPhi _{\varrho \varsigma } \biggl(\frac{1-\varrho }{2}\lambda _{1}+ \frac{1+\varrho }{2}\lambda _{2}, \frac{1-\varsigma }{2}\xi _{1}+\frac{1+\varsigma }{2}\xi _{2} \biggr)\,d\varsigma \,d\varrho \\& \qquad {}+ \int _{0}^{1} \int _{0}^{1} ( -\varrho )\varsigma \varPhi _{\varsigma \varrho } \biggl(\frac{1+\varrho }{2}\lambda _{1} + \frac{1- \varrho }{2}\lambda _{2},\frac{1-\varsigma }{2}\xi _{1}+\frac{1+\varsigma }{2}\xi _{2} \biggr)\,d\varsigma \,d\varrho \\& \qquad {}+ \int _{0}^{1} \int _{0}^{1}\varrho (-\varsigma ) \varPhi _{\varrho \varsigma } \biggl(\frac{1-\varrho }{2}\lambda _{1}+ \frac{1+ \varrho }{2}\lambda _{2},\frac{1+\varsigma }{2}\xi _{1} +\frac{1-\varsigma }{2}\xi _{2} \biggr)\,d\varsigma \,d\varrho \\& \qquad {}+ \int _{0}^{1} \int _{0}^{1} (-\varsigma ) (- \varrho ) \varPhi _{\varsigma \varrho } \biggl(\frac{1+\varrho }{2} \lambda _{1}+ \frac{1-\varrho }{2} \lambda _{2},\frac{1+\varsigma }{2}\xi _{1}+\frac{1-\varsigma }{2}\xi _{2} \biggr)\,d\varsigma \,d\varrho \biggr]. \end{aligned}$$
(2.12)

The identity (2.12) was established in [75].

Corollary 2.4

If the function \(\omega (\mu ,\nu )\)is symmetric with respect to \(\frac{\lambda _{1}+\lambda _{2}}{2}\)and \(\frac{\xi _{1}+\xi _{2}}{2}\)on the co-ordinates. Then Lemma 2.2leads to

$$\begin{aligned}& \frac{\varPhi (\lambda _{1},\xi _{1} )+\varPhi (\lambda _{1}, \xi _{2} )+\varPhi (\lambda _{2},\xi _{1} ) +\varPhi (\lambda _{2},\xi _{2} )}{4}+ \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\mu ,\nu ) \omega (\mu ,\nu ) \,d\nu \,d\mu \\& \qquad {}-\frac{1}{ \xi _{2}-\xi _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\xi _{2}-\nu )\varPhi ( \mu , \xi _{1} )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\frac{1}{\xi _{2}-\xi _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\nu -\xi _{1} )\varPhi ( \mu ,\xi _{2} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}-\mu ) \varPhi (\lambda _{2},\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}} ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) \varPhi (\lambda _{2},\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \quad = \int _{0}^{1} \int _{0}^{1}H (\omega ,\lambda _{1},\xi _{1},\lambda _{2},\xi _{2};\varrho ,\varsigma )\varPhi _{\varrho \varsigma } \bigl(\lambda _{1}\varrho + (1-\varrho )\lambda _{2},\xi _{1}\varsigma + (1-\varsigma )\xi _{2} \bigr)\,d\varsigma \,d\varrho . \end{aligned}$$
(2.13)

Lemma 2.5

Let \(\mu \in [\lambda _{1},\lambda _{2} ]\), \(\nu \in [\xi _{1},\xi _{2} ]\), \(A: C ( [\lambda _{1},\lambda _{2} ] \times [\xi _{1},\xi _{2} ] )\rightarrow \mathbb{R}\)be a positive linear functional, \(e_{i} (\mu )=\mu ^{i}\)and \(k_{j} (\nu )=\nu ^{j}\)be the monomials \((i, j\in \mathbb{N})\), andgbe a co-ordinated convex function on \([\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\). Then

$$\begin{aligned}& A \bigl(g (e_{1}, k_{1} ) \bigr) \\& \quad \leq \frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \bigl[A \bigl( (\lambda _{2}-e_{1} ) (\xi _{2}-k_{1} ) \bigr)g (\lambda _{1},\xi _{1} )+A \bigl( (\lambda _{2}-e_{1} ) (k_{1}-\xi _{1} ) \bigr) g (\lambda _{1},\xi _{2} ) \\& \qquad {}+A \bigl( (e_{1}-\lambda _{1} ) (\xi _{2}-k_{1} ) \bigr)g (\lambda _{2},\xi _{1} ) +A \bigl( (e_{1}-\lambda _{1} ) (k_{1}-\xi _{1} ) \bigr)g (\lambda _{2},\xi _{2} ) \bigr]. \end{aligned}$$
(2.14)

Proof

It follows from the convexity of g on the co-ordinates that

$$\begin{aligned} g (e_{1},k_{1} ) \leq& \frac{ (\lambda _{2}-e_{1} ) g (\lambda _{1}, k_{1} )+ (e_{1}-\lambda _{1} ) g (\lambda _{2},k_{1} )}{\lambda _{2}-\lambda _{1}} \\ \leq& \frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \bigl[ (\lambda _{2}-e_{1} ) (\xi _{2}-k _{1} )g (\lambda _{1},\xi _{1} ) + (\lambda _{2}-e _{1} ) (k_{1}-\xi _{1} )g (\lambda _{1},\xi _{2} ) \\ &{}+ (e_{1}-\lambda _{1} ) (\xi _{2}-k_{1} ) g (\lambda _{2},\xi _{1} )+ (e_{1}-\lambda _{1} ) (k_{1}-\xi _{1} )g (\lambda _{2},\xi _{2} ) \bigr]. \end{aligned}$$
(2.15)

Therefore, inequality (2.14) follows from (2.15) and the assumption of the functional A. □

Main results

In order to provide compact demonstration, we use the notations for our coming results as follows:

$$\begin{aligned}& B_{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \quad = \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\xi _{1}}^{\varUpsilon _{3}} (\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu )^{2}\omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\varUpsilon _{3}}^{\lambda _{2}} (\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu ) ^{2}\omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\varUpsilon _{1}}^{ \lambda _{2}} \int _{\xi _{1}}^{\varUpsilon _{3}} (\varUpsilon _{1}-\mu ) ^{2} (\varUpsilon _{3}-\nu )^{2}\omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\varUpsilon _{3}}^{\xi _{2}} (\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu )^{2}\omega (\mu , \nu )\,d\nu \,d\mu , \end{aligned}$$
(3.1)
$$\begin{aligned}& B_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \quad = \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\xi _{1}}^{\varUpsilon _{3}} (\varUpsilon _{1}-\mu ) (\varUpsilon _{3}-\nu )^{2}\omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\varUpsilon _{3}}^{\xi _{2}} (\varUpsilon _{1}-\mu ) ( \varUpsilon _{3}-\nu )^{2}\omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\varUpsilon _{3}} (\varUpsilon _{1}-\mu ) (\varUpsilon _{3}-\nu )^{2}\omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\varUpsilon _{3}}^{\xi _{2}} (\varUpsilon _{1}-\mu ) ( \varUpsilon _{3}-\nu )^{2}\omega ( \mu ,\nu )\,d\nu \,d\mu , \end{aligned}$$
(3.2)
$$\begin{aligned}& B_{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \quad = \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\xi _{1}}^{\varUpsilon _{3}} (\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu )\omega (\mu , \nu )\,d\nu \,d \mu \\& \qquad {}- \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\varUpsilon _{3}}^{\xi _{2}} (\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu ) \omega (\mu , \nu )\,d\nu \,d \mu \\& \qquad {}- \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\xi _{1}} ^{\varUpsilon _{3}} (\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu )\omega (\mu ,\nu )\,d\nu \,d \mu \\& \qquad {}+ \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\varUpsilon _{3}}^{\xi _{2}} (\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu )\omega (\mu , \nu )\,d\nu \,d \mu \end{aligned}$$
(3.3)

and

$$\begin{aligned}& B_{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \quad = \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\xi _{1}}^{\varUpsilon _{3}} (\varUpsilon _{1}-\mu ) (\varUpsilon _{3}-\nu )\omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\varUpsilon _{3}}^{\xi _{2}} (\varUpsilon _{1}-\mu ) ( \varUpsilon _{3}-\nu )\omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\varUpsilon _{3}} (\varUpsilon _{1}-\mu ) (\varUpsilon _{3}-\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\varUpsilon _{3}}^{\xi _{2}} (\varUpsilon _{1}-\mu ) ( \varUpsilon _{3}-\nu )\omega (\mu , \nu )\,d\nu \,d\mu . \end{aligned}$$
(3.4)

Theorem 3.1

Let \(\varOmega \subseteq \mathbb{R}^{2}\), \(\varOmega ^{\circ }\)be the interior ofΩ, \(\lambda _{1}<\lambda _{2}\)and \(\xi _{1}<\xi _{2}\)such that \([\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ] \subseteq \varOmega ^{\circ }\), \(\varPhi :\varOmega \rightarrow \mathbb{R}\)be a twice partially differentiable mapping on \(\varOmega ^{\circ }\)such that \(\varPhi _{\varrho \varsigma }\in L ( [\lambda _{1},\lambda _{2} ] \times [\xi _{1},\xi _{2} ] )\)and \(\vert \varPhi _{ \varrho \varsigma } \vert \)is co-ordinated convex on \([\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\), and \(\omega : [\lambda _{1},\lambda _{2} ] \times [\xi _{1},\xi _{2} ]\rightarrow [0,\infty )\)be a continuous mapping. Then one has

$$\begin{aligned}& \biggl\vert \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \varPhi (\mu ,\nu )\omega (\mu , \nu )\,d\nu \,d\mu - \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\varUpsilon _{1},\nu ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}} ^{\xi _{2}}\varPhi (\mu ,\varUpsilon _{3} ) \omega (\mu , \nu )\,d\nu \,d\mu +\varPhi (\varUpsilon _{1},\varUpsilon _{3} ) \biggr\vert \\& \quad \leq \frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \bigl[ \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{1}, \xi _{1} ) \bigr\vert A_{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{1},\xi _{2} ) \bigr\vert A_{2} (\lambda _{1},\xi _{1}, \lambda _{2},\xi _{2} ) \\& \qquad {}+ \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{2},\xi _{1} ) \bigr\vert A_{3} (\lambda _{1},\xi _{1},\lambda _{2}, \xi _{2} )+ \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{2},\xi _{2} ) \bigr\vert A_{4} (\lambda _{1},\xi _{1}, \lambda _{2},\xi _{2} ) \bigr], \end{aligned}$$
(3.5)

where

$$\begin{aligned}& A_{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \quad = \frac{1}{4}B_{1} ( \lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) +\frac{ (\lambda _{2}-\varUpsilon _{1} )}{2}B_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \qquad {}+\frac{ (\xi _{2}-\varUpsilon _{3} )}{2}B_{3} (\lambda _{1}, \xi _{1},\lambda _{2},\xi _{2} ) + (\lambda _{2}-\varUpsilon _{1} ) (\xi _{2}-\varUpsilon _{3} )B_{4} (\lambda _{1},\xi _{1}, \lambda _{2},\xi _{2} ), \\& A_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \quad = \frac{1}{4}B_{1} ( \lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )+\frac{ (\lambda _{2}-\varUpsilon _{1} )}{2}B_{2} (\lambda _{1}, \xi _{1},\lambda _{2},\xi _{2} ) \\& \qquad {}+\frac{ (\varUpsilon _{3}-\xi _{1} )}{2}B_{3} (\lambda _{1}, \xi _{1},\lambda _{2},\xi _{2} ) + (\lambda _{2}-\varUpsilon _{1} ) (\varUpsilon _{3}-\xi _{1} )B_{4} (\lambda _{1},\xi _{1}, \lambda _{2},\xi _{2} ), \\& A_{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \quad = \frac{1}{4}B_{1} ( \lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )+\frac{ (\varUpsilon _{1}-\lambda _{1} )}{2}B_{2} (\lambda _{1}, \xi _{1},\lambda _{2},\xi _{2} ) \\& \qquad {}+\frac{ (\xi _{2}-\varUpsilon _{3} )}{2}B_{3} (\lambda _{1}, \xi _{1},\lambda _{2},\xi _{2} ) + (\varUpsilon _{1}-\lambda _{1} ) (\xi _{2}-\varUpsilon _{3} )B_{4} (\lambda _{1},\xi _{1}, \lambda _{2},\xi _{2} ) \end{aligned}$$

and

$$\begin{aligned}& A_{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \quad = \frac{1}{4}B_{1} ( \lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) +\frac{ (\varUpsilon _{1}-\lambda _{1} )}{2}B_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \qquad {}+\frac{ (\varUpsilon _{3}-\xi _{1} )}{2}B_{3} (\lambda _{1}, \xi _{1},\lambda _{2},\xi _{2} )+ (\varUpsilon _{1}-\lambda _{1} ) (\varUpsilon _{3}-\xi _{1} )B_{4} (\lambda _{1},\xi _{1}, \lambda _{2},\xi _{2} ). \end{aligned}$$

Proof

We clearly see that

$$\begin{aligned}& \varPhi (\mu ,\nu )-\varPhi ( \varUpsilon _{1},\nu )- \varPhi (\mu ,\varUpsilon _{3} )+\varPhi (\varUpsilon _{1}, \varUpsilon _{3} ) \\& \quad = \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \bigl[\sigma (\mu -\varrho ) \sigma (\nu - \varsigma )-\sigma (\varUpsilon _{1}-\varrho )\sigma (\nu - \varsigma ) \\& \qquad {}-\sigma (\mu -\varrho )\sigma (\varUpsilon _{3}- \varsigma )+\sigma ( \varUpsilon _{1}-\varrho ) \sigma (\varUpsilon _{3}-\varsigma ) \bigr]\varPhi _{\varrho \varsigma } (\varrho ,\varsigma )\,d\varsigma \,d\varrho . \end{aligned}$$
(3.6)

It follows from (3.6) that

$$\begin{aligned}& \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \varPhi (\mu ,\nu )\omega (\mu ,\nu ) \,d\nu \,d\mu - \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\varUpsilon _{1},\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\mu ,\varUpsilon _{3} ) \omega (\mu ,\nu )\,d\nu \,d\mu +\varPhi (\varUpsilon _{1},\varUpsilon _{3} ) \\& \quad = \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl( \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu - \sigma (\varUpsilon _{1}- \varrho ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\sigma ( \varUpsilon _{3}-\varsigma ) \int _{\varrho } ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu + \sigma (\varUpsilon _{1}-\varrho ) \sigma (\varUpsilon _{3}- \varsigma ) \biggr) \\& \qquad {}\times\varPhi _{\varrho \varsigma } (\varrho ,\varsigma )\,d\varsigma \,d \varrho . \end{aligned}$$
(3.7)

From Lemma 2.5 and (3.7) we get

$$\begin{aligned}& \biggl\vert \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \varPhi (\mu ,\nu )\omega (\mu , \nu )\,d\nu \,d\mu - \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\varUpsilon _{1},\nu ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}} ^{\xi _{2}} \varPhi (\mu ,\varUpsilon _{3} )\omega (\mu , \nu )\,d\nu \,d\mu +\varPhi (\varUpsilon _{1},\varUpsilon _{3} ) \biggr\vert \\& \quad \leq \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl\vert \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu - \sigma (\varUpsilon _{1}-\varrho ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\sigma ( \varUpsilon _{3}-\varsigma ) \int _{\varrho } ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu + \sigma (\varUpsilon _{1}-\varrho ) \sigma (\varUpsilon _{3}- \varsigma ) \biggr\vert \bigl\vert \varPhi _{\varrho \varsigma } (\varrho ,\varsigma ) \bigr\vert \,ds\,dt \\& \quad \leq \frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \biggl[ \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{1}, \lambda _{2} ) \bigr\vert \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl\vert \int _{\varrho }^{ \lambda _{2}} \int _{\varsigma }^{d}\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \sigma (\varUpsilon _{1}-\varrho ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}}\omega (\mu ,\nu )\,d\nu \,d\mu-\sigma ( \varUpsilon _{3}-\varsigma ) \int _{\varrho } ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\omega ( \mu , \nu )\,d\nu \,d\mu \\& \qquad {} + \sigma (\varUpsilon _{1}-\varrho ) \sigma (\varUpsilon _{3}- \varsigma ) \biggr\vert (\lambda _{2}- \varrho ) (\xi _{2}-\varsigma )\,d\varsigma \,d\varrho \\& \qquad {}+ \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{1},\xi _{2} ) \bigr\vert \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl\vert \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}}\omega (\mu , \nu ) \,d\nu \,d\mu \\& \qquad {}- \sigma (\varUpsilon _{1}-\varrho ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu-\sigma (\varUpsilon _{3}-\varsigma ) \int _{\varrho } ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\omega ( \mu , \nu )\,d\nu \,d\mu \\& \qquad {} + \sigma (\varUpsilon _{1}-\varrho ) \sigma (\varUpsilon _{3}- \varsigma ) \biggr\vert (\lambda _{2}- \varrho ) (\varsigma -\xi _{1} )\,d\varsigma \,d\varrho \\& \qquad {}+ \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{2},\xi _{1} ) \bigr\vert \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl\vert \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {}- \sigma (\varUpsilon _{1}-\varrho ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu-\sigma ( \varUpsilon _{3}-\varsigma ) \int _{\varrho } ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {} + \sigma (\varUpsilon _{1}-\varrho ) \sigma (\varUpsilon _{3}- \varsigma ) \biggr\vert (\varrho - \lambda _{1} ) (\xi _{2}-\varsigma )\,d\varsigma \,d\varrho \\& \qquad {}+ \bigl\vert \varPhi _{\varrho \varsigma } ( \lambda _{2},\xi _{2} ) \bigr\vert \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl\vert \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {}- \sigma (\varUpsilon _{1}-\varrho ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu -\sigma (\varUpsilon _{3}-\varsigma ) \int _{\varrho }^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {}+ \sigma (\varUpsilon _{1}-\varrho ) \sigma (\varUpsilon _{3}- \varsigma ) \biggr\vert (\varrho - \lambda _{1} ) (\varsigma -\xi _{1} )\,d\varsigma \,d\varrho \biggr] \end{aligned}$$
(3.8)

and

$$\begin{aligned}& \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl\vert \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu - \sigma (\varUpsilon _{1}- \varrho ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}}\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\sigma (\varUpsilon _{3}-\varsigma ) \int _{\varrho } ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu + \sigma (\varUpsilon _{1}-\varrho ) \sigma (\varUpsilon _{3}- \varsigma ) \biggr\vert (\lambda _{2}- \varrho ) (\xi _{2}-\varsigma )\,d\varsigma \,d\varrho \\& \quad = \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\xi _{1}}^{\varUpsilon _{3}} \biggl( \int _{\lambda _{1}}^{\varrho } \int _{\xi _{1}}^{\varsigma } \omega (\mu , \nu )\,d\nu \,d\mu \biggr) (\lambda _{2}-\varrho ) (\xi _{2}-\varsigma )\,d \varsigma \,d\varrho \\& \qquad {}+ \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\varUpsilon _{3}} \biggl( \int _{\varrho }^{\lambda _{2}} \int _{\xi _{1}}^{\varsigma }\omega (\mu , \nu )\,d\nu \,d\mu \biggr) (\lambda _{2}-\varrho ) (\xi _{2}-\varsigma )\,d \varsigma \,d\varrho \\ & \qquad {}+ \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\varUpsilon _{3}}^{\xi _{2}} \biggl( \int _{\lambda _{1}}^{\varrho } \int _{\varsigma }^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu \biggr) (\lambda _{2}-\varrho ) (\xi _{2}-\varsigma )\,d \varsigma \,d\varrho \\ & \qquad {}+ \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\varUpsilon _{3}}^{\xi _{2}} \biggl( \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu \biggr) (\lambda _{2}-\varrho ) (\xi _{2}-\varsigma )\,d \varsigma \,d\varrho \\ & \quad =\frac{ (\xi _{2}-\varUpsilon _{3} )^{2} (\lambda _{2}- \varUpsilon _{1} )^{2}}{4} \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\xi _{1}}^{\varUpsilon _{3}}\omega (\mu ,\nu )\,d\nu \,d\mu \\ & \qquad {}- \frac{ (\xi _{2}-\varUpsilon _{3} )^{2} (\lambda _{2}- \varUpsilon _{1} )^{2}}{4} \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\varUpsilon _{3}}\omega (\mu ,\nu )\,d\nu \,d\mu \\ & \qquad {}-\frac{ (\xi _{2}-\varUpsilon _{3} )^{2} (\lambda _{2}- \varUpsilon _{1} )^{2}}{4} \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\varUpsilon _{3}}^{\xi _{2}}\omega (\mu ,\nu )\,d\nu \,d\mu \\ & \qquad {}+ \frac{ (\xi _{2}-\varUpsilon _{3} )^{2} (\lambda _{2}- \varUpsilon _{1} )^{2}}{4} \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\varUpsilon _{3}}^{\xi _{2}}\omega (\mu ,\nu )\,d\nu \,d\mu \\ & \qquad {}-\frac{ (\xi _{2}-\varUpsilon _{3} )^{2}}{2} \int _{\lambda _{1}} ^{\varUpsilon _{1}} \int _{\xi _{1}}^{\varUpsilon _{3}}\frac{ (\lambda _{2}- \mu )^{2}}{2}\omega (\mu , \nu )\,d\nu \,d\mu \\ & \qquad {}+\frac{ (\xi _{2}-\varUpsilon _{3} )^{2}}{2} \int _{\varUpsilon _{1}}^{ \lambda _{2}} \int _{\xi _{1}}^{\varUpsilon _{3}}\frac{ (\lambda _{2}- \mu )^{2}}{2}\omega (\mu , \nu )\,d\nu \,d\mu \\ & \qquad {}+\frac{ (\xi _{2}-\varUpsilon _{3} )^{2}}{2} \int _{\lambda _{1}} ^{\varUpsilon _{1}} \int _{\varUpsilon _{3}}^{\xi _{2}}\frac{ (\lambda _{2}- \mu )^{2}}{2}\omega (\mu , \nu )\,d\nu \,d\mu \\ & \qquad {}-\frac{ (\xi _{2}-\varUpsilon _{3} )^{2}}{2} \int _{\varUpsilon _{1}}^{ \lambda _{2}} \int _{\varUpsilon _{3}}^{\xi _{2}}\frac{ (\lambda _{2}- \mu )^{2}}{2}\omega (\mu , \nu )\,d\nu \,d\mu \\ & \qquad {}-\frac{ (\lambda _{2}-\varUpsilon _{1} )^{2}}{2} \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\xi _{1}}^{\varUpsilon _{3}}\frac{ (\xi _{2}-\nu )^{2}}{2}\omega (\mu , \nu )\,d\nu \,d\mu \\ & \qquad {}+\frac{ (\lambda _{2}-\varUpsilon _{1} )^{2}}{2} \int _{\varUpsilon _{1}} ^{\lambda _{2}} \int _{\xi _{1}}^{\varUpsilon _{3}}\frac{ (\xi _{2}- \nu )^{2}}{2}\omega (\mu , \nu )\,d\nu \,d\mu \\ & \qquad {}+\frac{ (\lambda _{2}-\varUpsilon _{1} )^{2}}{2} \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\varUpsilon _{3}}^{\xi _{2}}\frac{ (\xi _{2}-\nu )^{2}}{2}\omega (\mu , \nu )\,d\nu \,d\mu \\ & \qquad {}-\frac{ (\lambda _{2}-\varUpsilon _{1} )^{2}}{2} \int _{\varUpsilon _{1}} ^{\lambda _{2}} \int _{\xi _{1}}^{\varUpsilon _{3}}\frac{ (\xi _{2}- \nu )^{2}}{2}\omega (\mu , \nu )\,d\nu \,d\mu \\ & \qquad {}+ \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\xi _{1}}^{\varUpsilon _{3}}\frac{ (\xi _{2}-\nu )^{2} (\lambda _{2}-\mu )^{2}}{4} \omega (\mu ,\nu )\,d\nu \,d\mu \\ & \qquad {}- \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\varUpsilon _{3}}\frac{ (\xi _{2}-\nu ) ^{2} (\lambda _{2}-\nu )^{2}}{4}\omega (\mu , \nu )\,d\nu \,d\mu \\ & \qquad {}- \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\varUpsilon _{3}}^{\xi _{2}}\frac{ (\xi _{2}-\nu )^{2} (\lambda _{2}-\mu )^{2}}{4} \omega (\mu , \nu )\,d\nu \,d\mu \\ & \qquad {}+ \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\varUpsilon _{3}}^{\xi _{2}}\frac{ (\xi _{2}-\nu ) ^{2} (\lambda _{2}-\mu )^{2}}{4} \omega (\mu , \nu )\,d\nu \,d\mu . \end{aligned}$$
(3.9)

Equation (3.9) can be rewritten as

$$\begin{aligned}& \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl\vert \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu - \sigma (\varUpsilon _{1}- \varrho ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\sigma (\varUpsilon _{3}-\varsigma ) \int _{\varrho } ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu + \sigma (\varUpsilon _{1}-\varrho ) \sigma (\varUpsilon _{3}-s ) \biggr\vert \\& \qquad {}\times(\lambda _{2}- \varrho ) (\xi _{2}- \varsigma )\,d\varsigma \,d\varrho \\& \quad =\frac{1}{4}B_{1} ( \lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \frac{ (\lambda _{2}-\varUpsilon _{1} )}{2}B_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \frac{ (\xi _{2}- \varUpsilon _{3} )}{2}B_{3} (\lambda _{1},\xi _{1},\lambda _{2}, \xi _{2} ) \\& \qquad {}+ (\lambda _{2}-\varUpsilon _{1} ) (\xi _{2}- \varUpsilon _{3} )B _{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) =A_{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ). \end{aligned}$$
(3.10)

Similarly, we have

$$\begin{aligned}& \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl\vert \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu - \sigma (\varUpsilon _{1}- \varrho ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\sigma (\varUpsilon _{3}-\varsigma ) \int _{\varrho } ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu + \sigma (\varUpsilon _{1}-\varrho ) \sigma (\varUpsilon _{3}- \varsigma ) \biggr\vert \\& \qquad {}\times(\lambda _{2}- \varrho ) (\varsigma -\xi _{1} )\,d\varsigma \,d\varrho \\& \quad =\frac{1}{4}B_{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )+ \frac{ (\lambda _{2}-\varUpsilon _{1} )}{2}B_{2} (\lambda _{1}, \xi _{1},\lambda _{2},\xi _{2} )+ \frac{ (\varUpsilon _{3}-\xi _{1} )}{2}B_{3} (\lambda _{1}, \xi _{1},\lambda _{2},\xi _{2} ) \\& \qquad {}+ (\lambda _{2}-\varUpsilon _{1} ) (\varUpsilon _{3}-\xi _{1} )B _{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) =A_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ), \end{aligned}$$
(3.11)
$$\begin{aligned}& \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl\vert \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu - \sigma (\varUpsilon _{1}- \varrho ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\sigma (\varUpsilon _{3}-\varsigma ) \int _{\varrho } ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu + \sigma (\varUpsilon _{1}-\varrho ) \sigma (\varUpsilon _{3}- \varsigma ) \biggr\vert \\& \qquad {}\times (\lambda _{1}- \varrho ) (\xi _{2}-\varsigma )\,d\varsigma \,d\varrho \\& \quad =\frac{1}{4}B_{1} ( \lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \frac{ (\varUpsilon _{1}-\lambda _{1} )}{2}B_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \frac{ (\xi _{2}- \varUpsilon _{3} )}{2}B_{3} (\lambda _{1},\xi _{1},\lambda _{2}, \xi _{2} ) \\& \qquad {}+ (\varUpsilon _{1}-\lambda _{1} ) (\xi _{2}- \varUpsilon _{3} )B _{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) =A_{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \end{aligned}$$
(3.12)

and

$$\begin{aligned}& \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl\vert \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega ( \mu ,\nu )\,d\nu \,d\mu - \sigma (\varUpsilon _{1}- \varrho ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu ) \,d\nu \,d\mu \\& \qquad {}-\sigma (\varUpsilon _{3}-\varsigma ) \int _{\varrho } ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu + \sigma (\varUpsilon _{1}-\varrho ) \sigma (\varUpsilon _{3}- \varsigma ) \biggr\vert \\& \qquad {}\times(\lambda _{1}- \varrho ) (\varsigma -\xi _{1} )\,d\varsigma \,d\varrho \\& \quad =\frac{1}{4}B_{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \frac{ (\varUpsilon _{1}-\lambda _{1} )}{2}B_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \frac{ (\varUpsilon _{3}- \xi _{1} )}{2}B_{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \qquad {}+ (\varUpsilon _{1}-\lambda _{1} ) ( \varUpsilon _{3}-\xi _{1} )B _{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) =A_{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ). \end{aligned}$$
(3.13)

Therefore, inequality (3.5) follows from (3.8) and (3.10)–(3.13). □

Corollary 3.2

If all the conditions of Theorem 3.1are satisfied and \(\omega (\mu , \nu )\)is symmetric with respect to \(\frac{\lambda _{1}+\lambda _{2}}{2}\)and \(\frac{\xi _{1}+\xi _{2}}{2}\)on the co-ordinates. Then one has

$$\begin{aligned}& \biggl\vert \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\mu ,\nu )\omega (\mu ,\nu ) \,d\nu \,d\mu - \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi \biggl(\frac{\lambda _{1}+\lambda _{2}}{2}, \nu \biggr) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}} ^{\xi _{2}}\varPhi \biggl( \mu , \frac{\xi _{1}+\xi _{2}}{2} \biggr) \omega (\mu ,\nu )\,d\nu \,d\mu +\varPhi \biggl( \frac{\lambda _{1}+ \lambda _{2}}{2},\frac{\xi _{1}+\xi _{2}}{2} \biggr) \biggr\vert \\& \quad \leq \bigl[ \bigl\vert \varPhi _{\varrho \varsigma } ( \lambda _{1}, \xi _{1} ) \bigr\vert + \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{1},\xi _{2} ) \bigr\vert + \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{2},\xi _{1} ) \bigr\vert + \bigl\vert \varPhi _{\varrho \varsigma } ( \lambda _{2},\xi _{2} ) \bigr\vert \bigr] \\& \qquad {}\times \int _{\frac{\lambda _{1}+\lambda _{2}}{2}}^{\lambda _{2}} \int _{\frac{\xi _{1}+\xi _{2}}{2}}^{\xi _{2}} \biggl(\mu -\frac{\lambda _{1}+\lambda _{2}}{2} \biggr) \biggl(\nu -\frac{\xi _{1}+\xi _{2}}{2} \biggr) \omega (\mu ,\nu )\,d\nu \,d\mu. \end{aligned}$$
(3.14)

Proof

Making use of the hypothesis of Theorem 3.1 and the symmetry of the function \(\omega (\mu ,\nu )\) with respect to \(\frac{ \lambda _{1}+\lambda _{2}}{2}\) and \(\frac{\xi _{1}+\xi _{2}}{2}\) on the co-ordinates that the function \((\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu )^{2}\omega (\mu ,\nu )\) is symmetric with respect to \(\frac{\lambda _{1}+\lambda _{2}}{2}\) and \(\frac{\xi _{1}+\xi _{2}}{2}\) on the co-ordinates, the function \((\varUpsilon _{1}-\mu ) (\varUpsilon _{3}-\nu )^{2} \omega (\mu ,\nu )\) is symmetric with respect to \(\frac{\xi _{1}+\xi _{2}}{2}\) on the co-ordinates, and the function \((\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu ) \omega (\mu ,\nu )\) is symmetric with respect to \(\frac{\lambda _{1}+\lambda _{2}}{2}\) on the co-ordinates. Therefore,

$$\begin{aligned}& \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\xi _{1}}^{\varUpsilon _{3}} (\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu )^{2}\omega (\mu , \nu )\,d\nu \,d\mu \\& \quad = \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\varUpsilon _{3}}^{\xi _{2}} (\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu )^{2} \omega (\mu , \nu )\,d\nu \,d\mu \\& \quad = \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\varUpsilon _{3}} (\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu )^{2} \omega (\mu , \nu )\,d\nu \,d\mu \\& \quad = \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\varUpsilon _{3}}^{\xi _{2}} (\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu )^{2}\omega (\mu , \nu )\,d\nu \,d\mu , \\& \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\xi _{1}}^{\varUpsilon _{3}} (\varUpsilon _{1}-\mu ) (\varUpsilon _{3}-\nu )^{2}\omega (\mu , \nu )\,d\nu \,d\mu \\& \quad = \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\varUpsilon _{3}}^{\xi _{2}} (\varUpsilon _{1}-\mu ) ( \varUpsilon _{3}-\nu )^{2}\omega (\mu ,\nu )\,d\nu \,d\mu , \\& \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\varUpsilon _{3}} (\varUpsilon _{1}-\mu ) (\varUpsilon _{3}-\nu )^{2} \omega (\mu , \nu )\,d\nu \,d \mu \\& \quad = \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\varUpsilon _{3}}^{\xi _{2}} (\varUpsilon _{1}-\mu ) ( \varUpsilon _{3}-\nu )^{2}\omega (\mu ,\nu )\,d\nu \,d\mu , \\& \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\xi _{1}}^{\varUpsilon _{3}} (\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu )\omega (\mu , \nu )\,d\nu \,d \mu \\& \quad = \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\varUpsilon _{3}}^{\xi _{2}} (\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu )\omega (\mu ,\nu )\,d\nu \,d \mu \end{aligned}$$

and

$$ \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\varUpsilon _{3}} (\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu )\omega (\mu , \nu )\,d\nu \,d \mu = \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\varUpsilon _{3}}^{\xi _{2}} (\varUpsilon _{1}-\mu )^{2} (\varUpsilon _{3}-\nu )\omega (\mu ,\nu ) \,d\nu \,d \mu . $$

From the above equations, we obtain

$$ B_{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )=B_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) =B_{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )=0 $$

and

$$ B_{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )=4 \int _{\frac{\lambda _{1}+\lambda _{2}}{2}}^{b} \int _{\frac{\xi _{1}+\xi _{2}}{2}}^{d} \biggl(\mu -\frac{\lambda _{1}+ \lambda _{2}}{2} \biggr) \biggl(\nu -\frac{\xi _{1}+\xi _{2}}{2} \biggr) \omega (\mu ,\nu )\,d\nu \,d\mu . $$

Therefore, inequality (3.14) follows from (3.10) and the above quantities. □

Remark 3.3

Inequality (1.3) can be derived from (3.5) if

$$ \omega (\mu ,\nu )=\frac{g (\mu ,\nu )}{ \int _{\lambda _{1}}^{\lambda _{2}}\int _{\xi _{1}}^{\xi _{2}}g (\mu ,\nu )\,d\nu \,d\mu } $$

and \(g (\mu ,\nu )\) is symmetric with respect to \(\frac{\lambda _{1}+\lambda _{2}}{2}\) and \(\frac{\xi _{1}+\xi _{2}}{2}\) on the co-ordinates.

Theorem 3.4

Let \(q>1\), \(\varOmega \subseteq \mathbb{R}^{2}\), \(\varOmega ^{\circ }\)be the interior ofΩ, \(\lambda _{1}<\lambda _{2}\)and \(\xi _{1}<\xi _{2}\)such that \([\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\subseteq \varOmega ^{\circ }\), \(\varPhi :\varOmega \rightarrow \mathbb{R}\)be a twice partially differentiable mapping on \(\varOmega ^{\circ }\)such that \(\varPhi _{\varrho \varsigma } \in L ( [\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ] )\)and \(\vert \varPhi _{\varrho \varsigma } \vert ^{q}\)is co-ordinated convex on \([\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\), and \(\omega : [\lambda _{1}, \lambda _{2} ]\times [\xi _{1},\xi _{2} ]\rightarrow [0,\infty )\)be a continuous mapping. Then

$$\begin{aligned}& \biggl\vert \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\mu ,\nu ) \omega (\mu , \nu )\,d\nu \,d\mu - \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\varUpsilon _{1},\nu ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}} ^{\xi _{2}}\varPhi (\mu ,\varUpsilon _{3} )\omega (\mu , \nu )\,d\nu \,d\mu +\varPhi (\varUpsilon _{1},\varUpsilon _{3} ) \biggr\vert \\& \quad \leq 4^{1-\frac{1}{q}} \biggl( \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\varUpsilon _{3}}^{\lambda _{2}} (\mu -\varUpsilon _{1} ) (\nu -\varUpsilon _{3} ) \omega (\mu ,\nu )\,d\nu \,d\mu \biggr)^{1-\frac{1}{q}} \biggl(\frac{1}{ ( \lambda _{2}- \lambda _{1} ) (\xi _{2}-\xi _{1} )} \biggr)^{ \frac{1}{q}} \\& \qquad {}\times \bigl[ \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{1}, \xi _{1} ) \bigr\vert ^{q}A_{1} (\lambda _{1},\xi _{1}, \lambda _{2},\xi _{2} )+ \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{1},\xi _{2} ) \bigr\vert ^{q}A_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \qquad {}+ \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{2},\xi _{1} ) \bigr\vert ^{q}A_{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )+ \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{2},\xi _{2} ) \bigr\vert ^{q}A_{4} (\lambda _{1},\xi _{1}, \lambda _{2},\xi _{2} ) \bigr]^{\frac{1}{q}}, \end{aligned}$$
(3.15)

where \(A_{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )\), \(A_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )\), \(A_{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )\)and \(A_{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )\)are defined in Theorem 3.1.

Proof

It follows from (3.8) and the Hölder inequality that

$$\begin{aligned}& \biggl\vert \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \varPhi (\mu ,\nu )\omega (\mu , \nu )\,d\nu \,d\mu - \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\varUpsilon _{1},\nu ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}} ^{\xi _{2}}\varPhi (\mu ,\varUpsilon _{3} ) \omega ( \mu , \nu )\,d\nu \,d\mu +\varPhi (\varUpsilon _{1},\varUpsilon _{3} ) \biggr\vert \\& \quad \leq \biggl( \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl\vert \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}}\omega (\mu ,\nu )\,d\nu \,d\mu - \sigma (\varUpsilon _{1}-\varrho ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu ) \,d\nu \,d\mu \\& \qquad {}-\sigma ( \varUpsilon _{1}-\varsigma ) \int _{\varrho }^{\lambda _{2}} \int _{\xi _{1}}^{\lambda _{2}}\omega (\mu ,\nu )\,d\nu \,d\mu + \sigma (\varUpsilon _{1}-\varrho )\sigma (\varUpsilon _{3}- \varsigma ) \biggr\vert \,d\varsigma \,d\varrho \biggr)^{1-\frac{1}{q}} \\& \qquad {}\times \biggl( \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl\vert \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}}\omega (\mu ,\nu )\,d\nu \,d\mu - \sigma (\varUpsilon _{1}-\varrho ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}}\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\sigma ( \varUpsilon _{3}-\varsigma ) \int _{\varrho }^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu + \sigma (\varUpsilon _{1}-\varrho ) \sigma (\varUpsilon _{3}- \varsigma ) \biggr\vert \\& \qquad {}\times\bigl\vert \varPhi _{\varrho \varsigma } (\varrho ,\varsigma ) \bigr\vert ^{q}\,d\varsigma \,d\varrho \biggr) ^{\frac{1}{q}}. \end{aligned}$$
(3.16)

Making use of Lemma 2.5, we have

$$\begin{aligned}& \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl\vert \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu - \sigma (\varUpsilon _{1}- \varrho ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\sigma (\varUpsilon _{3}-\varsigma ) \int _{\varrho } ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu + \sigma (\varUpsilon _{1}-\varrho ) \sigma (\varUpsilon _{3}- \varsigma ) \biggr\vert \bigl\vert \varPhi _{\varrho \varsigma } (\varrho ,\varsigma ) \bigr\vert ^{q}\,d\varsigma \,d\varrho \\& \quad \leq \frac{1}{ ( \lambda _{2}-\lambda _{1} ) (\xi _{2}- \xi _{1} )} \bigl[ \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{1},\xi _{1} ) \bigr\vert ^{q}A_{1} (\lambda _{1},\xi _{1}, \lambda _{2},\xi _{2} ) + \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{1},\xi _{2} ) \bigr\vert ^{q}A_{2} (\lambda _{1}, \xi _{1},\lambda _{2},\xi _{2} ) \\& \qquad {}+ \bigl\vert \phi _{\varrho \varsigma } (\lambda _{2},\xi _{1} ) \bigr\vert ^{q}A_{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \bigl\vert \varPhi _{\varrho \varsigma } (\lambda _{2},\xi _{2} ) \bigr\vert ^{q}A_{4} (\lambda _{1},\xi _{1}, \lambda _{2},\xi _{2} ) \bigr]. \end{aligned}$$
(3.17)

On the other hand, we also have

$$\begin{aligned}& \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \biggl\vert \int _{\varrho }^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu - \sigma (\varUpsilon _{1}- \varrho ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\varsigma }^{\xi _{2}} \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\sigma (\varUpsilon _{3}-\varsigma ) \int _{\varrho } ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu + \sigma (\varUpsilon _{1}-\varrho ) \sigma (\varUpsilon _{3}- \varsigma ) \biggr\vert \,d\varsigma \,d\varrho \\& \quad = \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\xi _{1}}^{\varUpsilon _{3}} \biggl( \int _{\lambda _{1}}^{\varrho } \int _{\xi _{1}}^{\varsigma }\omega (\mu , \nu )\,d\nu \,d\mu \biggr)\,d\varsigma \,d\varrho \\& \qquad {}+ \int _{\varUpsilon _{1}} ^{\lambda _{2}} \int _{\xi _{1}}^{\varUpsilon _{3}} \biggl( \int _{\varrho }^{ \lambda _{2}} \int _{\xi _{1}}^{\varsigma }\omega (\mu ,\nu )\,d\nu \,d\mu \biggr) \,d\varsigma \,d\varrho \\& \qquad {}+ \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\varUpsilon _{3}}^{\xi _{2}} \biggl( \int _{\lambda _{1}}^{\varrho } \int _{\varsigma }^{\xi _{2}}\omega (\mu , \nu )\,d\nu \,d\mu \biggr)\,d\varsigma \,d\varrho \\& \qquad {}+ \int _{\varUpsilon _{1}} ^{\lambda _{2}} \int _{\varUpsilon _{3}}^{\xi _{2}} \biggl( \int _{\varrho }^{ \lambda _{2}} \int _{\varsigma }^{\xi _{2}}\omega (\mu ,\nu )\,d\nu \,d\mu \biggr)\,d\varsigma \,d\varrho \\& \quad =4 \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\varUpsilon _{3}}^{\xi _{2}} (\mu - \varUpsilon _{1} ) (\nu -\varUpsilon _{2} )\omega (\mu , \nu )\,d\nu \,d\mu . \end{aligned}$$
(3.18)

Therefore, inequality (3.15) follows from (3.16)–(3.18). □

Remark 3.5

If \(\omega (\mu ,\nu )\) is symmetric with respect to \(\frac{\lambda _{1}+\lambda _{2}}{2}\) and \(\frac{\xi _{1}+\xi _{2}}{2}\) on the co-ordinates, then inequality (3.15) leads to

$$\begin{aligned}& \biggl\vert \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi ( \mu ,\nu )\omega (\mu , \nu )\,d\nu \,d\mu - \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \varPhi \biggl(\frac{\lambda _{1}+\lambda _{2}}{2}, \nu \biggr)\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}} ^{\xi _{2}} \varPhi \biggl(\mu , \frac{\xi _{1}+\xi _{2}}{2} \biggr)\omega (\mu ,\nu )\,d\nu \,d\mu +\varPhi \biggl( \frac{\lambda _{1}+ \lambda _{2}}{2},\frac{\xi _{1}+\xi _{2}}{2} \biggr) \biggr\vert \\& \quad \leq 4 \biggl[\frac{ \vert \varPhi _{\varrho \varsigma } (\lambda _{1},\xi _{1} ) \vert ^{q} + \vert \varPhi _{\varrho \varsigma } (\lambda _{1},\xi _{2} ) \vert ^{q} + \vert \varPhi _{\varrho \varsigma } (\lambda _{2},\xi _{1} ) \vert ^{q} + \vert \varPhi _{\varrho \varsigma } (\lambda _{2},\xi _{2} ) \vert ^{q}}{4} \biggr]^{\frac{1}{q}} \\& \qquad {}\times \int _{\frac{\lambda _{1}+\lambda _{2}}{2}}^{\lambda _{2}} \int _{\frac{\xi _{1}+\xi _{2}}{2}}^{\xi _{2}} \biggl(\mu -\frac{\lambda _{1}+\lambda _{2}}{2} \biggr) \biggl(\nu -\frac{\xi _{1}+\xi _{2}}{2} \biggr) \omega (\mu ,\nu )\,d\nu \,d\mu. \end{aligned}$$
(3.19)

Remark 3.6

If \(g (\mu ,\nu )\) is symmetric with respect to \(\frac{\lambda _{1}+\lambda _{2}}{2}\) and \(\frac{\xi _{1}+\xi _{2}}{2}\) on the co-ordinates and

$$ \omega (\mu ,\nu )=\frac{g (\mu ,\nu )}{ \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}g (\mu ,\nu )\,d\nu \,d\mu }, $$

then inequality (3.15) gives the result proved in [75].

Next, we use the symbols for our upcoming results as follows:

$$\begin{aligned} \varPsi (\omega ,\varPhi ) =&\frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \biggl[\varPhi (\lambda _{1},\xi _{1} ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}-\mu ) ( \xi _{2}-\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\ &{}+\varPhi (\lambda _{1},\xi _{2} ) \int _{\lambda _{1}}^{ \lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}-\mu ) ( \nu -\xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\ &{}+\varPhi (\lambda _{2},\xi _{1} ) \int _{\lambda _{1}} ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) ( \xi _{2}-\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\ &{}+\varPhi (\lambda _{2},\xi _{2} ) \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} ( \mu - \lambda _{1} ) (\nu -\xi _{1} ) \omega ( \mu , \nu ) \,d\nu \,d\mu \biggr] \\ &{}+ \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\mu ,\nu ) \omega (\mu ,\nu ) \,d\nu \,d\mu \\ &{}-\frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}-\mu ) \varPhi (\lambda _{1},\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\ &{}- \frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}} ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) \varPhi (\lambda _{2},\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\ &{}-\frac{1}{\xi _{2}-\xi _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\xi _{2}-\nu )\varPhi ( \mu , \xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\ &{}- \frac{1}{\xi _{2}-\xi _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\nu -\xi _{1} )\varPhi ( \mu , \xi _{2} )\omega (\mu ,\nu )\,d\nu \,d\mu . \end{aligned}$$
(3.20)

From (3.20) we clearly see that

$$\begin{aligned}& \varPsi \biggl(\frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )},\varPhi \biggr) \\& \quad =\frac{\varPhi (\lambda _{1},\xi _{1} )+\varPhi (\lambda _{1},\xi _{2} ) +\varPhi (\lambda _{2},\xi _{1} )+\varPhi (\lambda _{2},\xi _{2} )}{4} \\& \qquad {}-\frac{1}{2 (\lambda _{2}-\lambda _{1} )} \int _{\lambda _{1}}^{\lambda _{2}} \bigl[\varPhi (\mu ,\xi _{2} )+ \varPhi (\mu ,\xi _{1} ) \bigr]\,d\mu \\& \qquad {}- \frac{1}{2 (\xi _{2}-\xi _{1} )} \int _{\xi _{1}}^{\xi _{2}} \bigl[\varPhi (\lambda _{1},\nu ) +\varPhi (\lambda _{2},\nu ) \bigr]\,d\nu \\& \qquad {}+\frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\mu ,\nu )\,d\nu \,d\mu . \end{aligned}$$
(3.21)

We also use the following notations:

$$\begin{aligned}& \sup \bigl\{ \varPhi _{r\rho } (\lambda _{1},\xi _{1} ), \varPhi _{r\rho } (\varUpsilon _{1},\xi _{1} ),\varPhi _{r\rho } (\lambda _{1},\varUpsilon _{3} ),\varPhi _{r\rho } (\varUpsilon _{1},\varUpsilon _{3} ) \bigr\} =\eta (\lambda _{1},\xi _{1}, \lambda _{2}, \xi _{2} ), \\& \sup \bigl\{ \varPhi _{r\rho } (\varUpsilon _{1},\xi _{1} ), \varPhi _{r\rho } (\varUpsilon _{1},\varUpsilon _{3} ),\varPhi _{r\rho } (\lambda _{2},\xi _{1} ),\varPhi _{r\rho } (\lambda _{2}, \varUpsilon _{3} ) \bigr\} =\eta _{2} (\lambda _{1},\xi _{1}, \lambda _{2},\xi _{2} ), \\& \sup \bigl\{ \varPhi _{r\rho } (\lambda _{1},\varUpsilon _{3} ), \varPhi _{r\rho } (\lambda _{1},\xi _{2} ),\varPhi _{r\rho } (\varUpsilon _{1},\varUpsilon _{3} ),\varPhi _{r\rho } (\varUpsilon _{1},\xi _{2} ) \bigr\} =\eta _{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ), \\& \sup \bigl\{ \varPhi _{r\rho } (\varUpsilon _{1},\varUpsilon _{3} ), \varPhi _{r\rho } (\varUpsilon _{1},\xi _{2} ),\varPhi _{r\rho } (\lambda _{2},\varUpsilon _{3} ),\varPhi _{r\rho } (\lambda _{2},\xi _{2} ) \bigr\} =\eta _{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ). \end{aligned}$$

The following results present uppermost estimates for \(\vert \varPsi (\omega ,\varPhi ) \vert \) if the function \(\varPhi (\mu ,\nu )\) is quasi-convex on the co-ordinates.

Theorem 3.7

Let \(\varOmega \subseteq \mathbb{R}^{2}\), \(\varOmega ^{\circ }\)be the interior ofΩ, \(\lambda _{1}<\lambda _{2}\)and \(\xi _{1}<\xi _{2}\)such that \([\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ] \subseteq \varOmega ^{\circ }\), \(\varPhi :\varOmega \rightarrow \mathbb{R}\)be a twice partially differentiable mapping on \(\varOmega ^{\circ }\)such that \(\varPhi _{\varrho \varsigma }\in L ( [\lambda _{1},\lambda _{2} ] \times [\xi _{1},\xi _{2} ] )\)and \(\vert \varPhi _{ \varrho \varsigma } \vert \)is quasi-convex on the co-ordinates on \([\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\), and \(\omega : [\lambda _{1},\lambda _{2} ] \times [\xi _{1},\xi _{2} ]\rightarrow [0,\infty )\)be a continuous mapping. Then

$$\begin{aligned} \bigl\vert \varPsi (\omega ,\varPhi ) \bigr\vert \leq& \frac{ (\varUpsilon _{1}-\lambda _{1} ) (\varUpsilon _{3}-\xi _{1} )}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \eta ( \lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\ &{}\times \int _{0} ^{1} \int _{0}^{1} \bigl\vert H (\omega ,\lambda _{1},\xi _{1}, \varUpsilon _{1},\varUpsilon _{3};r,\rho ) \bigr\vert \,d\rho \,dr \\ & {}+\frac{ (\lambda _{2}-\varUpsilon _{1} ) (\varUpsilon _{3}-\xi _{1} )}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )}\eta _{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\ &{}\times \int _{0}^{1} \int _{0}^{1} \bigl\vert H (\omega ,\varUpsilon _{1},\xi _{1},\lambda _{2},\varUpsilon _{3};r,\rho ) \bigr\vert \,d\rho \,dr \\ & {}+\frac{ (\varUpsilon _{1}-\lambda _{1} ) (\xi _{2}-\varUpsilon _{3} )}{ (\lambda _{2}-\lambda _{1} ) (\lambda _{2}-\xi _{1} )}\eta _{3} (\lambda _{1},\xi _{1},\lambda _{2}, \xi _{2} ) \\ &{}\times \int _{0}^{1} \int _{0}^{1} \bigl\vert H (\omega , \lambda _{1},\varUpsilon _{3},\varUpsilon _{1},\xi _{2};r,\rho ) \bigr\vert \,d\rho \,dr \\ & {}+\frac{ (\lambda _{2}-\varUpsilon _{1} ) (\xi _{2}-\varUpsilon _{3} )}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )}\eta _{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\ &{}\times \int _{0}^{1} \int _{0}^{1} \bigl\vert H (\omega ,\varUpsilon _{1}, \varUpsilon _{3},\lambda _{2},\xi _{2};r,\rho ) \bigr\vert \,d\rho \,dr. \end{aligned}$$
(3.22)

Proof

It follows from the quasi-convexity of the function \(\vert \varPhi _{ \varrho \varsigma } \vert \) on the co-ordinates that

$$\begin{aligned}& \varPhi _{r\rho } \bigl( (1-r )\lambda _{1}+\varUpsilon _{1}r, (1- \rho )\xi _{1}+\varUpsilon _{3}\rho \bigr) \\& \quad \leq \sup \bigl\{ \varPhi _{r\rho } (\lambda _{1},\xi _{1} ), \varPhi _{r\rho } (\varUpsilon _{1},\xi _{1} ),\varPhi _{r\rho } (\lambda _{1},\varUpsilon _{3} ),\varPhi _{r\rho } (\varUpsilon _{1},\varUpsilon _{3} ) \bigr\} =\eta (\lambda _{1},\xi _{1}, \lambda _{2}, \xi _{2} ), \\& \varPhi _{r\rho } \bigl( (1-r )\varUpsilon _{1}+br, (1-\rho ) \xi _{1}+\varUpsilon _{3}\rho \bigr) \\& \quad \leq \sup \bigl\{ \varPhi _{r\rho } (\varUpsilon _{1},\xi _{1} ), \varPhi _{r\rho } (\varUpsilon _{1},\varUpsilon _{3} ),\varPhi _{r\rho } (\lambda _{2},\xi _{1} ),\varPhi _{r\rho } (\lambda _{2}, \varUpsilon _{3} ) \bigr\} =\eta _{2} (\lambda _{1},\xi _{1}, \lambda _{2},\xi _{2} ), \\& \varPhi _{r\rho } \bigl( (1-r )\lambda _{1}+\varUpsilon _{1}r, (1- \rho )\varUpsilon _{3}+\xi _{2}\rho \bigr) \\& \quad \leq \sup \bigl\{ \varPhi _{r\rho } (\lambda _{1},\varUpsilon _{3} ), \varPhi _{r\rho } (\lambda _{1},\xi _{2} ),\varPhi _{r\rho } (\varUpsilon _{1},\varUpsilon _{3} ),\varPhi _{r\rho } (\varUpsilon _{1},\xi _{2} ) \bigr\} =\eta _{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \end{aligned}$$

and

$$\begin{aligned}& \varPhi _{r\rho } \bigl( (1-r )\varUpsilon _{1}+\lambda _{2}r, (1- \rho )\varUpsilon _{3}+\xi _{2}\rho \bigr) \\& \quad \leq \sup \bigl\{ \varPhi _{r\rho } (\varUpsilon _{1},\varUpsilon _{3} ), \varPhi _{r\rho } (\varUpsilon _{1},\xi _{2} ),\varPhi _{r\rho } (\lambda _{2},\varUpsilon _{3} ),\varPhi _{r\rho } (\lambda _{2},\xi _{2} ) \bigr\} =\eta _{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \end{aligned}$$

for all \((r,\rho )\in [0,1 ]\times [0,1 ]\).

Therefore, inequality (3.22) follows from (2.1) and the above inequalities. □

Theorem 3.8

Let \(\varOmega \subseteq \mathbb{R}^{2}\), \(\varOmega ^{\circ }\)be the interior ofΩ, \(\lambda _{1}<\lambda _{2}\)and \(\xi _{1}<\xi _{2}\)such that \([\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ] \subseteq \varOmega ^{\circ }\), \(\varPhi :\varOmega \rightarrow \mathbb{R}\)be a twice partially differentiable mapping on \(\varOmega ^{\circ }\)such that \(\varPhi _{\varrho \varsigma }\in L ( [\lambda _{1},\lambda _{2} ] \times [\xi _{1},\xi _{2} ] )\)and \(\vert \varPhi _{ \varrho \varsigma } \vert \)is quasi-convex on the co-ordinates on \([\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\), and \(\omega : [\lambda _{1},\lambda _{2} ] \times [\xi _{1},\xi _{2} ]\rightarrow [0,\infty )\)be a continuous function symmetric with respect to \(\frac{\lambda _{1}+ \lambda _{2}}{2}\)and \(\frac{\xi _{1}+\xi _{2}}{2}\)on the co-ordinates. Then

$$\begin{aligned}& \biggl\vert \frac{\varPhi (\lambda _{1},\xi _{1} )+\varPhi (\lambda _{1},\xi _{2} ) +\varPhi (\lambda _{2},\xi _{1} )+\varPhi (\lambda _{2},\xi _{2} )}{4} + \int _{\lambda _{1}}^{ \lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varPhi (\mu ,\nu ) \omega (\mu ,\nu ) \,d\nu \,d\mu \\& \qquad {}-\frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}} ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\lambda _{2}- \mu ) \varPhi (\lambda _{1},\nu ) \omega ( \mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu - \lambda _{1} ) \varPhi (\lambda _{2},\nu )\omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {}-\frac{1}{\xi _{2}-\xi _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\xi _{2}-\nu ) \varPhi ( \mu ,\xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}-\frac{1}{\xi _{2}} (\nu -\xi _{1} ) \varPhi (\mu , \xi _{2} )\omega (\mu ,\nu ) \,d\nu \,d\mu \biggr\vert \\& \quad \leq \biggl( \int _{\lambda _{1}}^{\frac{\lambda _{1}+\lambda _{2}}{2}} \int _{\xi _{1}}^{\frac{\xi _{1}+\xi _{2}}{2}} (\mu -\lambda _{1} ) (\nu -\xi _{1} )\omega (\mu ,\nu ) \,d\nu \,d\mu \biggr) \\& \qquad {}\times \biggl[\sup \biggl\{ \varPhi _{r\rho } (\lambda _{1},\xi _{1} ), \varPhi _{r\rho } \biggl(\frac{\lambda _{1}+\lambda _{2}}{2},\xi _{1} \biggr), \\& \qquad\varPhi _{r\rho } \biggl(\lambda _{1},\frac{\xi _{1}+\xi _{2}}{2} \biggr), \varPhi _{r\rho } \biggl(\frac{\lambda _{1}+\lambda _{2}}{2}, \frac{\xi _{1}+ \xi _{2}}{2} \biggr) \biggr\} \\& \qquad {}+\sup \biggl\{ \varPhi _{r\rho } \biggl(\frac{\lambda _{1}+\lambda _{2}}{2}, \xi _{1} \biggr),\varPhi _{r\rho } \biggl(\frac{\lambda _{1}+\lambda _{2}}{2}, \frac{ \xi _{1}+\xi _{2}}{2} \biggr),\varPhi _{r\rho } (\lambda _{2},\xi _{1} ), \varPhi _{r\rho } \biggl(\lambda _{2}, \frac{\xi _{1}+\xi _{2}}{2} \biggr) \biggr\} \\& \qquad {}+\sup \biggl\{ \varPhi _{r\rho } \biggl(\lambda _{1}, \frac{\xi _{1}+\xi _{2}}{2} \biggr),\varPhi _{r\rho } (\lambda _{1},\xi _{2} ),\varPhi _{r\rho } \biggl(\frac{\lambda _{1} +\lambda _{2}}{2}, \frac{ \xi _{1}+\xi _{2}}{2} \biggr),\varPhi _{r\rho } \biggl(\frac{\lambda _{1}+ \lambda _{2}}{2}, \xi _{2} \biggr) \biggr\} \\& \qquad {}+\sup \biggl\{ \varPhi _{r\rho } \biggl(\frac{\lambda _{1}+\lambda _{2}}{2}, \frac{\xi _{1}+\xi _{2}}{2} \biggr),\varPhi _{r\rho } \biggl(\frac{ \lambda _{1}+\lambda _{2}}{2}, \xi _{2} \biggr), \\& \qquad \varPhi _{r\rho } \biggl(\lambda _{2},\frac{ \xi _{1}+\xi _{2}}{2} \biggr),\varPhi _{r\rho } (\lambda _{2},\xi _{2} ) \biggr\} \biggr]. \end{aligned}$$
(3.23)

Proof

From the hypothesis of Theorem 3.8 we have

$$\begin{aligned} \varPsi (\omega ,\varPhi ) =&\frac{\varPhi (\lambda _{1},\xi _{1} ) +\varPhi (\lambda _{1},\xi _{2} )+\varPhi (\lambda _{2},\xi _{1} ) +\varPhi (\lambda _{2},\xi _{2} )}{4} \\ &{}+ \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \varPhi (\mu ,\nu )\omega (\mu ,\nu ) \,d\nu \,d\mu + \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}} ^{\xi _{2}} \varPhi (\mu ,\nu )\omega ( \mu ,\nu )\,d\nu \,d\mu \\ &{}-\frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} ( \lambda _{2}-\mu ) \varPhi (\lambda _{1},\nu )\omega (\mu ,\nu )\,d\nu \,d\mu \\ &{}- \frac{1}{\lambda _{2}-\lambda _{1}} \int _{\lambda _{1}} ^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\mu -\lambda _{1} ) \varPhi (\lambda _{2},\nu ) \omega (\mu ,\nu )\,d\nu \,d\mu \\ &{}-\frac{1}{\xi _{2}-\xi _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\xi _{2}-\nu ) \varPhi ( \mu , \xi _{1} ) \omega (\mu ,\nu ) \,d\nu \,d\mu \\ &{}- \frac{1}{ \xi _{2}-\xi _{1}} \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} (\nu -\xi _{1} )\varPhi ( \mu , \xi _{2} )\omega (\mu ,\nu )\,d\nu \,d\mu . \end{aligned}$$
(3.24)

We also observe that

$$\begin{aligned}& \frac{ (\varUpsilon _{1}-\lambda _{1} ) (\varUpsilon _{3}-\xi _{1} )}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}- \xi _{1} )} \int _{0}^{1} \int _{0}^{1} \bigl\vert H (\omega , \lambda _{1},\xi _{1},\varUpsilon _{1}, \varUpsilon _{3};r,\rho ) \bigr\vert \,d\rho \,dr \\& \quad =\frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{\xi _{1}}^{ \varUpsilon _{3}} \biggl\vert \int _{\lambda _{1}}^{\varrho } \int _{\xi _{1}} ^{\varsigma } (\mu -\lambda _{1} ) (\nu -\xi _{1} ) \omega (\mu ,\nu ) \,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\varrho } \int _{\varsigma }^{\xi _{2}} (\mu - \lambda _{1} ) (\nu -\xi _{1} )\omega (\mu , \nu )\,d\nu \,d\mu - \int _{\varrho }^{\lambda _{2}} \int _{\xi _{1}} ^{\varsigma } (\mu -\lambda _{1} ) (\nu -\xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\varrho }^{\xi _{2}} \int _{\varsigma }^{\xi _{1}} (\mu - \lambda _{1} ) (\nu -\xi _{1} ) \omega (\mu , \nu )\,d\nu \,d\mu \biggr\vert \,d \varsigma \,d\varrho , \\& \frac{ (\lambda _{2}-\varUpsilon _{1} ) (\varUpsilon _{3}-\xi _{1} )}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}- \xi _{1} )} \int _{0}^{1} \int _{0}^{1} \bigl\vert H (\omega , \varUpsilon _{1},\xi _{1},\lambda _{2}, \varUpsilon _{3};r,\rho ) \bigr\vert \,d\rho \,dr \\& \quad =\frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{ \varUpsilon _{3}} \biggl\vert \int _{\lambda _{1}}^{\varrho } \int _{\xi _{1}} ^{\varsigma } (\mu -\lambda _{1} ) (\nu -\xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\varrho } \int _{\varsigma }^{\xi _{2}} (\mu - \lambda _{1} ) (\nu -\xi _{1} )\omega (\mu , \nu )\,d\nu \,d\mu - \int _{\varrho }^{\lambda _{2}} \int _{\xi _{1}} ^{\varsigma } (\mu -\lambda _{1} ) (\nu -\xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\varrho }^{\xi _{2}} \int _{\varsigma }^{\xi _{1}} (\mu - \lambda _{1} ) (\nu -\xi _{1} )\omega (\mu , \nu )\,d\nu \,d\mu \biggr\vert \,d \varsigma \,d\varrho , \\& \frac{ (\varUpsilon _{1}-\lambda _{1} ) (\xi _{2}-\varUpsilon _{3} )}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{0}^{1} \int _{0}^{1} \bigl\vert H (\omega , \varUpsilon _{1},\xi _{1},\lambda _{2}, \varUpsilon _{3};r,\rho ) \bigr\vert \,d\rho \,dr \\& \quad =\frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{\lambda _{1}}^{\varUpsilon _{1}} \int _{ \varUpsilon _{3}} ^{\xi _{2}} \biggl\vert \int _{\lambda _{1}}^{\varrho } \int _{\xi _{1}} ^{\varsigma } (\mu -\lambda _{1} ) (\nu -\xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\varrho } \int _{\varsigma }^{\xi _{2}} (\mu - \lambda _{1} ) (\nu -\xi _{1} )\omega (\mu , \nu )\,d\nu \,d\mu - \int _{\varrho }^{\lambda _{2}} \int _{\xi _{1}} ^{\varsigma } (\mu -\lambda _{1} ) (\nu -\xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\varrho }^{\xi _{2}} \int _{\varsigma }^{\xi _{1}} (\mu - \lambda _{1} ) (\nu -\xi _{1} )\omega (\mu , \nu )\,d\nu \,d\mu \biggr\vert \,d \varsigma \,d\varrho \end{aligned}$$

and

$$\begin{aligned}& \frac{ (\lambda _{2}-\varUpsilon _{1} ) (\xi _{2}-\varUpsilon _{3} )}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{0}^{1} \int _{0}^{1} \bigl\vert H (\omega , \varUpsilon _{1}, \varUpsilon _{3}, \lambda _{2},\xi _{2};r,\rho ) \bigr\vert \,d\rho \,dr \\& \quad =\frac{1}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{\varUpsilon _{1}}^{\lambda _{2}} \int _{\varUpsilon _{3}} ^{\xi _{2}} \biggl\vert \int _{\lambda _{1}}^{\varrho } \int _{\xi _{1}}^{ \varsigma } (\mu -\lambda _{1} ) (\nu -\xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\varrho } \int _{\varsigma }^{\xi _{2}} (\mu - \lambda _{1} ) (\nu -\xi _{1} )\omega (\mu , \nu )\,d\nu \,d\mu - \int _{\varrho }^{\lambda _{2}} \int _{\xi _{1}} ^{\varsigma } (\mu -\lambda _{1} ) (\nu -\xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\varrho }^{\xi _{2}} \int _{\varsigma }^{\xi _{1}} (\mu - \lambda _{1} ) (\nu -\xi _{1} )\omega (\mu , \nu )\,d\nu \,d\mu \biggr\vert \,d \varsigma \,d\varrho . \end{aligned}$$

Let \(p: [\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\rightarrow \mathbb{R}\) defined by

$$\begin{aligned} p (\varrho ,\varsigma ) =& \int _{\lambda _{1}}^{\varrho } \int _{\xi _{1}}^{\varsigma } (\mu -\lambda _{1} ) (\nu - \xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\ &{}- \int _{\lambda _{1}}^{\varrho } \int _{\varsigma }^{\xi _{2}} (\mu - \lambda _{1} ) (\nu -\xi _{1} )\omega (\mu , \nu )\,d\nu \,d\mu \\ &{}- \int _{\varrho }^{\lambda _{2}} \int _{\xi _{1}} ^{\varsigma } (\mu -\lambda _{1} ) (\nu -\xi _{1} ) \omega (\mu ,\nu )\,d\nu \,d\mu \\ &{}+ \int _{\varrho }^{\xi _{2}} \int _{\varsigma }^{\xi _{1}} (\mu - \lambda _{1} ) (\nu -\xi _{1} )\omega (\mu , \nu )\,d\nu \,d\mu . \end{aligned}$$

Then we clearly see that

$$ p_{\varrho \varsigma } (\varrho ,\varsigma )= (\lambda _{2}- \lambda _{1} ) (\xi _{2}-\xi _{1} )\omega (\varrho , \varsigma )>0 $$

for \((\varrho ,\varsigma )\in [\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\), which implies that \(p (\varrho ,\varsigma )\) is an increasing function on \([\lambda _{1},\lambda _{2} ]\times [\xi _{1},\xi _{2} ]\) and

$$ p (\varUpsilon _{1}, \varUpsilon _{3} )=0. $$

Now it is easy to see that

$$\begin{aligned}& \frac{ (\varUpsilon _{1}-\lambda _{1} ) (\varUpsilon _{3}-\xi _{1} )}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{0}^{1} \int _{0}^{1} \bigl\vert H (\omega , \lambda _{1},\xi _{1},\varUpsilon _{1}, \varUpsilon _{3};r,\rho ) \bigr\vert \,d\rho \,dr \\& \quad =\frac{ (\lambda _{2}-\varUpsilon _{1} ) (\varUpsilon _{3}-\xi _{1} )}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{0}^{1} \int _{0}^{1} \bigl\vert H (\omega , \varUpsilon _{1},\xi _{1},\lambda _{2}, \varUpsilon _{3};r,\rho ) \bigr\vert \,d\rho \,dr \\& \quad =\frac{ (\varUpsilon _{1}-\lambda _{1} ) (\xi _{2}-\varUpsilon _{3} )}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{0}^{1} \int _{0}^{1} \bigl\vert H (\omega , \varUpsilon _{1},\xi _{1},\lambda _{2}, \varUpsilon _{3};r,\rho ) \bigr\vert \,d\rho \,dr \\& \quad =\frac{ (\lambda _{2}-\varUpsilon _{1} ) (\xi _{2}-\varUpsilon _{3} )}{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \int _{0}^{1} \int _{0}^{1} \bigl\vert H (\omega , \varUpsilon _{1}, \varUpsilon _{3},\lambda _{2},\xi _{2};r,\rho ) \bigr\vert \,d\rho \,dr \\& \quad = \int _{\lambda _{1}}^{\frac{\lambda _{1}+\lambda _{2}}{2}} \int _{\xi _{1}} ^{\frac{\xi _{1}+\xi _{2}}{2}} (\mu -\lambda _{1} ) (\nu - \xi _{1} )\omega (\mu ,\nu )\,d\nu \,d\mu . \end{aligned}$$

Thus, inequality (3.23) can be derived from (3.24). □

Applications to random variables

Let \(\alpha ,\beta \in \mathbb{R}\), \(0<\lambda _{1}<\lambda _{2}\), \(0<\xi _{1}<\xi _{2}\), \(\mathcal{X}\) and \(\mathcal{Y}\) be two independent continuous random variables with the common continuous probability density function \(\omega :[\lambda _{1},\lambda _{2}]\times [\xi _{1},\xi _{2} ]\rightarrow {}[ 0,\infty )\). Then the α-moment of \(\mathcal{X}\) and β-moment of \(\mathcal{Y}\) about the origin are, respectively, defined by

$$ \mathcal{E}_{\alpha } (\mathcal{X} )= \int _{\lambda _{1}}^{\lambda _{2}}\varrho ^{\alpha }\omega _{1} (\varrho )\,d\varrho , \mathcal{E}_{\beta } (\mathcal{Y} )= \int _{\xi _{1}}^{\xi _{2}}\varsigma ^{\beta }\omega _{2} (\varsigma )\,d\varsigma $$

if both \(\mathcal{E}_{\alpha } (\mathcal{X} )\) and \(\mathcal{E}_{\beta } (\mathcal{Y} )\) are finite, where \(\omega _{1}:[\lambda _{1},\lambda _{2}]\rightarrow {}[ 0,\infty )\) and \(\omega _{2}: [ \xi _{1},\xi _{2} ]\rightarrow {}[ 0, \infty )\) are, respectively, the marginal probability density functions of \(\mathcal{X}\) and \(\mathcal{Y}\). Since \(\mathcal{X}\) and \(\mathcal{Y}\) are two independent random variables, one has

$$ \omega (\varrho ,\varsigma )=\omega _{1} (\varrho ) \omega _{2} (\varsigma ) $$

for all \((\varrho ,\varsigma )\in [\lambda _{1},\lambda _{2}]\times [\xi _{1},\xi _{2} ]\), and

$$\begin{aligned} \mathcal{E}_{\alpha ,\beta } ( \mathcal{XY} ) =& \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \varrho ^{\alpha }\varsigma ^{\beta } \omega (\varrho ,\varsigma )\,d\varsigma \,d\varrho \\ =& \int _{\lambda _{1}}^{\lambda _{2}}\varrho ^{\alpha }\omega _{1} (\varrho )\,d\varrho \int _{\xi _{1}}^{\xi _{2}} \varsigma ^{\beta }\omega _{2} (\varsigma )\,d\varsigma = \mathcal{E}_{\alpha } ( \mathcal{X} )\mathcal{E}_{\beta } (\mathcal{Y} ). \end{aligned}$$

Making use of the above notations, we clearly see that

$$\begin{aligned}& B_{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \quad = \int _{\lambda _{1}}^{\mathcal{E} ( \mathcal{X} )} \int _{\xi _{1}}^{\mathcal{E} (\mathcal{Y} )} \bigl(\mathcal{E} (\mathcal{X} )- \mu \bigr)^{2} \bigl(\mathcal{E} (\mathcal{Y} )-\nu \bigr) ^{2}\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\mathcal{E} (\mathcal{X} )} \int _{\mathcal{E} (\mathcal{Y} )}^{\xi _{2}} \bigl(\mathcal{E} (\mathcal{X} )- \mu \bigr)^{2} \bigl(\mathcal{E} (\mathcal{Y} ) -\nu \bigr)^{2}\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\mathcal{E} (\mathcal{X} )}^{\lambda _{2}} \int _{\xi _{1}}^{\mathcal{E} (\mathcal{Y} )} \bigl(\mathcal{E} (\mathcal{X} )- \mu \bigr)^{2} \bigl(\mathcal{E} (\mathcal{Y} )-\nu \bigr) ^{2}\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\mathcal{E} (\mathcal{X} )}^{\lambda _{2}} \int _{\mathcal{E} (\mathcal{Y} )}^{\xi _{2}} \bigl(\mathcal{E} (\mathcal{X} )- \mu \bigr)^{2} \bigl(\mathcal{E} (\mathcal{Y} )- \nu \bigr)^{2} \omega (\mu ,\nu )\,d\nu \,d\mu , \\& B_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \quad = \int _{\lambda _{1}}^{\mathcal{E} (\mathcal{X} )} \int _{\xi _{1}}^{\mathcal{E} (\mathcal{Y} )} \bigl(\mathcal{E} (\mathcal{X} )- \mu \bigr) \bigl(\mathcal{E} (\mathcal{Y} ) -\nu \bigr) ^{2}\omega ( \mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\mathcal{E} (\mathcal{X} )} \int _{\mathcal{E} (\mathcal{Y} )}^{\xi _{2}} \bigl(\mathcal{E} (\mathcal{X} )- \mu \bigr) \bigl(\mathcal{E} (\mathcal{Y} )- \nu \bigr)^{2} \omega ( \mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\mathcal{E} (\mathcal{X} )}^{\lambda _{2}} \int _{\xi _{1}}^{\mathcal{E} (\mathcal{Y} )} \bigl(\mathcal{E} (\mathcal{X} )- \mu \bigr) \bigl(\mathcal{E} (\mathcal{Y} )-\nu \bigr) ^{2}\omega ( \mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\mathcal{E} (\mathcal{X} )}^{\lambda _{2}} \int _{\mathcal{E} (\mathcal{Y} )}^{\xi _{2}} \bigl(\mathcal{E} (\mathcal{X} )- \mu \bigr) \bigl(\mathcal{E} (\mathcal{Y} ) -\nu \bigr)^{2}\omega (\mu ,\nu )\,d\nu \,d\mu , \\& B_{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \quad = \int _{\lambda _{1}}^{\mathcal{E} (\mathcal{X} )} \int _{\xi _{1}}^{\mathcal{E} (\mathcal{Y} )} \bigl(\mathcal{E} (\mathcal{X} ) - \mu \bigr)^{2} \bigl(\mathcal{E} (\mathcal{Y} )-\nu \bigr) \omega ( \mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\mathcal{E} (\mathcal{X} )} \int _{\mathcal{E} (\mathcal{Y} )}^{\xi _{2}} \bigl(\mathcal{E} (\mathcal{X} )- \mu \bigr)^{2} \bigl(\mathcal{E} (\mathcal{Y} ) -\nu \bigr)\omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\mathcal{E} (\mathcal{X} )}^{\lambda _{2}} \int _{\xi _{1}}^{\mathcal{E} (\mathcal{Y} )} \bigl(\mathcal{E} (\mathcal{X} )- \mu \bigr)^{2} \bigl(\mathcal{E} (\mathcal{Y} )-\nu \bigr) \omega ( \mu ,\nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\mathcal{E} (\mathcal{X} )}^{\lambda _{2}} \int _{\mathcal{E} (\mathcal{Y} )}^{\xi _{2}} \bigl(\mathcal{E} (\mathcal{X} )- \mu \bigr)^{2} \bigl(\mathcal{E} (\mathcal{Y} ) -\nu \bigr)\omega (\mu ,\nu )\,d\nu \,d\mu \end{aligned}$$

and

$$\begin{aligned}& B_{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \quad = \int _{\lambda _{1}}^{\mathcal{E} (\mathcal{X} )} \int _{\xi _{1}}^{\mathcal{E} (\mathcal{Y} )} \bigl(\mathcal{E} (\mathcal{X} )- \mu \bigr) \bigl(\mathcal{E} (\mathcal{Y} ) -\nu \bigr) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\lambda _{1}}^{\mathcal{E} (\mathcal{X} )} \int _{\mathcal{E} (\mathcal{Y} )}^{\xi _{2}} \bigl(\mathcal{E} (\mathcal{X} ) - \mu \bigr) \bigl(\mathcal{E} (\mathcal{Y} )- \nu \bigr) \omega (\mu ,\nu )\,d\nu \,d\mu \\& \qquad {}- \int _{\mathcal{E} (\mathcal{X} )}^{\lambda _{2}} \int _{\xi _{1}}^{\mathcal{E} (\mathcal{Y} )} \bigl(\mathcal{E} (\mathcal{X} )- \mu \bigr) (\varUpsilon _{3}-\nu ) \omega (\mu , \nu )\,d\nu \,d\mu \\& \qquad {}+ \int _{\mathcal{E} (\mathcal{X} )}^{\lambda _{2}} \int _{\mathcal{E} (\mathcal{Y} )}^{\xi _{2}} \bigl(\mathcal{E} (\mathcal{X} )- \mu \bigr) \bigl(\mathcal{E} (\mathcal{Y} )- \nu \bigr) \omega (\mu ,\nu )\,d\nu \,d\mu . \end{aligned}$$

Moreover, we have

$$\begin{aligned}& A_{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \quad = \frac{1}{4}B_{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \frac{ (\lambda _{2}-\mathcal{E} (\mathcal{X} ) )}{2}B _{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \qquad {}+ \frac{ (\xi _{2}-\mathcal{E} (\mathcal{Y} ) )}{2}B _{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \bigl(\lambda _{2}-\mathcal{E} (\mathcal{X} ) \bigr) \bigl(\xi _{2}- \mathcal{E} (\mathcal{Y} ) \bigr)B_{4} (\lambda _{1}, \xi _{1},\lambda _{2},\xi _{2} ), \\& A_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \quad = \frac{1}{4}B_{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \frac{ (\lambda _{2}-\mathcal{E} (\mathcal{X} ) )}{2}B _{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \qquad {}+ \frac{ (\mathcal{E} (\mathcal{Y} )-\xi _{1} )}{2}B _{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \bigl(\lambda _{2}-\mathcal{E} (\mathcal{X} ) \bigr) \bigl(\mathcal{E} (\mathcal{Y} )-\xi _{1} \bigr)B_{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ), \\& A_{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \quad = \frac{1}{4}B_{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \frac{ (\mathcal{E} (\mathcal{X} )-\lambda _{1} )}{2}B _{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \qquad {}+ \frac{ (\xi _{2}-\mathcal{E} (\mathcal{Y} ) )}{2}B _{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \bigl( \mathcal{E} (\mathcal{X} )-\lambda _{1} \bigr) \bigl(\xi _{2}- \mathcal{E} (\mathcal{Y} ) \bigr)B_{4} (\lambda _{1}, \xi _{1},\lambda _{2},\xi _{2} ) \end{aligned}$$

and

$$\begin{aligned}& A_{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \quad = \frac{1}{4}B_{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \frac{ (\mathcal{E} (\mathcal{X} )-\lambda _{1} )}{2} B_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \qquad {}+ \frac{ (\mathcal{E} (\mathcal{Y} )-\xi _{1} )}{2}B _{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \bigl( \mathcal{E} (\mathcal{X} )-\lambda _{1} \bigr) \bigl(\mathcal{E} ( \mathcal{Y} )-\xi _{1} \bigr)B_{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ). \end{aligned}$$

Now, we give an application for our obtained results to the random variables.

Theorem 4.1

The inequality

$$\begin{aligned}& \bigl\vert \mathcal{E}_{\alpha } (\mathcal{X} ) \mathcal{E}_{\beta } (\mathcal{Y} )- \bigl[\mathcal{E} (\mathcal{X} ) \bigr]^{\alpha } \mathcal{E}_{\beta } (\mathcal{Y} )-\mathcal{E}_{\alpha } ( \mathcal{X} ) \bigl[\mathcal{E} (\mathcal{Y} ) \bigr]^{\beta }+ \bigl[ \mathcal{E} (\mathcal{X} ) \bigr]^{\alpha } \bigl[\mathcal{E} (\mathcal{Y} ) \bigr] ^{\beta } \bigr\vert \\& \quad \leq \frac{\alpha \beta }{ (\lambda _{2}-\lambda _{1} ) (\xi _{2}-\xi _{1} )} \bigl[\lambda _{1}^{\alpha -1}\xi _{1}^{\beta -1} \varUpsilon _{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) + \lambda _{1}^{\alpha -1}\xi _{2}^{\beta -1}A_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \\& \qquad {}+\lambda _{2}^{\alpha -1}\xi _{1}^{\beta -1}A_{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) +\lambda _{2}^{\alpha -1}\xi _{2}^{\beta -1}A_{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} ) \bigr] \end{aligned}$$
(4.1)

holds for \(0<\lambda _{1}<\lambda _{2}\), \(0<\xi _{1}<\xi _{2}\)and \(\alpha ,\beta \geq 2\), where \(\varUpsilon _{1} (\lambda _{1},\xi _{1}, \lambda _{2},\xi _{2} )\), \(A_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )\), \(A_{3} (\lambda _{1},\xi _{1},\lambda _{2}, \xi _{2} )\)and \(A_{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )\)are defined by the previously shown equations.

Proof

Let \(\alpha ,\beta \geq 2\), \(\varPhi (\varrho ,\varsigma )=\varrho ^{ \alpha }\varsigma ^{\beta }\) be defined on \([\lambda _{1},\lambda _{2}] \times [\xi _{1},\xi _{2} ]\). Then we clearly see that \(\vert \varPhi _{\varrho \varsigma } (\varrho ,\varsigma ) \vert = \alpha \beta \varrho ^{\alpha -1}\varsigma ^{\beta -1}\) is co-ordinated convex on \([\lambda _{1},\lambda _{2}]\times [\xi _{1},\xi _{2} ]\) and

$$\begin{aligned}& \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \varPhi (\varrho ,\varsigma ) \omega (\varrho ,\varsigma )\,d\varsigma \,d\varrho \\& \quad = \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}}\varrho ^{\alpha }\varsigma ^{\beta } \omega _{1} (\varrho ) \omega _{2} ( \varsigma )\,d\varsigma \,d\varrho \\& \quad = \int _{\lambda _{1}}^{\lambda _{2}}\varrho ^{\alpha }\omega _{1} (\varrho )\,d\varrho \int _{\xi _{1}}^{\xi _{2}} \varsigma ^{\beta }\omega _{2} (\varsigma )\,d\varsigma = \mathcal{E}_{\alpha } ( \mathcal{X} )\mathcal{E}_{\beta } (\mathcal{Y} ), \\& \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \varPhi (\varUpsilon _{1}, \varrho )\omega (\varrho , \varsigma )\,d\varsigma \,d\varrho = \bigl[\mathcal{E} (\mathcal{X} ) \bigr] ^{\alpha }\mathcal{E}_{\beta } (\mathcal{Y} ), \\& \int _{\lambda _{1}}^{\lambda _{2}} \int _{\xi _{1}}^{\xi _{2}} \varPhi (\varrho ,\varUpsilon _{3} )\omega (\varrho , \varsigma )\,d\varsigma \,d\varrho = \mathcal{E}_{\alpha } (\mathcal{X} ) \bigl[\mathcal{E} (\mathcal{Y} ) \bigr]^{\beta } \end{aligned}$$

and

$$ \varPhi (\varUpsilon _{1},\varUpsilon _{3} )= \bigl[\mathcal{E} (\mathcal{X} ) \bigr] ^{\alpha } \bigl[\mathcal{E} (\mathcal{Y} ) \bigr]^{ \beta }. $$

Therefore, inequality (4.1) follows from (3.5) and the above identities. □

Next, we provide an example to support our obtained results.

Example 4.2

Let

$$ \varPhi ( \mu ,\nu ) = \textstyle\begin{cases} \frac{4}{9}\mu \nu , & 1\leq \mu ,\nu \leq 2, \\ 0, & \text{otherwise}, \end{cases} $$

be the joint probability density function of the random variables \(\mathcal{X}\) and \(\mathcal{Y}\). Then the marginal probability density functions of the random variables \(\mathcal{X}\) and \(\mathcal{Y}\) are given by

$$ \mathcal{G} ( \mu ) = \textstyle\begin{cases} \frac{2}{3}\mu , & 1\leq \mu \leq 2, \\ 0, & \text{otherwise}, \end{cases} $$

and

$$ \mathcal{H} ( \nu ) = \textstyle\begin{cases} \frac{2}{3}\nu , & 1\leq \nu \leq 2, \\ 0, & \text{otherwise}, \end{cases} $$

respectively, and the random variables \(\mathcal{X}\) and \(\mathcal{Y}\) are independent due to \(\varPhi (\mu ,\nu )=\mathcal{G} (\mu )\times \mathcal{H} (\nu )\). Elaborate computations give

$$\begin{aligned}& \mathcal{E} (\mathcal{X} )=\mathcal{E} (\mathcal{Y} )= \frac{14}{9}, \\& B_{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )=\frac{597 \text{,}529}{13\text{,} 947\text{,}137\text{,}604}, \\& B_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )=\frac{618 \text{,}400}{387\text{,}420\text{,}489}, \\& B_{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )=\frac{618 \text{,}400}{387\text{,}420\text{,}489}, \end{aligned}$$

and

$$ B_{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )=\frac{2\text{,}560 \text{,}000}{43\text{,}046\text{,}721}. $$

Hence,

$$\begin{aligned}& A_{1} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )=\frac{77 \text{,}281\text{,}681}{6\text{,}198\text{,}727\text{,}824}, \\& A_{2} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )=\frac{288 \text{,}107\text{,}443}{18\text{,} 596\text{,}183\text{,}472}, \\& A_{3} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )=\frac{288 \text{,}107\text{,}443}{18\text{,} 596\text{,}183\text{,}472}, \end{aligned}$$

and

$$ A_{4} (\lambda _{1},\xi _{1},\lambda _{2},\xi _{2} )=\frac{1\text{,}074 \text{,}069\text{,}529}{55\text{,} 788\text{,}550\text{,}416}. $$

Therefore, it follows from (4.1) that

$$\begin{aligned}& \biggl\vert \frac{4}{9} \biggl( \int _{1}^{2}\mu ^{\alpha +1}\,d\mu \biggr) \biggl( \int _{1}^{2}\mu ^{\beta +1}\,d\mu \biggr)- \frac{2}{3} \biggl(\frac{14}{9} \biggr)^{\alpha } \int _{1}^{2} \mu ^{\beta +1}\,d\mu \\& \qquad {}- \frac{2}{3} \biggl(\frac{14}{9} \biggr)^{\beta } \int _{1}^{2}\mu ^{\alpha +1}\,d\mu + \biggl(\frac{14}{9} \biggr) ^{\alpha +\beta } \biggr\vert \\& \quad \leq \alpha \beta \biggl[\frac{77\text{,}281\text{,}681}{6\text{,}198\text{,}727\text{,}824}+ \bigl(2^{ \beta -1}+2^{\alpha -1} \bigr) \times \frac{288\text{,}107\text{,}443}{18\text{,} 596\text{,}183\text{,}472} \\& \qquad {}+2^{\alpha +\beta -2}\times \frac{1\text{,}074 \text{,}069\text{,}529}{55\text{,} 788\text{,}550\text{,}416} \biggr] \end{aligned}$$

for \(\alpha ,\beta \geq 2\), that is,

$$\begin{aligned}& \biggl\vert \frac{ [2 (9^{\alpha }-2^{2+\alpha }\times 9^{ \alpha }+3\times 14^{\alpha } )+3\times 14^{\alpha }\times \alpha ] [2 (9^{\beta }-2^{2+\beta }\times 9^{ \beta }+3\times 14^{\beta } )+3\times 14^{\beta }\times \beta ]}{9^{1+ \alpha +\beta }(2+\alpha )(2+\beta )} \biggr\vert \\& \quad \leq \frac{\alpha \beta (32\text{,}773\times 2^{\alpha }+52\text{,}746 ) (32\text{,}773\times 2^{\beta }+52\text{,}746 )}{223\text{,} 154\text{,}201\text{,}664} \end{aligned}$$

for \(\alpha ,\beta \geq 2\).

Conclusion

In the article, we have established several weighted Hermite–Hadamard type inequalities for the co-ordinated convex and quasi-convex functions, provided an application to the moment of continuous random variables of bivariate distribution functions in the probability theory and presented an example on the probability distribution to support our results. Our results are generalizations of some previous results, and our approach may have further applications in the theory of convexity and Hermite–Hadamard inequality.

References

  1. 1.

    Shi, H.-P., Zhang, H.-Q.: Existence of gap solitons in periodic discrete nonlinear Schrödinger equations. J. Math. Anal. Appl. 361(2), 411–419 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Zhou, W.-J., Zhang, L.: Convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems. Comput. Appl. Math. 29(2), 195–214 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Yang, X.-S., Zhu, Q.-X., Huang, C.-X.: Generalized lag-synchronization of chaotic mix-delayed systems with uncertain parameters and unknown perturbations. Nonlinear Anal., Real World Appl. 12(1), 93–105 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  4. 4.

    Zhu, Q.-X., Huang, C.-X., Yang, X.-S.: Exponential stability for stochastic jumping BAM neural networks with time-varying and distributed delays. Nonlinear Anal. Hybrid Syst. 5(1), 52–77 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Dai, Z.-F., Wen, F.-H.: A modified CG-DESCENT method for unconstrained optimization. J. Comput. Appl. Math. 235(11), 3332–3341 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Gou, K., Sun, B.: Numerical solution of the Goursat problem on a triangular domain with mixed boundary conditions. Appl. Math. Comput. 217(21), 8765–8777 (2011)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Huang, C.-X., Liu, L.-Z.: Sharp function inequalities and boundness for Toeplitz type operator related to general fractional singular integral operator. Publ. Inst. Math. 92(106), 165–176 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Zhang, L., Jian, S.-Y.: Further studies on the Wei–Yao–Liu nonlinear conjugate gradient method. Appl. Math. Comput. 219(14), 7616–7621 (2013)

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Li, X.-F., Tang, G.-J., Tang, B.-Q.: Stress field around a strike-slip fault in orthotropic elastic layers via a hypersingular integral equation. Comput. Math. Appl. 66(11), 2317–2326 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Huang, C.-X., Guo, S., Liu, L.-Z.: Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderón–Zygmund kernel. J. Math. Inequal. 8(3), 453–464 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    Huang, C.-X., Yang, Z.-C., Yi, T.-S., Zou, X.-F.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 256(7), 2101–2114 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  12. 12.

    Xie, D.-X., Li, J.: A new analysis of electrostatic free energy minimization and Poisson–Boltzmann equation for protein in ionic solvent. Nonlinear Anal., Real World Appl. 21, 185–196 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Liu, Y.-C., Wu, J.: Multiple solutions of ordinary differential systems with min-max terms and applications to the fuzzy differential equations. Adv. Differ. Equ. 2015, Article ID 379 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Zhou, W.-J., Wang, F.: A PRP-based residual method for large-scale monotone nonlinear equations. Appl. Math. Comput. 261, 1–7 (2015)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Dai, Z.-F.: Comments on a new class of nonlinear conjugate gradient coefficients with global convergence properties. Appl. Math. Comput. 276, 297–300 (2016)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Li, J.-L., Sun, G.-Y., Zhang, R.-M.: The numerical solution of scattering by infinite rough interfaces based on the integral equation method. Comput. Math. Appl. 71(7), 1491–1502 (2016)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Hu, H.-J., Liu, L.-Z.: Weighted inequalities for a general commutator associated to a singular integral operator satisfying a variant of Hörmander’s condition. Math. Notes 101(5–6), 830–840 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Cai, Z.-W., Huang, J.-H., Huang, L.-H.: Generalized Lyapunov–Razumikhin method for retarded differential inclusions: applications to discontinuous neural networks. Discrete Contin. Dyn. Syst., Ser. B 22(9), 3591–3614 (2017)

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Wang, W.-S.: On A-stable one-leg methods for solving nonlinear Volterra functional differential equations. Appl. Math. Comput. 314, 380–390 (2017)

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Chu, Y.-M., Adil Khan, M., Ali, T., Dragomir, S.S.: Inequalities for α-fractional differentiable functions. J. Inequal. Appl. 2017, Article ID 93 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Adil Khan, M., Begum, S., Khurshid, Y., Chu, Y.-M.: Ostrowski type inequalities involving conformable fractional integrals. J. Inequal. Appl. 2018, Article ID 70 (2018)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Wu, S.-H., Chu, Y.-M.: Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters. J. Inequal. Appl. 2019, Article ID 57 (2019)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Qian, W.-M., He, Z.-Y., Zhang, H.-W., Chu, Y.-M.: Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean. J. Inequal. Appl. 2019, Article ID 168 (2019)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Zhao, T.-H., Zhou, B.-C., Wang, M.-K., Chu, Y.-M.: On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, Article ID 42 (2019)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Wang, J.-L., Qian, W.-M., He, Z.-Y., Chu, Y.-M.: On approximating the Toader mean by other bivariate means. J. Funct. Spaces 2019, Article ID 6082413 (2019)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Peng, J., Zhang, Y.: Heron triangles with figurate number sides. Acta Math. Hung. 157(2), 478–488 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  27. 27.

    Tian, Z.-L., Liu, Y., Zhang, Y., Liu, Z.-Y., Tian, M.-Y.: The general inner-outer iteration method based on regular splittings for the PageRank problem. Appl. Math. Comput. 356, 479–501 (2019)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Wang, W.-S., Chen, Y.-Z., Fang, H.: On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57(3), 1289–1317 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  29. 29.

    Wang, M.-K., Zhang, W., Chu, Y.-M.: Monotonicity, convexity and inequalities involving the generalized elliptic integrals. Acta Math. Sci. Ser. B Engl. Ed. 39(5), 1440–1450 (2019)

    Google Scholar 

  30. 30.

    Wang, M.-K., Chu, H.-H., Chu, Y.-M.: Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals. J. Math. Anal. Appl. (2019). https://doi.org/10.1016/j.jmaa.2019.123388

    Article  MATH  Google Scholar 

  31. 31.

    Chu, Y.-M., Wang, G.-D., Zhang, X.-H.: The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 284(5–6), 653–663 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  32. 32.

    Chu, Y.-M., Xia, W.-F., Zhang, X.-H.: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 105, 412–421 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Adil Khan, M., Hanif, M., Khan, Z.A., Ahmad, K., Chu, Y.-M.: Association of Jensen’s inequality for s-convex function with Csiszár divergence. J. Inequal. Appl. 2019, Article ID 162 (2019)

    Article  Google Scholar 

  34. 34.

    Song, Y.-Q., Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M.: Integral inequalities involving strongly convex functions. J. Funct. Spaces 2018, Article ID 6595921 (2018)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Zaheer Ullah, S., Adil Khan, M., Chu, Y.-M.: Majorization theorems for strongly convex functions. J. Inequal. Appl. 2019, Article ID 58 (2019)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Zaheer Ullah, S., Adil Khan, M., Khan, Z.A., Chu, Y.-M.: Integral majorization type inequalities for the functions in the sense of strong convexity. J. Funct. Spaces 2019, Article ID 9487823 (2019)

    MathSciNet  MATH  Google Scholar 

  37. 37.

    Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M.: The concept of coordinate strongly convex functions and related inequalities. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2235–2251 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  38. 38.

    Adik Khan, M., Wu, S.-H., Ullah, H., Chu, Y.-M.: Discrete majorization type inequalities for convex functions on rectangles. J. Inequal. Appl. 2019, Article ID 16 (2019)

    MathSciNet  Article  Google Scholar 

  39. 39.

    Qian, W.-M., Yang, Y.-Y., Zhang, H.-W., Chu, Y.-M.: Optimal two-parameter geometric and arithmetic mean bounds for the Sándor–Yang mean. J. Inequal. Appl. 2019, Article ID 287 (2019)

    Article  Google Scholar 

  40. 40.

    Zaheer Ullah, S., Adil Khan, M., Chu, Y.-M.: A note on generalized convex functions. J. Inequal. Appl. 2019, Article ID 291 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    Lin, L., Liu, Z.-Y.: An alternating projected gradient algorithm for nonnegative matrix factorization. Appl. Math. Comput. 217(24), 9997–10002 (2011)

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Zhang, L., Li, J.-L.: A new globalization technique for nonlinear conjugate gradient methods for nonconvex minimization. Appl. Math. Comput. 217(24), 10295–10304 (2011)

    MathSciNet  MATH  Google Scholar 

  43. 43.

    Xiao, C.-E., Liu, J.-B., Liu, Y.-L.: An inverse pollution problem in porous media. Appl. Math. Comput. 218(7), 3649–3653 (2011)

    MathSciNet  MATH  Google Scholar 

  44. 44.

    Zhou, W.-J.: On the convergence of the modified Levenberg–Marquardt method with a nonmonotone second order Armijo type line search. J. Comput. Appl. Math. 239, 152–161 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Qin, G.-X., Huang, C.X., Xie, Y.-Q., Wen, F.-H.: Asymptotic behavior for third-order quasi-linear differential equations. Adv. Differ. Equ. 2013, Article ID 305 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    Zhou, W.-J., Chen, X.-L.: On the convergence of a modified regularized Newton method for convex optimization with singular solutions. J. Comput. Appl. Math. 239, 179–188 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  47. 47.

    Wang, M.-K., Chu, Y.-M.: Asymptotical bounds for complete elliptic integrals of the second kind. J. Math. Anal. Appl. 402(1), 119–126 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661–1667 (2014)

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    Tang, W.-S., Sun, Y.-J.: Construction of Runge–Kutta type methods for solving ordinary differential equations. Appl. Math. Comput. 234, 179–191 (2014)

    MathSciNet  MATH  Google Scholar 

  50. 50.

    Dai, Z.-F., Chen, X.-H., Wen, F.-H.: A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations. Appl. Math. Comput. 270, 378–386 (2015)

    MathSciNet  MATH  Google Scholar 

  51. 51.

    Fang, X.-P., Deng, Y.-J., Li, J.: Plasmon resonance and heat generation in nanostructures. Math. Methods Appl. Sci. 38(18), 4663–4672 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Tan, Y.-X., Jing, K.: Existence and global exponential stability of almost periodic solution for delayed competitive neural networks with discontinuous activations. Math. Methods Appl. Sci. 39(11), 2821–2839 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  53. 53.

    Wang, M.-K., Chu, Y.-M., Jiang, Y.-P.: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 46(2), 679–691 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  54. 54.

    Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Monotonicity rule for the quotient of two functions and its application. J. Inequal. Appl. 2017, Article ID 106 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  55. 55.

    Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function. J. Inequal. Appl. 2017, Article ID 210 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  56. 56.

    Duan, L., Huang, C.-X.: Existence and global attractivity of almost periodic solutions for a delayed differential neoclassical growth model. Math. Methods Appl. Sci. 40(3), 814–822 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  57. 57.

    Duan, L., Huang, L.-H., Guo, Z.-Y., Fang, X.-W.: Periodic attractor for reaction–diffusion high-order Hopfield neural networks with time-varying delays. Comput. Math. Appl. 73(2), 233–245 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  58. 58.

    Wang, W.-S., Chen, Y.-Z.: Fast numerical valuation of options with jump under Merton’s model. J. Comput. Appl. Math. 318, 79–92 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  59. 59.

    Huang, C.-X., Liu, L.-Z.: Boundedness of multilinear singular integral operator with a non-smooth kernel and mean oscillation. Quaest. Math. 40(3), 295–312 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  60. 60.

    Tan, Y.-X., Huang, C.-X., Sun, B., Wang, T.: Dynamics of a class of delayed reaction–diffusion systems with Neumann boundary condition. J. Math. Anal. Appl. 458(2), 1115–1130 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  61. 61.

    Tang, W.-S., Zhang, J.-J.: Symplecticity-preserving continuous-stage Runge–Kutta–Nyström methods. Appl. Math. Comput. 323, 204–219 (2018)

    MathSciNet  MATH  Google Scholar 

  62. 62.

    Duan, L., Fang, X.-W., Huang, C.-X.: Global exponential convergence in a delayed almost periodic Nicholson’s blowflies model with discontinuous harvesting. Math. Methods Appl. Sci. 41(5), 1954–1965 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  63. 63.

    Liu, Z.-Y., Wu, N.-C., Qin, X.-R., Zhang, Y.-L.: Trigonometric transform splitting methods for real symmetric Toeplitz systems. Comput. Math. Appl. 75(8), 2782–2794 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  64. 64.

    Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler–Mascheroni constant. J. Inequal. Appl. 2018, Article ID 118 (2018)

    MathSciNet  Article  Google Scholar 

  65. 65.

    Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p-elliptic integrals. J. Inequal. Appl. 2018, Article ID 239 (2018)

    MathSciNet  Article  Google Scholar 

  66. 66.

    Yang, Z.-H., Qian, W.-M., Chu, Y.-M.: Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math. Inequal. Appl. 21(4), 1185–1199 (2018)

    MathSciNet  MATH  Google Scholar 

  67. 67.

    Yang, Z.-H., Chu, Y.-M., Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl. Math. Comput. 348, 552–564 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  68. 68.

    Qiu, S.-L., Ma, X.-Y., Chu, Y.-M.: Sharp Landen transformation inequalities for hypergeometric functions, with applications. J. Math. Anal. Appl. 474(2), 1306–1337 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  69. 69.

    Wang, M.-K., Chu, Y.-M., Zhang, W.: Monotonicity and inequalities involving zero-balanced hypergeometric function. Math. Inequal. Appl. 22(2), 601–617 (2019)

    MathSciNet  MATH  Google Scholar 

  70. 70.

    Wang, M.-K., Chu, Y.-M., Zhang, W.: Precise estimates for the solution of Ramanujan’s generalized modular equation. Ramanujan J. 49(3), 653–668 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  71. 71.

    Dragomir, S.S.: On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 5(4), 775–788 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  72. 72.

    Latif, M.A., Alomari, M.: Hadamard-type inequalities for product two convex functions on the co-ordinates. Int. Math. Forum 4(45–48), 2327–2338 (2009)

    MathSciNet  MATH  Google Scholar 

  73. 73.

    Latif, M.A., Dragomir, S.S., Momoniat, E.: Weighted generalization of some integral inequalities for differentiable co-ordinated convex functions. Politeh. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. 78(4), 197–210 (2016)

    MathSciNet  Google Scholar 

  74. 74.

    Özdemir, M.E., Akdemir, A.O., Yıldız, Ç.: On co-ordinated quasi-convex functions. Czechoslov. Math. J. 62(137)(4), 889–900 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  75. 75.

    Latif, M.A., Hussian, S., Dragomir, S.S.: Refinements of Hermite–Hadamard type inequalities for co-ordinated quasi-convex function. Int. J. Math. Arch. 3(1), 161–171 (2012)

    Google Scholar 

  76. 76.

    Zhang, X.-M., Chu, Y.-M., Zhang, X.-H.: The Hermite–Hadamard type inequality of GA-convex functions and its applications. J. Inequal. Appl. 2010, Article ID 507560 (2010)

    MathSciNet  MATH  Google Scholar 

  77. 77.

    Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  78. 78.

    Hu, H.-J., Zou, X.-F.: Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc. Am. Math. Soc. 145(11), 4763–4771 (2017)

    MathSciNet  MATH  Article  Google Scholar 

  79. 79.

    Adil Khan, M., Chu, Y.-M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 15(1), 1414–1430 (2017)

    MathSciNet  MATH  Google Scholar 

  80. 80.

    Adil Khan, M., Chu, Y.-M., Kashuri, A., Liko, R., Ali, G.: Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, Article ID 6928130 (2018)

    MathSciNet  MATH  Google Scholar 

  81. 81.

    Adil Khan, M., Iqbal, A., Suleman, M., Chu, Y.-M.: Hermite–Hadamard type inequalities for fractional integrals via Green’s function. J. Inequal. Appl. 2018, Article ID 161 (2018)

    MathSciNet  Article  Google Scholar 

  82. 82.

    Adil Khan, M., Khurshid, Y., Du, T.-S., Chu, Y.-M.: Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, Article ID 5357463 (2018)

    MathSciNet  MATH  Google Scholar 

  83. 83.

    Huang, C.-X., Qiao, Y.-C., Huang, L.-H., Agarwal, R.P.: Dynamical behaviors of a food-chain model with stage structure and time delays. Adv. Differ. Equ. 2018, Article ID 186 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  84. 84.

    Cai, Z.-W., Huang, J.-H., Huang, L.-H.: Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 146(11), 4667–4682 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  85. 85.

    Wang, J.-F., Chen, X.-Y., Huang, L.-H.: The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 469(1), 405–427 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  86. 86.

    Wang, J.-F., Huang, C.-X., Huang, L.-H.: Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type. Nonlinear Anal. Hybrid Syst. 33, 162–178 (2019)

    MathSciNet  Article  Google Scholar 

  87. 87.

    Jiang, Y.-J., Xu, X.-J.: A monotone finite volume method for time fractional Fokker–Planck equations. Sci. China Math. 62(4), 783–794 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  88. 88.

    Qian, W.-M., Xu, H.-Z., Chu, Y.-M.: Improvements of bounds for the Sándor–Yang means. J. Inequal. Appl. 2019, Article ID 73 (2019)

    Article  Google Scholar 

  89. 89.

    He, X.-H., Qian, W.-M., Xu, H.-Z., Chu, Y.-M.: Sharp power mean bounds for two Sándor–Yang means. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2627–2638 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  90. 90.

    Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable integral inequalities of the Hermite–Hadamard type in terms of GG- and GA-convexities. J. Funct. Spaces 2019, Article ID 6926107 (2019)

    MathSciNet  MATH  Google Scholar 

  91. 91.

    Khurshid, Y., Adil Khan, M., Chu, Y.-M., Khan, Z.A.: Hermite–Hadamard–Fejér inequalities for conformable fractional integrals via preinvex functions. J. Funct. Spaces 2019, Article ID 3146210 (2019)

    MATH  Google Scholar 

  92. 92.

    Huang, C.-X., Zhang, H., Cao, J.-D., Hu, H.-J.: Stability and Hopf bifurcation of a delayed prey–predator model with disease in the predator. Int. J. Bifurc. Chaos Appl. Sci. Eng. 29(7), Article ID 1950091 (2019)

    MathSciNet  MATH  Article  Google Scholar 

  93. 93.

    Huang, C.-X., Liu, B.-W., Tian, X.-M., Yang, L.-S., Zhang, X.-X.: Global convergence on asymptotically almost periodic SICNNs with nonlinear decay functions. Neural Process. Lett. 49(2), 625–641 (2019)

    Article  Google Scholar 

  94. 94.

    Huang, C.-X., Liu, B.-W.: New studies on dynamic analysis of inertial neural networks involving non-reduced order method. Neurocomputing 325(24), 283–287 (2019). https://doi.org/10.1016/j.neucom.2018.09.065

    Article  Google Scholar 

  95. 95.

    Rashid, S., Noor, M.A., Noor, K.I., Safdar, F., Chu, Y.-M.: Hermite–Hadamard type inequalities for the class of convex functions on time scale. Mathematics 7, Article ID 956 (2019). https://doi.org/10.3390/math7100956

    Article  Google Scholar 

  96. 96.

    Huang, C.-X., Zhang, H.: Periodicity of non-autonomous inertial neural networks involving proportional delays and non-reduced order method. Int. J. Biomath. 12(2), Article ID 1950016 (2019)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Availability of data and materials

Not applicable.

Funding

The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485).

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu-Ming Chu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Latif, M.A., Rashid, S., Dragomir, S.S. et al. Hermite–Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications. J Inequal Appl 2019, 317 (2019). https://doi.org/10.1186/s13660-019-2272-7

Download citation

MSC

  • 26D15
  • 26D20
  • 26D07

Keywords

  • Hermite–Hadamard inequality
  • Co-ordinated convex function
  • Co-ordinated quasi-convex function
  • Hölder integral inequality
  • Moment of random variable