Skip to main content

Advertisement

Optimal two-parameter geometric and arithmetic mean bounds for the Sándor–Yang mean

Article metrics

  • 42 Accesses

Abstract

In the article, we provide the sharp bounds for the Sándor–Yang mean in terms of certain families of the two-parameter geometric and arithmetic mean and the one-parameter geometric and harmonic means. As applications, we present new bounds for a certain Yang mean and the inverse tangent function.

Introduction

Let \(\nu\in(-\infty, \infty)\) and \(\sigma, \tau>0\) with \(\sigma\neq\tau \). Then we denote by

$$ \begin{gathered} \mathbf{G}(\sigma, \tau)=\sigma^{1/2}\tau^{1/2}, \qquad \mathbf{U}(\sigma, \tau)=\frac{\sqrt{2}(\sigma-\tau)}{2\arctan(\frac {\sqrt{2}(\sigma-\tau)}{2\sqrt{\sigma\tau}} )}, \\\mathbf{Q}(\sigma , \tau)= \biggl(\frac{\sigma^{2}+\tau^{2}}{2} \biggr)^{1/2},\end{gathered} $$
(1.1)

and

$$ \mathbf{H}_{\nu}(\sigma, \tau)= \biggl(\frac{\sigma^{\nu}+\tau^{\nu }}{2} \biggr)^{1/\nu}\quad(\nu\neq0), \qquad\mathbf{ H}_{0}(\sigma, \tau)=\sigma^{1/2}\tau^{1/2} $$

the geometric mean, Yang mean [1], quadratic mean [2], and νth Hölder mean [3] of σ and τ, respectively.

It is not difficult to verify that the νth Hölder mean \(H_{\nu }(\sigma, \tau)\) is strictly increasing with respect to \(\nu\in(-\infty , \infty)\) for all distinct positive real numbers σ and τ, and

$$\begin{gathered} \mathbf{H}_{-1}(\sigma, \tau)=\frac{2\sigma\tau}{\sigma+\tau}=\mathbf {H}(\sigma, \tau), \qquad\mathbf{H}_{0}(\sigma, \tau)=\sigma^{1/2} \tau^{1/2}=\mathbf{G}(\sigma, \tau), \\ \mathbf{H}_{1}(\sigma, \tau)=\frac{\sigma+\tau}{2}=\mathbf{A}(\sigma, \tau), \qquad\mathbf{H}_{2}(\sigma, \tau)= \biggl(\frac{\sigma^{2}+\tau ^{2}}{2} \biggr)^{1/2}=\mathbf{Q}(\sigma, \tau)\end{gathered} $$

are the classical harmonic, geometric, arithmetic, and quadratic means of σ and τ, respectively.

The bivariate means have in the past decades been the subject of intense research activity [4,5,6,7,8,9,10,11,12,13] because many important special functions can be expressed by the bivariate means [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31] and they have wide applications in mathematics, statistics, physics, economics [32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55], and many other natural and human social sciences [56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76].

Yang, Wu, and Chu [77] proved that \(\kappa_{1}= 2\log2/(2\log\pi-\log 2)\simeq0.8684\) is the largest possible value and \(\kappa_{2}=4/3\) is the least possible value such that the two-sided inequality

$$ \mathbf{H}_{\kappa_{1}}(\sigma, \tau)< \mathbf{U}(\sigma, \tau)< \mathbf{H}_{\kappa_{2}}(\sigma, \tau) $$

takes place for all distinct positive real numbers σ and τ, which leads to the conclusion that

$$ \mathbf{G}(\sigma, \tau)< \mathbf{U}(\sigma, \tau)< \mathbf{Q}(\sigma, \tau) $$

for \(\sigma, \tau>0\) with \(\sigma\neq\tau\).

In [78], Qian and Chu found that \(\lambda=\lambda_{0}\simeq0.5451\) and \(\mu=2\) are the best possible parameters such that the double inequality

$$ \mathcal{L}_{\lambda}(\sigma, \tau)< \mathbf{U}(\sigma, \tau)< \mathcal{L}_{\mu}(\sigma, \tau) $$

holds for all unequal positive real numbers σ and τ, where

$$\begin{gathered} \mathcal{L}_{\nu}(\sigma, \tau)= \biggl[\frac{\sigma^{\nu+1}-\tau^{\nu +1}}{(\nu+1)(\sigma-\tau)} \biggr]^{1/\nu} \quad(\nu\neq-1, 0) \\ \mathcal{L}_{-1}(\sigma, \tau)=\frac{\sigma-\tau}{\log\sigma-\log\tau}, \qquad \mathcal{L}_{0}(\sigma, \tau)=\frac{1}{e} \biggl( \frac{\sigma^{\sigma}}{\tau^{\tau}} \biggr)^{1/(\sigma-\tau)}\end{gathered} $$

is the νth generalized logarithmic mean of σ and τ.

The Sándor–Yang mean \(\mathbf{SY}(\sigma, \tau)\) [1] and two-parameter geometric and arithmetic mean \(\mathbf{GA}_{\eta, \nu}(\sigma, \tau)\) [79] are defined by

$$ \mathbf{SY}(\sigma, \tau)=\mathbf{Q}(\sigma, \tau)e^{\mathbf{G}(\sigma, \tau)/\mathbf{U}(\sigma, \tau)-1} $$
(1.2)

and

$$ \mathbf{GA}_{\eta, \nu}(\sigma, \tau)=\mathbf{G}^{\nu} \bigl[\eta \sigma+(1-\eta)\tau, \eta\tau+(1-\eta)\sigma \bigr]\mathbf{A}^{1-\nu}( \sigma, \tau), $$
(1.3)

respectively.

Identity (1.3) leads to the conclusion that

$$\begin{aligned}& \mathbf{GA}_{p, 1}(\sigma, \tau)=\mathbf{G} \bigl[p\sigma+(1-p)\tau, p\tau+(1-p) \sigma \bigr], \end{aligned}$$
(1.4)
$$\begin{aligned}& \mathbf{GA}_{p, 2}(\sigma, \tau)=\mathbf{H} \bigl[p\sigma+(1-p)\tau, p \tau+(1-p)\sigma \bigr], \end{aligned}$$
(1.5)

and

$$ \mathbf{GA}_{p, 0}(\sigma, \tau)=\mathbf{GA}_{1/2, 1/2}(\sigma, \tau)=\mathbf{A}(\sigma, \tau). $$
(1.6)

Chu et al. [79] proved that the inequalities

$$ \mathbf{GA}_{\eta_{1}, \nu}(\sigma, \tau)>\mathbf{AGM}(\sigma, \tau) $$

and

$$ \mathbf{GA}_{\eta_{2}, \nu}(\sigma, \tau)>\mathbf{L}(\sigma, \tau) $$

are valid for all distinct positive real numbers σ and τ if and only if

$$ \eta_{1}\geq\frac{1}{2}-\frac{\sqrt{2\nu}}{4\nu}, \qquad \eta_{2}\geq\frac{1}{2}-\frac{\sqrt{6\nu}}{6\nu} $$

if \(\nu\in[1, \infty)\) and \(0<\eta_{1}, \eta_{2}<1/2\), where

$$ \mathbf{L}(\sigma, \tau)=\mathcal{L}_{-1}(\sigma, \tau)= \frac{\sigma-\tau}{\log\sigma-\log\tau} $$

and

$$ \mathbf{AGM}(\sigma, \tau)=\frac{\pi}{2\int_{0}^{\pi}\frac{dt}{\sqrt {\sigma^{2}\cos^{2}t+\tau^{2}\sin^{2}t}}} $$

are the logarithmic and Gaussian arithmetic-geometric means of σ and τ, respectively.

Zhang, Yang, and Qian [80], and He et al. [81] proved that

$$ \lambda_{1}=\lambda_{2}=\frac{\sqrt{2}}{e}\simeq0.5203, \qquad\lambda_{3}=\frac{2\log2}{2+\log2}\simeq0.5147, \qquad \nu_{1}=\frac{5}{6}, \qquad\nu_{2}=\nu_{3}= \frac{2}{3} $$

are the best possible parameters such that the double inequalities

$$\begin{gathered} \lambda_{1}\mathbf{A}(\sigma, \tau)+(1-\lambda_{1}) \mathbf{H}(\sigma, \tau)< \mathbf{SY}(\sigma, \tau)< \nu_{1}\mathbf{A}( \sigma, \tau)+(1-\nu_{1})\mathbf{H}(\sigma, \tau), \\ \lambda_{2}\mathbf{A}(\sigma, \tau)+(1-\lambda_{1}) \mathbf{G}(\sigma, \tau)< \mathbf{SY}(\sigma, \tau)< \nu_{2}\mathbf{A}( \sigma, \tau)+(1-\nu_{2})\mathbf{G}(\sigma, \tau),\end{gathered} $$

and

$$ \mathbf{H}_{\lambda_{3}}(\sigma, \tau)< \mathbf{SY}(\sigma, \tau)< \mathbf{H}_{\nu_{3}}(\sigma, \tau) $$
(1.7)

hold for all \(\sigma, \tau>0\) with \(\sigma\neq\tau\).

From (1.4)–(1.7) and the monotonicity of the function \(\nu\rightarrow \mathbf{H}_{\nu}(\sigma, \tau)\), we clearly see that

$$ \begin{aligned}[b] \mathbf{GA}_{1, 2}(\sigma, \tau)&=\mathbf{H}(\sigma, \tau)= \mathbf{H}_{-1}(\sigma, \tau)< \mathbf{G}(\sigma, \tau)= \mathbf{H}_{0}(\sigma, \tau) \\ &< \mathbf{SY}(\sigma, \tau)< \mathbf{H}_{1}(\sigma, \tau)=\mathbf{A}( \sigma, \tau)=\mathbf{GA}_{p, 0}(\sigma, \tau)=\mathbf{GA}_{1/2, 1/2}( \sigma, \tau)\end{aligned} $$
(1.8)

for all \(\sigma, \tau>0\) with \(\sigma\neq\tau\).

Motivated by inequality (1.8), we naturally ask the question: For fixed \(p\in\mathbb{R}\), what are the best possible parameters λ and μ on the interval \((0, 1/2)\) or \((1/2, 1)\) depending only on the parameter p such that the double inequality

$$ \mathbf{GA}_{\lambda, p}(\sigma, \tau)< \mathbf{SY}(\sigma, \tau)< \mathbf{GA}_{\mu, p}(\sigma, \tau) $$

is valid for all unequal positive real numbers σ and τ?

It is the aim of the article to answer the question in the case of \(p\in[1, \infty)\) and \(\lambda, \mu\in(0, 1/2)\).

Lemmas

Lemma 2.1

(see [82, Theorem 1.25])

Let \(\kappa_{1}, \kappa_{2}\in\mathbb{R}\)with \(\kappa_{1}<\kappa _{2}\), \(\mathcal{F}, \mathcal{G}: [\kappa_{1}, \kappa_{2}]\rightarrow \mathbb{R}\)be continuous on \([\kappa_{1}, \kappa_{2}]\)and differentiable on \((\kappa_{1}, \kappa_{2})\)with \(\mathcal{G}^{\prime }(t)\neq0\)on \((\kappa_{1}, \kappa_{2})\). Then both the functions

$$ \frac{\mathcal{F}(t)-\mathcal{F}(\kappa_{1})}{\mathcal{G}(t)-\mathcal {G}(\kappa_{1})} $$

and

$$ \frac{\mathcal{F}(t)-\mathcal{F}(\kappa_{2})}{\mathcal{G}(t)-\mathcal {G}(\kappa_{2})} $$

are (strictly) increasing (decreasing) on \((\kappa_{1}, \kappa_{2})\)if \(\mathcal{F}^{\prime}(t)/\mathcal{G}^{\prime}(t)\)is (strictly) increasing (decreasing) on \((\kappa_{1}, \kappa_{2})\).

Lemma 2.2

The inequality

$$ \frac{1}{3p}+ \biggl(\frac{2}{e^{2}} \biggr)^{1/p}< 1 $$

holds for all \(p\geq1\).

Proof

Let \(p\in[1, \infty)\) and

$$ f_{1}(p)=\frac{1}{3p}+ \biggl(\frac{2}{e^{2}} \biggr)^{1/p}. $$
(2.1)

Then (2.1) leads to

$$\begin{aligned}& \lim_{p\rightarrow\infty}f_{1}(p)=1, \end{aligned}$$
(2.2)
$$\begin{aligned}& \begin{aligned}[b] f_{1}^{\prime}(p)&=\frac{2}{p^{2}}\log \biggl( \frac{\sqrt{2}e}{2} \biggr) \biggl[ \biggl(\frac{\sqrt{2}}{e} \biggr)^{2/p} -\frac{1}{6\log(\frac{\sqrt{2}e}{2} )} \biggr] \\ &\geq\frac{2}{p^{2}}\log \biggl(\frac{\sqrt{2}e}{2} \biggr) \biggl[ \biggl( \frac{\sqrt{2}}{e} \biggr)^{2} -\frac{1}{6\log(\frac{\sqrt{2}e}{2} )} \biggr] \\ &=\frac{12\log(\frac{\sqrt{2}e}{2} )-e^{2}}{3e^{2}p^{2}}.\end{aligned} \end{aligned}$$
(2.3)

Note that

$$ 12\log \biggl(\frac{\sqrt{2}e}{2} \biggr)-e^{2}\simeq0.4521>0. $$
(2.4)

Therefore, Lemma 2.2 follows easily from (2.1)–(2.4). □

Lemma 2.3

The function

$$ f_{2}(x)=\frac{4(x^{2}+1)\arctan(x)+x(x^{2}+2)}{x(3x^{2}+2)} $$
(2.5)

is strictly decreasing from \((0, \infty)\)on \((1/3, 3)\).

Proof

It follows from (2.5) that

$$ f_{2} \bigl(0^{+} \bigr)=3, \qquad\lim_{x\rightarrow\infty}f_{2}(x)= \frac{1}{3}, $$
(2.6)

where and in what follows \(f (\lambda^{+} )\) denotes the right limit of the function f at λ.

Let

$$ \varphi_{1}(x)=4\arctan(x)+\frac{x(x^{2}+2)}{x^{2}+1}, \qquad \varphi_{2}(x)=\frac{x(3x^{2}+2)}{x^{2}+1}. $$

Then we clearly see that

$$\begin{aligned}& \varphi_{1} \bigl(0^{+} \bigr)=\varphi_{2} \bigl(0^{+} \bigr)=0, \qquad f_{2}(x)=\frac{\varphi_{1}(x)}{\varphi_{2}(x)}, \\& \frac{\varphi_{1}^{\prime}(x)}{\varphi_{2}^{\prime}(x)}=\frac {x^{2}+3}{3x^{2}+1}. \end{aligned}$$
(2.7)

It is not difficult to verify that the function \(x\rightarrow\varphi _{1}^{\prime}(x)/\varphi_{2}^{\prime}(x)\) is strictly decreasing on \((0, \infty)\).

Therefore, Lemma 2.3 follows from (2.6), (2.7), and Lemma 2.1 together with the monotonicity of the function \(\varphi_{1}^{\prime}(x)/\varphi _{2}^{\prime}(x)\) on the interval \((0, \infty)\). □

Lemma 2.4

Let \(0< u<1\), \(p\geq1\), and

$$ g(u, p; x)=\frac{p}{2}\log \biggl(\frac{(1-u)x^{2}+2}{x^{2}+2} \biggr)+ \frac{1}{2}\log \biggl(\frac{x^{2}+2}{2(x^{2}+1)} \biggr)-\frac{\arctan (x)}{x}+1. $$
(2.8)

Then the following statements are true:

  1. (1)

    \(g(u, p; x)>0\)for all \(x\in(0, \infty)\)if and only if \(u\leq1/(3p)\);

  2. (2)

    \(g(u, p; x)<0\)for all \(x\in(0, \infty)\)if and only if \(u\geq 1-(2/e^{2})^{1/p}\).

Proof

From (2.8) we clearly see that

$$\begin{aligned}& g \bigl(u, p; 0^{+} \bigr)=0, \end{aligned}$$
(2.9)
$$\begin{aligned}& \lim_{x\rightarrow\infty}g(u, p; x)=\frac{p}{2}\log(1-u)+1- \frac{1}{2}\log2. \end{aligned}$$
(2.10)

Let

$$ g_{0}(p, x)=\frac{(x^{2}+2)[(x^{2}+2)\arctan (x)-2x]}{x^{2}[(x^{2}+2)\arctan(x)+2(p-1)x]}. $$
(2.11)

Then

$$ g_{0} \bigl(p, 0^{+} \bigr)=\frac{1}{3p}, \qquad\lim _{x\rightarrow\infty}g_{0}(p, x)=1. $$
(2.12)

Differentiating \(g(u, p; x)\) with respect to x gives

$$ \frac{\partial g(u, p; x)}{\partial x}=\frac{(x^{2}+2)\arctan (x)+2(p-1)x}{(x^{2}+2)[(1-u)x^{2}+2]} \bigl[g_{0}(p, x)-u \bigr]. $$
(2.13)

Let

$$ g_{1}(x)=\arctan(x)-\frac{2x}{x^{2}+2}, \qquad g_{2}(x)= \frac{x^{2}}{x^{2}+2} \biggl[\arctan(x)+\frac{2(p-1)x}{x^{2}+2} \biggr]. $$

Then we clearly see that

$$\begin{aligned}& g_{0}(p, x)=\frac{g_{1}(x)}{g_{2}(x)}, \qquad g_{1} \bigl(0^{+} \bigr)=g_{2} \bigl(0^{+} \bigr)=0, \end{aligned}$$
(2.14)
$$\begin{aligned}& \begin{aligned}[b] \frac{g_{1}^{\prime}(x)}{g_{2}^{\prime}(x)}&=\frac {x(x^{2}+2)(3x^{2}+2)}{4(x^{2}+1)(x^{2}+2)\arctan (x)+x[(3-2p)x^{4}+2(5p-3)x^{2}+4(3p-2)]} \\ &=\frac{1}{\frac{4(x^{2}+1)\arctan(x)+x(x^{2}+2)}{x(3x^{2}+2)}+\frac {2(p-1)}{3}\frac{23x^{2}+22}{(x^{2}+2)(3x^{2}+2)}-\frac{2(p-1)}{3}}.\end{aligned} \end{aligned}$$
(2.15)

It is not difficult to verify that the function \(x\rightarrow (23x^{2}+22)/[(x^{2}+2)(3x^{2}+2)]\) is strictly decreasing on \((0, \infty)\). Then from Lemma 2.3 and (2.15) we know that \(g_{1}^{\prime }(x)/g_{2}^{\prime}(x)\) is strictly increasing on \((0, \infty)\). Therefore, the fact that the function \(x\rightarrow g_{0}(x, p)\) is strictly increasing on \((0, \infty)\) follows from Lemma 2.1 and (2.14) together with the monotonicity of \(g_{1}^{\prime}(x)/g_{2}^{\prime}(x)\) on the interval \((0, \infty)\).

From Lemma 2.2 we know that the interval \((0, 1)\) can be expressed by

$$ (0, 1)= \biggl(0, \frac{1}{3p} \biggr]\cup \biggl(\frac{1}{3p}, 1- \biggl( \frac{2}{e^{2}} \biggr)^{1/p} \biggr)\cup\biggl[1- \biggl( \frac{2}{e^{2}} \biggr)^{1/p}, 1 \biggr). $$

We divide the proof into three cases.

Case 1: \(0< u\leq1/(3p)\). Then (2.12) and (2.13) together with the monotonicity of the function \(x\rightarrow g_{0}(x, p)\) lead to the conclusion that the function \(x\rightarrow g(u, p; x)\) is strictly increasing on \((0, \infty)\). Therefore \(g(u, p; x)>0\) for all \(x\in(0, \infty)\) follows from (2.9) and the monotonicity of the function \(x\rightarrow g(u, p; x)\) on the interval \((0, \infty)\).

Case 2: \(1-(2/e^{2})^{1/p}\leq u<1\). Then from (2.10), (2.12), (2.13), Lemma 2.2, and the monotonicity of the function \(x\rightarrow g_{0}(x, p)\), we clearly see that

$$ \lim_{x\rightarrow\infty}g(u, p; x)\leq0, $$
(2.16)

and there exists \(x_{0}\in(0, \infty)\) such that the function \(x\rightarrow g(u, p; x)\) is strictly decreasing on \((0, x_{0})\) and strictly increasing on \((x_{0}, \infty)\). Therefore \(g(u, p; x)<0\) for all \(x\in(0, \infty)\) follows from (2.9) and (2.16) together with the piecewise monotonicity of the function \(x\rightarrow g(u, p; x)\) on the interval \((0, \infty)\).

Case 3: \(1/(3p)< u<1-(2/e^{2})^{1/p}\). Then it follows from (2.10), (2.12), (2.13), and the monotonicity of the function \(x\rightarrow g_{0}(x, p)\) that

$$ \lim_{x\rightarrow\infty}g(u, p; x)>0, $$
(2.17)

and there exists \(x^{\ast}\in(0, \infty)\) such that the function \(x\rightarrow g(u, p; x)\) is strictly decreasing on \((0, x^{\ast})\) and strictly increasing on \((x^{\ast}, \infty)\). Therefore, there exists \(\tau\in(0, \infty)\) such that \(g(u, p; x)<0\) for \(x\in(0, \tau)\) and \(g(u, p; x)>0\) for \(x\in(\tau, \infty)\) follows from (2.9) and (2.17) together with the piecewise monotonicity of the function \(x\rightarrow g(u, p; x)\) on the interval \((0, \infty)\). □

Main result

Theorem 3.1

Let \(p\geq1\), \(0<\lambda, \mu<1/2\), andσandτbe any two different positive real numbers. Then the double inequality

$$ \mathbf{GA}_{\lambda, p}(\sigma, \tau)< \mathbf{SY}(\sigma, \tau)< \mathbf{GA}_{\mu, p}(\sigma, \tau) $$

holds if and only if

$$ \lambda\leq\frac{1}{2}-\frac{1}{2}\sqrt{1- \biggl( \frac{2}{e^{2}} \biggr)^{1/p}}, \qquad\mu\geq\frac{1}{2}- \frac{\sqrt{3p}}{6p}. $$

Proof

From (1.1)–(1.3) we clearly see that both \(\mathbf{GA}_{\theta, p}(\sigma, \tau)\) and \(\mathbf{SY}(\sigma, \tau)\) are symmetric and homogenous of degree one with respect to their variables σ and τ. Without loss of generality, we assume that \(\sigma>\tau>0\). Let \(0<\theta<1/2\) and \(x=(\sigma-\tau)/\sqrt{2\sigma\tau}>0\). Then (1.1)–(1.3) lead to

$$\begin{aligned}& \mathbf{SY}(\sigma, \tau)=\mathbf{G}(\sigma, \tau)\sqrt{1+x^{2}}e^{\frac {\arctan(x)}{x}-1}, \\& \mathbf{GA}_{\theta, p}(\sigma, \tau)=\mathbf{G}(\sigma, \tau)\sqrt{1+ \frac{x^{2}}{2}} \biggl[\frac{ (1-(1-2\theta)^{2} )x^{2}+2}{x^{2}+2} \biggr]^{p/2}, \\& \begin{aligned}[b] &\log \bigl[\mathbf{GA}_{\theta, p}(\sigma, \tau) \bigr]-\log \bigl[ \mathbf{SY}( \sigma, \tau) \bigr] \\ &\quad=\frac{p}{2}\log \biggl[\frac{ (1-(1-2\theta)^{2} )x^{2}+2}{x^{2}+2} \biggr] +\frac{1}{2} \log \biggl(\frac{x^{2}+2}{2(x^{2}+1)} \biggr)-\frac{\arctan(x)}{x}+1 \\ &\quad=g \bigl((1-2\theta)^{2}, p;x \bigr),\end{aligned} \end{aligned}$$
(3.1)

where \(g(\cdot, p; x)\) is defined by (2.8).

Therefore, Theorem 3.1 follows easily from Lemma 2.4 and (3.1). □

Applications

Let \(p=1, 2\). Then Theorem 3.1 leads to Theorem 4.1 immediately, which provides the sharp bounds for the Sándor–Yang mean in terms of the one-parameter geometric and harmonic means.

Theorem 4.1

Let \(0<\lambda_{1}, \lambda_{2}, \mu_{1}, \mu_{2}<1/2\), andσandτbe any two distinct positive real numbers. Then the double inequalities

$$ \mathbf{G} \bigl[\lambda_{1}\sigma+(1-\lambda_{1})\tau, \lambda_{1}\tau+(1-\lambda_{1})\sigma \bigr]< \mathbf{SY}( \sigma, \tau)< \mathbf{G} \bigl[\mu_{1}\sigma+(1-\mu_{1}) \tau, \mu_{1}\tau+(1-\mu_{1})\sigma \bigr] $$

and

$$ \mathbf{H} \bigl[\lambda_{2}\sigma+(1-\lambda_{2})\tau, \lambda_{2}\tau+(1-\lambda_{2})\sigma \bigr]< \mathbf{SY}( \sigma, \tau)< \mathbf{H} \bigl[\mu_{2}\sigma+(1-\mu_{2})\tau, \mu_{2}\tau+(1-\mu_{2})\sigma \bigr] $$

hold if and only if

$$\begin{gathered} \lambda_{1}\leq\frac{1}{2}-\frac{1}{2}\sqrt{1- \frac{2}{e^{2}}}\simeq0.0730, \qquad\mu_{1}\geq\frac{1}{2}- \frac{\sqrt{3}}{6}\simeq0.2113, \\ \lambda_{2}\leq\frac{1}{2}-\frac{1}{2}\sqrt{1- \frac{\sqrt{2}}{e}}\simeq0.1537, \qquad\mu_{2}\geq\frac{1}{2}- \frac{\sqrt{6}}{12}\simeq0.2959.\end{gathered} $$

Theorem 3.1 and (1.2) also lead to Theorem 4.2, which gives the sharp bounds for the Yang mean in terms of the two-parameter geometric and arithmetic mean and the quadratic and geometric means.

Theorem 4.2

Let \(p\geq1\), \(0<\alpha, \beta<1/2\), andσandτbe any two different positive real numbers. Then the two-sided inequality

$$ \frac{\mathbf{G}(\sigma, \tau)}{\log[\mathbf{GA}_{\alpha, p}(\sigma, \tau)]-\log[\mathbf{Q}(\sigma, \tau)]+1}< \mathbf{U}(\sigma, \tau)< \frac {\mathbf{G}(\sigma, \tau)}{\log[\mathbf{GA}_{\beta, p}(\sigma, \tau )]-\log[\mathbf{Q}(\sigma, \tau)]+1} $$

takes place if and only if

$$ \alpha\geq\frac{1}{2}-\frac{\sqrt{3p}}{6p}, \qquad\beta\leq \frac{1}{2}-\frac{1}{2}\sqrt{1- \biggl(\frac{2}{e^{2}} \biggr)^{1/p}}. $$

Let \(\sigma>\tau=1/2\), \(\alpha=1/2-\sqrt{3p}/(6p)\), and \(\beta=1/2-\sqrt {1-(2/e^{2})^{1/p}}/2\). Then it follows from (1.1), (1.3) that

$$\begin{aligned}& \mathbf{U} \biggl(\sigma, \frac{1}{2} \biggr)=\frac{2\sigma-1}{2\sqrt {2}\arctan(\frac{2\sigma-1}{2\sqrt{\sigma}} )}, \end{aligned}$$
(4.1)
$$\begin{aligned}& \begin{aligned}[b] &\mathbf{GA}_{1/2-\sqrt{3p}/(6p), p} \biggl(\sigma, \frac{1}{2} \biggr) \\ &\quad= \biggl[\frac{4(3p-1)\sigma^{2}+4(3p+1)\sigma+3p-1}{48p} \biggr]^{p} \biggl(\frac{2\sigma+1}{4} \biggr)^{1-p},\end{aligned} \end{aligned}$$
(4.2)
$$\begin{aligned}& \begin{aligned}[b] &\mathbf{GA}_{1/2-\sqrt{1-(2/e^{2})^{1/p}}/2, p} \biggl(\sigma, \frac {1}{2} \biggr) \\ &\quad= \biggl[\frac{4\times2^{1/p}\sigma^{2}+4 (2e^{2/p}-2^{1/p} )\sigma +2^{1/p}}{16e^{2/p}} \biggr]^{p} \biggl(\frac{2\sigma+1}{4} \biggr)^{1-p}.\end{aligned} \end{aligned}$$
(4.3)

From Theorem 4.2 and (4.1)–(4.3) we obtain Theorem 4.3, which presents new one-parameter bounds for the inverse tangent function.

Theorem 4.3

The double inequality

$$\begin{gathered} \frac{2\sigma-1}{2\sqrt{\sigma}} \biggl[p\log \bigl(4\times2^{1/p}\sigma^{2}+4 \bigl(2e^{2/p}-2^{1/p} \bigr)\sigma+2^{1/p} \bigr) \\ \quad\quad{}+(1-p)\log(2\sigma+1)-\frac{1}{2}\log \bigl(4\sigma^{2}+1 \bigr)-p\log4-1-\frac{1}{2}\log2 \biggr] \\ \quad< \arctan \biggl(\frac{2\sigma-1}{2\sqrt{\sigma}} \biggr)< \frac{2\sigma -1}{2\sqrt{\sigma}} \biggl[p\log \bigl(4(3p-1)\sigma^{2}+4(3p+1)\sigma+3p-1 \bigr) \\ \qquad{}+(1-p)\log(2\sigma+1)-\frac{1}{2}\log \bigl(4\sigma^{2}+1 \bigr)-p (\log p+\log3+2\log2 )+1-\frac{1}{2}\log2 \biggr]\end{gathered} $$

holds for all \(\sigma>1/2\)and \(p\geq1\).

Consequences and discussion

In the article, we have given the sharp bounds for the Sándor–Yang mean

$$ \mathbf{SY}(\sigma, \tau)=\mathbf{Q}(\sigma, \tau)e^{\mathbf{G}(\sigma, \tau)/\mathbf{U}(\sigma, \tau)-1} $$

in terms of the two-parameter geometric and arithmetic mean

$$ \mathbf{GA}_{\eta, \nu}(\sigma, \tau)=\mathbf{G}^{\nu} \bigl[\eta \sigma+(1-\eta)\tau, \eta\tau+(1-\eta)\sigma \bigr]\mathbf{A}^{1-\nu}( \sigma, \tau) $$

and the one-parameter geometric and harmonic means

$$ \mathbf{G} \bigl[\lambda\sigma+(1-\lambda)\tau, \lambda\tau+(1-\lambda )\sigma \bigr] $$

and

$$ \mathbf{H} \bigl[\mu\sigma+(1-\mu)\tau, \mu\tau+(1-\mu)\sigma \bigr], $$

and have found the new bounds for the Yang mean

$$ \mathbf{U}(\sigma, \tau)=\frac{\sqrt{2}(\sigma-\tau)}{2\arctan(\frac {\sqrt{2}(\sigma-\tau)}{2\sqrt{\sigma\tau}} )} $$

and the inverse tangent function \(\arctan[(2\sigma-1)/(2\sqrt{\sigma})]\).

Conclusion

In the article, we have proved that the double inequalities

$$ \mathbf{GA}_{\lambda, p}(\sigma, \tau)< \mathbf{SY}(\sigma, \tau)< \mathbf{GA}_{\mu, p}(\sigma, \tau) $$

and

$$ \frac{\mathbf{G}(\sigma, \tau)}{\log[\mathbf{GA}_{\mu, p}(\sigma, \tau )]-\log[\mathbf{Q}(\sigma, \tau)]+1}< \mathbf{U}(\sigma, \tau)< \frac {\mathbf{G}(\sigma, \tau)}{\log[\mathbf{GA}_{\lambda, p}(\sigma, \tau )]-\log[\mathbf{Q}(\sigma, \tau)]+1} $$

are valid for all distinct positive real numbers σ and τ if and only if

$$ \lambda\leq\frac{1}{2}-\frac{1}{2}\sqrt{1- \biggl( \frac{2}{e^{2}} \biggr)^{1/p}}, \qquad\mu\geq\frac{1}{2}- \frac{\sqrt{3p}}{6p}. $$

if \(p\geq1\) and \(\lambda, \mu\in(0, 1/2)\).

References

  1. 1.

    Yang, Z.-H.: Three families of two-parameter means constructed by trigonometric functions. J. Inequal. Appl. 2013, Article ID 541 (2013)

  2. 2.

    Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012)

  3. 3.

    Wang, M.-K., Chu, H.-H., Chu, Y.-M.: Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals. J. Math. Anal. Appl. 480(2), Article ID 123388 (2019). https://doi.org/10.1016/j.jmaa.2019.123388

  4. 4.

    Chu, Y.-M., Wang, M.-K.: Optimal Lehmer mean bounds for the Toader mean. Results Math. 61(3–4), 223–229 (2012)

  5. 5.

    Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661–1667 (2014)

  6. 6.

    Qian, W.-M., Chu, Y.-M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017, Article ID 274 (2017)

  7. 7.

    Xu, H.-Z., Chu, Y.-M., Qian, W.-M.: Sharp bounds for the Sándor–Yang means in terms of arithmetic and contra-harmonic means. J. Inequal. Appl. 2018, Article ID 127 (2018)

  8. 8.

    Zhao, T.-H., Zhou, B.-C., Wang, M.-K., Chu, Y.-M.: On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, Article ID 42 (2019)

  9. 9.

    Wu, S.-H., Chu, Y.-M.: Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters. J. Inequal. Appl. 2019, Article ID 57 (2019)

  10. 10.

    Wang, J.-L., Qian, W.-M., He, Z.-Y., Chu, Y.-M.: On approximating the Toader mean by other bivariate means. J. Funct. Spaces 2019, Article ID 6082413 (2019)

  11. 11.

    Chu, Y.-M., Wang, H., Zhao, T.-H.: Sharp bounds for the Neumann mean in terms of the quadratic and second Seiffert means. J. Inequal. Appl. 2014, Article ID 299 (2014)

  12. 12.

    Qian, W.-M., Xu, H.-Z., Chu, Y.-M.: Improvements of bounds for the Sándor–Yang means. J. Inequal. Appl. 2019, Article ID 73 (2019)

  13. 13.

    Qian, W.-M., He, Z.-Y., Zhang, H.-W., Chu, Y.-M.: Sharp bounds for Neumann means in terms of two-parameter contraharmonic and arithmetic mean. J. Inequal. Appl. 2019, Article ID 168 (2019)

  14. 14.

    Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Monotonicity rule for the quotient of two functions and its application. J. Inequal. Appl. 2017, Article ID 106 (2017)

  15. 15.

    Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function. J. Inequal. Appl. 2017, Article ID 210 (2017)

  16. 16.

    Adil Khan, M., Chu, Y.-M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 15(1), 1414–1430 (2017)

  17. 17.

    Adil Khan, M., Begum, S., Khurshid, Y., Chu, Y.-M.: Ostrowski type inequalities involving conformable fractional integrals. J. Inequal. Appl. 2018, Article ID 70 (2018)

  18. 18.

    Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler–Mascheroni constant. J. Inequal. Appl. 2018, Article ID 118 (2018)

  19. 19.

    Adil Khan, M., Chu, Y.-M., Kashuri, A., Liko, R., Ali, G.: Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, Article ID 6928130 (2018)

  20. 20.

    Song, Y.-Q., Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M.: Integral inequalities involving strongly convex functions. J. Funct. Spaces 2018, Article ID 6595921 (2018)

  21. 21.

    Adil Khan, M., Khurshid, Y., Du, T.-S., Chu, Y.-M.: Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, Article ID 5357463 (2018)

  22. 22.

    Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p-elliptic integrals. J. Inequal. Appl. 2018, Article ID 239 (2018)

  23. 23.

    Zhao, T.-H., Wang, M.-K., Zhang, W., Chu, Y.-M.: Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018, Article ID 251 (2018)

  24. 24.

    Yang, Z.-H., Qian, W.-M., Chu, Y.-M.: Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math. Inequal. Appl. 21(4), 1185–1199 (2018)

  25. 25.

    Yang, Z.-H., Chu, Y.-M., Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl. Math. Comput. 348, 552–564 (2019)

  26. 26.

    Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable integral inequalities of the Hermite–Hadamard type in terms of GG- and GA-convexities. J. Funct. Spaces 2019, Article ID 6926107 (2019)

  27. 27.

    Adil Khan, M., Wu, S.-H., Ullah, H., Chu, Y.-M.: Discrete majorization type inequalities for convex functions on rectangles. J. Inequal. Appl. 2019, Article ID 16 (2019)

  28. 28.

    Qiu, S.-L., Ma, X.-Y., Chu, Y.-M.: Sharp Landen transformation inequalities for hypergeometric functions, with applications. J. Math. Anal. Appl. 474(2), 1306–1337 (2019)

  29. 29.

    Wang, M.-K., Chu, Y.-M., Zhang, W.: Monotonicity and inequalities involving zero-balanced hypergeometric function. Math. Inequal. Appl. 22(2), 601–617 (2019)

  30. 30.

    Wang, M.-K., Chu, Y.-M., Zhang, W.: Precise estimates for the solution of Ramanujan’s generalized modular equation. Ramanujan J. 49(3), 653–668 (2019)

  31. 31.

    Wang, M.-K., Zhang, W., Chu, Y.-M.: Monotonicity, convexity and inequalities involving the generalized elliptic integrals. Acta Math. Sci. 39(5), 1440–1450 (2019)

  32. 32.

    Huang, C.-X., Yang, Z.-C., Yi, T.-S., Zou, X.-F.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 256(7), 2101–2114 (2014)

  33. 33.

    Tang, W.-S., Sun, Y.-J.: Construction of Runge–Kutta type methods for solving ordinary differential equations. Appl. Math. Comput. 234, 179–191 (2014)

  34. 34.

    Huang, C.-X., Guo, S., Liu, L.-Z.: Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderón–Zygmund kernel. J. Math. Inequal. 8(3), 453–464 (2014)

  35. 35.

    Xie, D.-X., Li, J.: A new analysis of electrostatic free energy minimization and Poisson–Boltzmann equation for protein in ionic solvent. Nonlinear Anal., Real World Appl. 21, 185–196 (2015)

  36. 36.

    Dai, Z.-F., Chen, X.-H., Wen, F.-H.: A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations. Appl. Math. Comput. 270, 378–386 (2015)

  37. 37.

    Tan, Y.-X., Jing, K.: Existence and global exponential stability of almost periodic solution for delayed competitive neural networks with discontinuous activations. Math. Methods Appl. Sci. 39(11), 2821–2839 (2016)

  38. 38.

    Duan, L., Huang, C.-X.: Existence and global attractivity of almost periodic solutions for a delayed differential neoclassical growth model. Math. Methods Appl. Sci. 40(3), 814–822 (2017)

  39. 39.

    Duan, L., Huang, L.-H., Guo, Z.-Y., Fang, X.-W.: Periodic attractor for reaction–diffusion high-order Hopfield neural networks with time-varying delays. Comput. Math. Appl. 73(2), 233–245 (2017)

  40. 40.

    Huang, C.-X., Liu, L.-Z.: Boundedness of multilinear singular integral operator with a non-smooth kernel and mean oscillation. Quaest. Math. 40(3), 295–312 (2017)

  41. 41.

    Cai, Z.-W., Huang, J.-H., Huang, L.-H.: Generalized Lyapunov–Razumikhin method for retarded differential inclusions: applications to discontinuous neural networks. Discrete Contin. Dyn. Syst., Ser. B 22(9), 3591–3614 (2017)

  42. 42.

    Hu, H.-J., Zou, X.-F.: Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc. Am. Math. Soc. 145(11), 4763–4771 (2017)

  43. 43.

    Tan, Y.-X., Huang, C.-X., Sun, B., Wang, T.: Dynamics of a class of delayed reaction–diffusion systems with Neumann boundary condition. J. Math. Anal. Appl. 458(2), 1115–1130 (2018)

  44. 44.

    Tang, W.-S., Zhang, J.-J.: Symplecticity-preserving continuous-stage Runge–Kutta–Nyström methods. Appl. Math. Comput. 323, 204–219 (2018)

  45. 45.

    Duan, L., Fang, X.-W., Huang, C.-X.: Global exponential convergence in a delayed almost periodic Nicholson’s blowflies model with discontinuous harvesting. Math. Methods Appl. Sci. 41(5), 1954–1965 (2018)

  46. 46.

    Liu, Z.-Y., Wu, N.-C., Qin, X.-R., Zhang, Y.-L.: Trigonometric transform splitting methods for real symmetric Toeplitz systems. Comput. Math. Appl. 75(8), 2782–2794 (2018)

  47. 47.

    Huang, C.-X., Qiao, Y.-C., Huang, L.-H., Agarwal, R.P.: Dynamical behaviors of a food-chain model with stage structure and time delays. Adv. Differ. Equ. 2018, Article ID 186 (2018)

  48. 48.

    Cai, Z.-W., Huang, J.-H., Huang, L.-H.: Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 146(11), 4667–4682 (2018)

  49. 49.

    Wang, J.-F., Chen, X.-Y., Huang, L.-H.: The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 469(1), 405–427 (2019)

  50. 50.

    Li, J., Ying, J.-Y., Xie, D.-X.: On the analysis and application of an ion size-modified Poisson–Boltzmann equation. Nonlinear Anal., Real World Appl. 47, 188–203 (2019)

  51. 51.

    Wang, J.-F., Huang, C.-X., Huang, L.-H.: Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type. Nonlinear Anal. Hybrid Syst. 33, 162–178 (2019)

  52. 52.

    Jiang, Y.-J., Xu, X.-J.: A monotone finite volume method for time fractional Fokker–Planck equations. Sci. China Math. 62(4), 783–794 (2019)

  53. 53.

    Peng, J., Zhang, Y.: Heron triangles with figurate number sides. Acta Math. Hung. 157(2), 478–488 (2019)

  54. 54.

    Tian, Z.-L., Liu, Y., Zhang, Y., Liu, Z.-Y., Tian, M.-Y.: The general inner–outer iteration method based on regular splittings for the PageRank problem. Appl. Math. Comput. 356, 479–501 (2019)

  55. 55.

    Wang, W.-S., Chen, Y.-Z., Fang, H.: On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57(3), 1289–1317 (2019)

  56. 56.

    Shi, H.-P., Zhang, H.-Q.: Existence of gap solitons in periodic discrete nonlinear Schrödinger equations. J. Math. Anal. Appl. 361(2), 411–419 (2010)

  57. 57.

    Zhou, W.-J., Zhang, L.: Global convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems. Comput. Appl. Math. 29(2), 195–214 (2010)

  58. 58.

    Li, J., Xu, Y.-J.: An inverse coefficient problem with nonlinear parabolic equation. J. Appl. Math. Comput. 134(1–2), 195–206 (2010)

  59. 59.

    Yang, X.-S., Zhu, Q.-X., Huang, C.-X.: Generalized lag-synchronization of chaotic mix-delayed systems with uncertain parameters and unknown perturbations. Nonlinear Anal., Real World Appl. 12(1), 93–105 (2011)

  60. 60.

    Zhu, Q.-X., Huang, C.-X., Yang, X.-S.: Exponential stability for stochastic jumping BAM neural networks with time-varying and distributed delays. Nonlinear Anal. Hybrid Syst. 5(1), 52–77 (2011)

  61. 61.

    Dai, Z.-F., Wen, F.-H.: A modified CG-DESCENT method for unconstrained optimization. J. Comput. Appl. Math. 235(11), 3332–3341 (2011)

  62. 62.

    Guo, K., Sun, B.: Numerical solution of the Goursat problem on a triangular domain with mixed boundary conditions. Appl. Math. Comput. 217(21), 8765–8777 (2011)

  63. 63.

    Lin, L., Liu, Z.-Y.: An alternating projected gradient algorithm for nonnegative matrix factorization. Appl. Math. Comput. 217(24), 9997–10002 (2011)

  64. 64.

    Xiao, C.-E., Liu, J.-B., Liu, Y.-L.: An inverse pollution problem in porous media. Appl. Math. Comput. 218(7), 3649–3653 (2011)

  65. 65.

    Dai, Z.-F., Wen, F.-H.: Another improved Wei–Yao–Liu nonlinear conjugate gradient method with sufficient descent property. Appl. Math. Comput. 218(14), 7421–7430 (2012)

  66. 66.

    Liu, Z.-Y., Zhang, Y.-L., Santos, J., Ralha, R.: On computing complex square roots of real matrices. Appl. Math. Lett. 25(10), 1565–1568 (2012)

  67. 67.

    Huang, C.-X., Liu, L.-Z.: Sharp function inequalities and boundedness for Toeplitz type operator related to general fractional singular integral operator. Publ. Inst. Math. 92(106), 165–176 (2012)

  68. 68.

    Zhou, W.-J.: On the convergence of the modified Levenberg–Marquardt method with a nonmonotone second order Armijo type line search. J. Comput. Appl. Math. 239, 152–161 (2013)

  69. 69.

    Zhou, W.-J., Chen, X.-L.: On the convergence of a modified regularized Newton method for convex optimization with singular solutions. J. Comput. Appl. Math. 239, 179–188 (2013)

  70. 70.

    Jiang, Y.-J., Ma, J.-T.: Spectral collocation methods for Volterra-integro differential equations with noncompact kernels. J. Comput. Appl. Math. 244, 115–124 (2013)

  71. 71.

    Zhang, L., Jian, S.-Y.: Further studies on the Wei–Yao–Liu nonlinear conjugate gradient method. Appl. Math. Comput. 219(14), 7616–7621 (2013)

  72. 72.

    Li, X.-F., Tang, G.-J., Tang, B.-Q.: Stress field around a strike-slip fault in orthotropic elastic layers via a hypersingular integral equation. Comput. Math. Appl. 66(11), 2317–2326 (2013)

  73. 73.

    Qin, G.-X., Huang, C.-X., Xie, Y.-Q., Wen, F.-H.: Asymptotic behavior for third-order quasi-linear differential equations. Adv. Differ. Equ. 2013, Article ID 305 (2013)

  74. 74.

    Zhang, L., Li, J.-L.: A new globalization technique for nonlinear conjugate gradient methods for nonconvex minimization. Appl. Math. Comput. 217(24), 10295–10304 (2011)

  75. 75.

    Huang, C.-X., Zhang, H., Huang, L.-H.: Almost periodicity analysis for a delayed Nicholson’s blowflies model with nonlinear density-dependent mortality term. Commun. Pure Appl. Anal. 18(6), 3337–3349 (2019)

  76. 76.

    Liu, F.-W., Feng, L.-B., Anh, V., Li, J.: Unstructured-mesh Galerkin finite element method for the two-dimensional multi-term time-space fractional Bloc–Torrey equations on irregular convex domains. Comput. Math. Appl. 78(5), 1637–1650 (2019)

  77. 77.

    Yang, Z.-H., Wu, L.-M., Chu, Y.-M.: Optimal power mean bounds for Yang mean. J. Inequal. Appl. 2014, Article ID 401 (2014)

  78. 78.

    Qian, W.-M., Chu, Y.-M.: Best possible bounds for Yang mean using generalized logarithmic mean. Math. Probl. Eng. 2016, Article ID 8901258 (2016)

  79. 79.

    Chu, Y.-M., Wang, M.-K., Qiu, Y.-F., Ma, X.-Y.: Sharp two parameter bounds for the logarithmic mean and the arithmetic–geometric mean of Gauss. J. Math. Inequal. 7(3), 349–355 (2013)

  80. 80.

    Zhang, F., Yang, Y.-Y., Qian, W.-M.: Sharp bounds for Sándor–Yang means in terms of the convex combination of classical bivariate means. J. Zhejiang Univ. Sci. Ed. 45(6), 665–872 (2018)

  81. 81.

    He, X.-H., Qian, W.-M., Xu, H.-Z., Chu, Y.-M.: Sharp power mean bounds for two Sándor–Yang means. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2627–2638 (2019)

  82. 82.

    Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997)

Download references

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Availability of data and materials

Not applicable.

Funding

The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485) and the Natural Science Foundation of Huzhou City (Grant No. 2018YZ07).

Author information

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Correspondence to Yu-Ming Chu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qian, W., Yang, Y., Zhang, H. et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor–Yang mean. J Inequal Appl 2019, 287 (2019) doi:10.1186/s13660-019-2245-x

Download citation

MSC

  • 26E60

Keywords

  • Arithmetic mean
  • Geometric mean
  • Quadratic mean
  • Yang mean
  • Sándor–Yang mean