# A note on generalized convex functions

## Abstract

In the article, we provide an example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general, define the coordinate $$(\eta _{1}, \eta _{2})$$-convex function and establish its Hermite–Hadamard type inequality.

## Introduction

Let $$I\subseteq \mathbb{R}$$ be an interval. Then a real-valued function $$\varPsi : I\mapsto \mathbb{R}$$ is said to be convex on I if the inequality

$$\varPsi \bigl[\lambda a+(1-\lambda )b\bigr]\leq \lambda \varPsi (a)+(1-\lambda ) \varPsi (b)$$
(1.1)

holds for all $$a, b\in I$$ and $$\lambda \in (0, 1)$$. Ψ is said to be concave if inequality (1.1) is reversed.

It is well known that the convexity theory has wide applications in special functions [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30], differential equations [31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61] and bivariate means [62,63,64,65,66,67]. Recently, the extensions, generalizations, refinements and variants for the convexity have attracted the attention of many researchers. For example, Schur convexity [68,69,70], GA-convexity , GG-convexity , s-convexity [73, 74], preinvexity , strong convexity [76,77,78,79] and others [80,81,82,83,84,85].

Dragomir  defined the coordinate convex as follows.

### Definition 1.1

(See )

Let $$I_{1}, I_{2}\subseteq \mathbb{R}$$ be two interval, $$\varPsi : I_{1}\times I_{2}\mapsto \mathbb{R}$$ be a real-valued function, and the partial mappings $$\varPsi _{y}: I_{1}\mapsto \mathbb{R}$$ and $$\varPsi _{x}: I_{2}\mapsto \mathbb{R}$$ be defined by

$$\varPsi _{y}(u)=\varPsi (u, y), \qquad \varPsi _{x}(v)=\varPsi (x, v),$$

respectively. Then Ψ is said to be coordinate convex on $$I_{1}\times I_{2}$$ if $$\varPsi _{y}$$ is convex on $$I_{1}$$ for all $$y\in I_{2}$$ and $$\varPsi _{x}$$ is convex on $$I_{2}$$ for all $$x\in I_{1}$$.

### Remark 1.2

Dragomir  proved that every convex function is coordinate convex, but not vice versa.

Next, we recall the concept of η-convexity which can be found in the literature .

### Definition 1.3

(See )

Let $$I\subseteq \mathbb{R}$$ be an interval, and $$\varPsi : I\mapsto \mathbb{R}$$ and $$\eta : \mathbb{R} \times \mathbb{R}\mapsto \mathbb{R}$$ be two real-valued functions. Then Ψ is said to be η-convex if the inequality

$$\varPsi \bigl[\mu x+(1-\mu )y\bigr]\leq \varPsi (y)+\mu \eta \bigl[\varPsi (x), \varPsi (y) \bigr]$$

holds for all $$x, y\in I$$ and $$\mu \in [0, 1]$$.

Note that the η-convexity reduces to the usual convexity if $$\eta (x, y)=x-y$$ in Definition 1.3.

The main purpose of the article is to give a non-trivial example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex but not vice versa, define the coordinate $$(\eta _{1}, \eta _{2})$$-convex function and establish its Hermite–Hadamard type inequality.

## Main results

To begin this section, it is interesting to give the definition of η-convex function defined on rectangle, and give a non-trivial example for a η-convex function defined on rectangle is not convex.

### Definition 2.1

Let $$I_{1}, I_{2}\subseteq \mathbb{R}$$ be two intervals, and $$\varPsi : I_{1}\times I_{2}\mapsto \mathbb{R}$$ and $$\eta : \mathbb{R}\times \mathbb{R}\mapsto \mathbb{R}$$ be two real-valued functions. Then Ψ is said to be η-convex if the inequality

$$\varPsi \bigl[\mu x+(1-\mu )z, \mu y+(1-\mu )w\bigr]\leq \varPsi (z, w)+\mu \eta \bigl[ \varPsi (x,y), \varPsi (z, w)\bigr]$$

holds for all $$(x, y), (z, w)\in I_{1}\times I_{2}$$ and $$\mu \in [0, 1]$$.

### Example 2.2

Let $$\varPsi : [1,5]\times [1,5]\mapsto \mathbb{R}$$ and $$\eta : \mathbb{R}\times \mathbb{R}\mapsto \mathbb{R}$$ be defined by

$$\varPsi (x, y)=x^{2}y^{2}, \qquad \eta (x, y)=104x+103y.$$

Then Ψ is η-convex on $$[1,5]\times [1,5]$$, but it is not convex.

### Proof

Let $$\mu \in [0, 1]$$. Then for any $$(x, y), (z, w)\in [1,5]$$ we have

\begin{aligned}& \varPsi \bigl[\mu x+(1-\mu )z,\mu y+(1-\mu )w\bigr] \\& \quad =\bigl[\mu x+(1-\mu )z\bigr]^{2}\bigl[\mu y+(1-\mu )w \bigr]^{2} \\& \quad =\bigl[z^{2}+\mu \bigl(\mu x^{2}+\mu z^{2}-2z^{2}\bigr)+2\mu (1-\mu )xz\bigr] \\& \qquad {}\times \bigl[w^{2}+\mu \bigl(\mu y^{2}+\mu w^{2}-2w^{2}\bigr)+2\mu (1-\mu )yw\bigr] \\& \quad \leq \bigl[z^{2}+\mu x^{2}+2\mu (1-\mu )xz\bigr] \bigl[w^{2}+\mu y^{2}+2\mu (1-\mu )yw\bigr] \\& \quad \leq \bigl[z^{2}+\mu x^{2}+\mu (1-\mu ) \bigl(x^{2}+z^{2}\bigr)\bigr] \bigl[w^{2}+\mu y^{2}+ \mu (1-\mu ) \bigl(y^{2}+w^{2}\bigr) \bigr] \\& \quad \leq \bigl[z^{2}+\mu \bigl(x^{2}+x^{2}+z^{2} \bigr)\bigr] \bigl[w^{2}+\mu \bigl(y^{2}+y^{2}+w^{2} \bigr)\bigr] \\& \quad =z^{2}w^{2}+\mu \bigl[2y^{2}z^{2}+z^{2}w^{2}+2x^{2}w^{2}+w^{2}z^{2} \bigr]+\mu ^{2}\bigl[4x^{2}y^{2}+2x^{2}w^{2}+2y^{2}z^{2}+z^{2}w^{2} \bigr] \\& \quad \leq \varPsi (z,w)+\mu \bigl[2y^{2}z^{2}+z^{2}w^{2}+2x^{2}w^{2}+w^{2}z^{2} \bigr]+ \mu \bigl[4x^{2}y^{2}+2x^{2}w^{2}+2y^{2}z^{2}+z^{2}w^{2} \bigr] \\& \quad =\varPsi (z,w)+\mu \bigl[4x^{2}y^{2}+3z^{2}w^{2}+4 \bigl(z^{2}y^{2}+x^{2}w^{2}\bigr) \bigr]. \end{aligned}
(2.1)

Note that

$$z^{2}\leq 25x^{2}, \qquad x^{2}\leq 25z^{2}.$$
(2.2)

It follows from (2.1) and (2.2) that

\begin{aligned}& \varPsi \bigl[\mu x+(1-\mu )z,\mu y+(1-\mu )w\bigr] \\& \quad \leq \varPsi (z,w)+\mu \bigl[104x^{2}y^{2}+103z^{2}w^{2} \bigr] \\& \quad =\varPsi (z,w)+\mu \eta \bigl[\varPsi (x,y),\varPsi (z,w)\bigr], \end{aligned}

which shows that Ψ is η-convex on $$[1,5]\times [1,5]$$. It is easily to verify that Ψ is not convex on $$[1,5]\times [1,5]$$, for details see . □

Next, we introduce the definition of coordinate $$(\eta _{1}, \eta _{2})$$-convexity.

### Definition 2.3

Let $$I_{1}, I_{2}\subseteq \mathbb{R}$$ be two intervals, $$\varPsi : I_{1}\times I_{2}\mapsto \mathbb{R}$$, $$\eta _{1}, \eta _{2}: \mathbb{R}\times \mathbb{R}\mapsto \mathbb{R}$$ be three real-valued functions, and the partial mappings $$\varPsi _{y}: I_{1} \mapsto \mathbb{R}$$ and $$\varPsi _{x}: I_{2}\mapsto \mathbb{R}$$ be defined by

$$\varPsi _{y}(u)=\varPsi (u, y), \qquad \varPsi _{x}(v)=\varPsi (x, v).$$

Then Ψ is said to be coordinate $$(\eta _{1}, \eta _{2})$$-convex on $$I_{1}\times I_{2}$$ if $$\varPsi _{y}$$ is $$\eta _{1}$$-convex on $$I_{1}$$ and $$\varPsi _{x}$$ is $$\eta _{2}$$-convex on $$I_{2}$$. In particular, if $$\eta _{1}=\eta _{2}=\eta$$, then Ψ is said to be coordinate η-convex.

### Example 2.4

Let $$\varPsi : [0, \infty )\times [0, \infty ) \mapsto \mathbb{R}$$ be defined by $$\varPsi (x, y)=-|x|-y^{2}$$, $$\eta _{1}(x, y)=-x-y$$ and $$\eta _{2}(x, y)=-x-2y$$. Then Ψ is coordinate $$(\eta _{1}, \eta _{2})$$-convex on $$[0, \infty )\times [0, \infty )$$.

### Proof

Let $$x_{1}, y_{1}\in [0, \infty )$$ and $$\mu \in [0, 1]$$. Then for any $$(x, y)\in [0, \infty )$$ we clearly see that

\begin{aligned}& \varPsi _{y}\bigl(\mu x_{1}+(1-\mu )x_{2}\bigr)=- \bigl\vert \mu x_{1}+(1-\mu )x_{2} \bigr\vert -y^{2}, \end{aligned}
(2.3)
\begin{aligned}& \varPsi _{y}(x_{2})+\mu \eta _{1}\bigl(\varPsi _{y}(x_{1}), \varPsi _{y}(x_{2}) \bigr) \\& \quad =- \vert x_{2} \vert -y^{2}+\mu \eta _{1}\bigl(- \vert x_{1} \vert -y^{2}, - \vert x_{2} \vert -y^{2}\bigr) \\& \quad =- \vert x_{2} \vert -y^{2}+\mu \bigl( \vert x_{1} \vert + \vert x_{2} \vert +2y^{2} \bigr), \end{aligned}
(2.4)
\begin{aligned}& \varPsi _{x}\bigl(\mu y_{1}+(1-\mu )y_{2} \bigr)=- \vert x \vert -\bigl(\mu y_{1}+(1-\mu )y_{2} \bigr)^{2}, \end{aligned}
(2.5)
\begin{aligned}& \varPsi _{x}(y_{2})+\mu \eta _{2}\bigl(\varPsi _{x}(y_{1}), \varPsi _{x}(y_{2}) \bigr) \\& \quad =- \vert x \vert -y_{2}^{2}+\mu \eta _{2}\bigl(- \vert x \vert -y_{1}^{2}, - \vert x \vert -y_{2}^{2}\bigr) \\& \quad=- \vert x \vert -y_{2}^{2}+\mu \bigl(y_{1}^{2}+2y_{2}^{2}+3 \vert x \vert \bigr). \end{aligned}
(2.6)

It follows from (2.3)–(2.6) that

\begin{aligned}& \varPsi _{y}(x_{2})+\mu \eta _{1}\bigl(\varPsi _{y}(x_{1}), \varPsi _{y}(x_{2}) \bigr)-\varPsi _{y}\bigl(\mu x_{1}+(1-\mu )x_{2} \bigr) \\& \quad =\mu \bigl( \vert x_{1} \vert + \vert x_{2} \vert +2y^{2}\bigr)+ \bigl\vert \mu x_{1}+(1-\mu )x_{2} \bigr\vert - \vert x_{2} \vert \\& \quad \geq 2\mu y^{2}+\mu \vert x_{1} \vert +\mu \vert x_{2} \vert +(1-\mu ) \vert x_{2} \vert -\mu \vert x_{1} \vert - \vert x _{2} \vert \\& \quad =2\mu y^{2}\geq 0, \end{aligned}
(2.7)
\begin{aligned}& \varPsi _{x}(y_{2})+\mu \eta _{2}\bigl(\varPsi _{x}(y_{1}), \varPsi _{x}(y_{2}) \bigr)-\varPsi _{x}\bigl(\mu y_{1}+(1-\mu )y_{2} \bigr) \\& \quad =3\mu \vert x \vert +2\mu (1-\mu )y_{1}y_{2}+ \mu (1+\mu )y_{1}^{2}+\mu ^{2}y_{2} ^{2}\geq 0. \end{aligned}
(2.8)

Therefore, Ψ is coordinate $$(\eta _{1}, \eta _{2})$$-convex on $$[0, \infty )\times [0, \infty )$$ follows from (2.7) and (2.8). □

### Theorem 2.5

Let $$I_{1}, I_{2}\subseteq \mathbb{R}$$be two interval and $$\eta : \mathbb{R}\times \mathbb{R}\mapsto \mathbb{R}$$be a real-valued function. ThenΨis coordinateη-convex on $$I_{1}\times I_{2}$$ifΨisη-convex on $$I_{1}\times I _{2}$$.

### Proof

Let $$(x,y)\in I_{1}\times I_{2}$$, $$u, v\in I_{2}$$ and $$z, w\in I_{1}$$. Then it follows from the η-convexity of the function Ψ on $$I_{1}\times I_{2}$$ that

\begin{aligned} \varPsi _{x}\bigl(\mu v+(1-\mu )u\bigr) =&\varPsi \bigl(x, \mu v+(1-\mu )u\bigr) \\ =&\varPsi \bigl(\mu x+(1-\mu )x, \mu v+(1-\mu )u\bigr) \\ \leq& \varPsi (x, u)+\mu \eta \bigl(\varPsi (x, v), \varPsi (x, u)\bigr) \\ =&\varPsi _{x}(u)+\mu \eta \bigl(\varPsi _{x}(v), \varPsi _{x}(u)\bigr) \end{aligned}
(2.9)

and

\begin{aligned} \varPsi _{y}\bigl(\mu z+(1-\mu )w\bigr) =&\varPsi \bigl(\mu z+(1-\mu )w, y \bigr) \\ =&\varPsi \bigl(\mu z+(1-\mu )w, \mu y+(1-\mu )y\bigr) \\ \leq &\varPsi (w, y)+\mu \eta \bigl(\varPsi (z, y), \varPsi (w, y)\bigr) \\ =&\varPsi _{y}(w)+\mu \eta \bigl(\varPsi _{y}(z), \varPsi _{y}(w)\bigr). \end{aligned}
(2.10)

Inequalities (2.9) and (2.10) imply that $$\varPsi _{x}$$ is η-convex on $$I_{2}$$ and $$\varPsi _{y}$$ is η-convex on $$I_{1}$$. Therefore, Ψ is coordinate η-convex on $$I_{1}\times I_{2}$$. □

### Example 2.6

Let $$I_{1}=I_{2}=[0, \infty )$$, $$\varPsi , \eta : I_{1}\times I_{2}\mapsto [0, \infty )$$ be defined by

$$\varPsi (x, y)=xy, \qquad \eta (x, y)=x+y.$$
(2.11)

Then Ψ is coordinate η-convex on $$I_{1}\times I_{2}$$ but it is not η-convex on $$I_{1}\times I_{2}$$.

### Proof

Let $$x, y, u, v, z, w\in [0, \infty )$$ and $$\mu \in [0, 1]$$. Then it follows from (2.11) that

\begin{aligned}& \varPsi _{x}\bigl(\mu u+(1-\mu )v\bigr)=\varPsi \bigl(x, \mu u+(1-\mu )v \bigr) \\& \hphantom{\varPsi _{x}\bigl(\mu u+(1-\mu )v\bigr)} =x\bigl(\mu u+(1-\mu )v\bigr)=-\mu xv+x(\mu u+v), \end{aligned}
(2.12)
\begin{aligned}& \varPsi (x, v)+\mu \eta \bigl(\varPsi (x, u), \varPsi (x, v)\bigr)=xv+\mu \eta (xu, xv) \\& \hphantom{\varPsi (x, v)+\mu \eta \bigl(\varPsi (x, u), \varPsi (x, v)\bigr)} =xv+\mu (xu+xv)=\mu xv+x(\mu u+v), \end{aligned}
(2.13)
\begin{aligned}& \varPsi _{y}\bigl(\mu z+(1-\mu )w\bigr)=\varPsi \bigl(\mu z+(1-\mu )w, y \bigr) \\& \hphantom{\varPsi _{y}\bigl(\mu z+(1-\mu )w\bigr)} =y\bigl(\mu z+(1-\mu )w\bigr)=-\mu yw+y(\mu z+w), \end{aligned}
(2.14)
\begin{aligned}& \varPsi (w, y)+\mu \eta \bigl(\varPsi (z, y), \varPsi (w, y)\bigr)=wy+\mu \eta (zy, wy) \\& \hphantom{\varPsi (w, y)+\mu \eta \bigl(\varPsi (z, y), \varPsi (w, y)\bigr)} =wy+\mu (zy+wy)=\mu yw+y(\mu z+w). \end{aligned}
(2.15)

Inequalities (2.12)–(2.15) imply that

$$\varPsi _{x}\bigl(\mu u+(1-\mu )v\bigr)\leq \varPsi (x, v)+\mu \eta \bigl(\varPsi (x, u), \varPsi (x, v)\bigr)$$
(2.16)

and

$$\varPsi _{y}\bigl(\mu z+(1-\mu )w\bigr)\leq \varPsi (w, y)+\mu \eta \bigl(\varPsi (z, y), \varPsi (w, y)\bigr).$$
(2.17)

Note that

$$\varPsi _{x}\bigl(\mu u+(1-\mu )v\bigr)=\varPsi \bigl(\mu x+(1-\mu )x, \mu u+(1-\mu )v\bigr)$$
(2.18)

and

$$\varPsi _{y}\bigl(\mu z+(1-\mu )w\bigr)=\varPsi \bigl(\mu z+(1-\mu )w, \mu y+(1-\mu )y\bigr).$$
(2.19)

Therefore, Ψ is coordinate η-convex on $$I_{1}\times I_{2}$$ follows from (2.16)–(2.19).

Next, we prove that Ψ is not η-convex on $$I_{1}\times I _{2}$$.

Let $$\mu \in (0, 1)$$, $$x=w=1$$ and $$y=z=0$$. Then (2.11) leads to

\begin{aligned}& \varPsi \bigl(\mu x+(1-\mu )z, \mu y+(1-\mu )w\bigr) \\& \quad =\varPsi (\mu , 1-\mu )=\mu (1-\mu )>0, \end{aligned}
(2.20)
\begin{aligned}& \varPsi (z, w)+\mu \eta \bigl(\varPsi (x, y), \varPsi (z, w)\bigr) \\& \quad =\varPsi (0, 1)+\mu \eta \bigl(\varPsi (1, 0), \varPsi (0, 1)\bigr)=0. \end{aligned}
(2.21)

From (2.20) and (2.21) we clearly see that Ψ is not η-convex on $$I_{1}\times I_{2}$$. □

Next, we establish a Hermite–Hadamard type inequality for the coordinate $$(\eta _{1}, \eta _{2})$$-convex function.

### Theorem 2.7

Let $$a, b, c, d\in \mathbb{R}$$with $$a< b$$and $$c< d$$, $$\varPsi : [a, b]\times [c, d]\mapsto \mathbb{R}$$, $$\eta _{1}, \eta _{2}: \mathbb{R}\times \mathbb{R}\mapsto \mathbb{R}$$be three real-valued functions such thatΨis coordinate $$(\eta _{1}, \eta _{2})$$-convex on $$[a, b]\times [c, d]$$and

$$\eta _{1}(x, y)\leq M_{\eta _{1}}, \qquad \eta _{2}(x, y)\leq M_{\eta _{2}}$$

for all $$x, y\in \mathbb{R}$$, where $$M_{\eta _{1}}$$and $$M_{\eta _{2}}$$are two positive constants. Then

\begin{aligned}& \begin{gathered}[b] \varPsi \biggl(\frac{a+b}{2}, \frac{c+d}{2} \biggr)- \frac{M_{\eta _{1}}+M _{\eta _{2}}}{2} \\ \quad \leq \frac{1}{2} \biggl[\frac{1}{b-a} \int _{a}^{b}\varPsi \biggl(x, \frac{c+d}{2} \biggr)\,dx +\frac{1}{d-c} \int _{c}^{d}\varPsi \biggl(\frac{a+b}{2}, y \biggr)\,dy \biggr]-\frac{M _{\eta _{1}}+M_{\eta _{2}}}{4} \\ \quad \leq \frac{1}{(b-a)(d-c)} \int _{c}^{d} \int _{a}^{b}\varPsi (x, y)\,dx\,dy \\ \quad \leq \frac{1}{4} \biggl[\frac{1}{b-a} \int _{a}^{b} \bigl(\varPsi (x, c)+ \varPsi (x, d) \bigr)\,dx+ \frac{1}{d-c} \int _{c}^{d} \bigl(\varPsi (a, y)+ \varPsi (b, y) \bigr)\,dy \biggr]\\ \qquad {}+\frac{M_{\eta _{1}}+M_{\eta _{2}}}{4} \\ \quad \leq \frac{1}{4} \bigl[\varPsi (a, c)+\varPsi (b, c)+\varPsi (a, d)+\varPsi (b, d) \bigr]+ \frac{5}{4} [M_{\eta _{1}}+M_{\eta _{2}} ]. \end{gathered} \end{aligned}
(2.22)

### Proof

For any fixed $$x\in [a, b]$$, $$\varPsi _{x}(y)=\varPsi (x, y)$$ is $$\eta _{2}$$-convex on $$[c, d]$$ due to Ψ is coordinate $$(\eta _{1}, \eta _{2})$$-convex on $$[a, b]\times [c, d]$$. It follows from [77, Theorem 5] that

$$\varPsi \biggl(x, \frac{c+d}{2} \biggr)- \frac{M_{\eta _{2}}}{2}\leq \frac{1}{d-c} \int _{c}^{d}\varPsi (x, y)\,dy \leq \frac{\varPsi (x, c)+\varPsi (x, d)}{2}+\frac{M_{\eta _{2}}}{2}.$$
(2.23)

Integrating each side of inequality (2.23) with respect to the variable x on $$[a, b]$$ leads to

\begin{aligned}& \frac{1}{b-a} \int _{a}^{b}\varPsi \biggl(x, \frac{c+d}{2} \biggr)\,dx-\frac{M _{\eta _{2}}}{2} \\& \quad \leq \frac{1}{(b-a)(d-c)} \int _{c}^{d} \int _{a}^{b}\varPsi (x, y)\,dx\,dy \\& \quad \leq \frac{1}{2(b-a)} \int _{a}^{b} \bigl[\varPsi (x, c)+\varPsi (x, d) \bigr]\,dx+\frac{M _{\eta _{2}}}{2}. \end{aligned}
(2.24)

By similar arguments we have

\begin{aligned}& \frac{1}{d-c} \int _{c}^{d}\varPsi \biggl(\frac{a+b}{2}, y \biggr)\,dy-\frac{M _{\eta _{1}}}{2} \\& \quad \leq \frac{1}{(b-a)(d-c)} \int _{c}^{d} \int _{a}^{b}\varPsi (x, y)\,dx\,dy \\& \quad \leq \frac{1}{2(d-c)} \int _{c}^{d} \bigl[\varPsi (a, y)+\varPsi (b, y) \bigr]\,dy+\frac{M _{\eta _{1}}}{2}. \end{aligned}
(2.25)

Adding (2.24) and (2.25) we get the second and third inequalities of (2.22).

Making use of the $$(\eta _{1}, \eta _{2})$$-convexity of the function Ψ on $$[a, b]\times [c, d]$$ and [88, Theorem 5] again we get

\begin{aligned}& \varPsi \biggl(\frac{a+b}{2}, \frac{c+d}{2} \biggr)- \frac{M_{\eta _{2}}}{2}\leq \frac{1}{b-a} \int _{a}^{b}\varPsi \biggl(x, \frac{c+d}{2} \biggr)\,dx, \end{aligned}
(2.26)
\begin{aligned}& \varPsi \biggl(\frac{a+b}{2}, \frac{c+d}{2} \biggr)- \frac{M_{\eta _{1}}}{2}\leq \frac{1}{d-c} \int _{c}^{d}\varPsi \biggl(\frac{a+b}{2}, y \biggr)\,dy, \end{aligned}
(2.27)
\begin{aligned}& \frac{1}{b-a} \int _{a}^{b}\varPsi (x, c)\,dx\leq \frac{\varPsi (a, c)+\varPsi (b, c)}{2}+\frac{M_{\eta _{2}}}{2}, \end{aligned}
(2.28)
\begin{aligned}& \frac{1}{b-a} \int _{a}^{b}\varPsi (x, d)\,dx\leq \frac{\varPsi (a, d)+\varPsi (b, d)}{2}+\frac{M_{\eta _{2}}}{2}, \end{aligned}
(2.29)
\begin{aligned}& \frac{1}{d-c} \int _{c}^{d}\varPsi (a, y)\,dy\leq \frac{\varPsi (a, c)+\varPsi (a, d)}{2}+\frac{M_{\eta _{1}}}{2}, \end{aligned}
(2.30)
\begin{aligned}& \frac{1}{d-c} \int _{c}^{d}\varPsi (b, y)\,dy\leq \frac{\varPsi (b, c)+\varPsi (b, d)}{2}+\frac{M_{\eta _{1}}}{2}. \end{aligned}
(2.31)

Therefore, the first inequality of (2.22) follows from (2.26) and (2.27) with adding $$-\frac{1}{2}M_{\eta _{2}}$$ and $$-\frac{1}{2}M_{\eta _{1}}$$ respectively, and the last inequality in (2.22) can be derived from (2.28)–(2.31) immediately, with adding $$\frac{1}{4} [M_{\eta _{1}}+M_{\eta _{2}} ]$$. □

## Results and discussion

In the article, we establish a non-trivial example for a η-convex function defined on rectangle is not convex, prove that every η-convex function defined on rectangle is coordinate η-convex and its converse is not true in general. Furthermore, we define a new class of function which is coordinate $$(\eta _{1}, \eta _{2})$$-convex function and prove its well-known Hermite–Hadamard type inequality.

## Conclusion

We find an example for η-convex function defined on rectangle is not convex. The authors define a coordinate $$(\eta _{1}, \eta _{2})$$-convex function and prove its results. Our approach may have further applications in the theory of η-convexity.

## References

1. Guessab, A., Schmeisser, G.: Sharp integral inequalities of the Hermite–Hadamard type. J. Approx. Theory 115(2), 260–288 (2002)

2. Shi, H.-P., Zhang, H.-Q.: Existence of gap solitons in periodic discrete nonlinear Schrödinger equations. J. Math. Anal. Appl. 361(2), 411–419 (2010)

3. Zhou, W.-J., Zhang, L.: Convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems. Comput. Appl. Math. 29(2), 195–214 (2010)

4. Yang, X.-S., Zhu, Q.-X., Huang, C.-X.: Generalized lag-synchronization of chaotic mix-delayed systems with uncertain parameters and unknown perturbations. Nonlinear Anal., Real World Appl. 12(1), 93–105 (2011)

5. Zhu, Q.-X., Huang, C.-X., Yang, X.-S.: Exponential stability for stochastic jumping BAM neural networks with time-varying and distributed delays. Nonlinear Anal. Hybrid Syst. 5(1), 52–77 (2011)

6. Dai, Z.-F., Wen, F.-H.: A modified CG-DESCENT method for unconstrained optimization. J. Comput. Appl. Math. 235(11), 3332–3341 (2011)

7. Gou, K., Sun, B.: Numerical solution of the Goursat problem on a triangular domain with mixed boundary conditions. Appl. Math. Comput. 217(21), 8765–8777 (2011)

8. Lin, L., Liu, Z.-Y.: An alternating projected gradient algorithm for nonnegative matrix factorization. Appl. Math. Comput. 217(24), 9997–10002 (2011)

9. Zhang, L., Li, J.-L.: A new globalization technique for nonlinear conjugate gradient methods for nonconvex minimization. Appl. Math. Comput. 217(24), 10295–10304 (2011)

10. Xiao, C.-E., Liu, J.-B., Liu, Y.-L.: An inverse pollution problem in porous media. Appl. Math. Comput. 218(7), 3649–3653 (2011)

11. Huang, C.-X., Liu, L.-Z.: Sharp function inequalities and boundness for Toeplitz type operator related to general fractional singular integral operator. Publ. Inst. Math. 92(106), 165–176 (2012)

12. Zhou, W.-J.: On the convergence of the modified Levenberg–Marquardt method with a nonmonotone second order Armijo type line search. J. Comput. Appl. Math. 239, 152–161 (2013)

13. Zhang, L., Jian, S.-Y.: Further studies on the Wei–Yao–Liu nonlinear conjugate gradient method. Appl. Math. Comput. 219(14), 7616–7621 (2013)

14. Li, X.-F., Tang, G.-J., Tang, B.-Q.: Stress field around a strike-slip fault in orthotropic elastic layers via a hypersingular integral equation. Comput. Math. Appl. 66(11), 2317–2326 (2013)

15. Qin, G.-X., Huang, C.-X., Xie, Y.-Q., Wen, F.-H.: Asymptotic behavior for third-order quasi-linear differential equations. Adv. Differ. Equ. 2013, Article ID 305 (2013)

16. Zhou, W.-J., Chen, X.-L.: On the convergence of a modified regularized Newton method for convex optimization with singular solutions. J. Comput. Appl. Math. 239, 179–188 (2013)

17. Wang, M.-K., Chu, Y.-M.: Asymptotical bounds for complete elliptic integrals of the second kind. J. Math. Anal. Appl. 402(1), 119–126 (2013)

18. Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661–1667 (2014)

19. Wang, M.-K., Chu, Y.-M., Jiang, Y.-P.: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 46(2), 679–691 (2016)

20. Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Monotonicity rule for the quotient of two functions and its application. J. Inequal. Appl. 2017, Article ID 106 (2017)

21. Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function. J. Inequal. Appl. 2017, Article ID 210 (2017)

22. Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler–Mascheroni constant. J. Inequal. Appl. 2018, Article ID 118 (2018)

23. Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p-elliptic integrals. J. Inequal. Appl. 2018, Article ID 239 (2018)

24. Yang, Z.-H., Qian, W.-M., Chu, Y.-M.: Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math. Inequal. Appl. 21(4), 1185–1199 (2018)

25. Yang, Z.-H., Chu, Y.-M., Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl. Math. Comput. 348, 552–564 (2019)

26. Qiu, S.-L., Ma, X.-Y., Chu, Y.-M.: Sharp Landen transformation inequalities for hypergeometric functions, with applications. J. Math. Anal. Appl. 474(2), 1306–1337 (2019)

27. Wang, M.-K., Chu, Y.-M., Zhang, W.: Monotonicity and inequalities involving zero-balanced hypergeometric function. Math. Inequal. Appl. 22(2), 601–617 (2019)

28. Wang, M.-K., Chu, Y.-M., Zhang, W.: Precise estimates for the solution of Ramanujan’s generalized modular equation. Ramanujan J. 49(3), 653–668 (2019)

29. Wang, M.-K., Zhang, W., Chu, Y.-M.: Monotonicity, convexity and inequalities involving the generalized elliptic integrals. Acta Math. Sci. 39B(5), 1440–1450 (2019)

30. Wang, M.-K., Chu, H.-H., Chu, Y.-M.: Precise bounds for the weighted Hölder mean of the complete p-elliptic integrals. J. Math. Anal. Appl. https://doi.org/10.1016/j.jmaa.2019.123388

31. Huang, C.-X., Yang, Z.-C., Yi, T.-S., Zou, X.-F.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 256(7), 2101–2114 (2014)

32. Tang, W.-S., Sun, Y.-J.: Construction of Runge–Kutta type methods for solving ordinary differential equations. Appl. Math. Comput. 234, 179–191 (2014)

33. Huang, C.-X., Guo, S., Liu, L.-Z.: Boundedness on Morrey space for Toeplitz type operator associated to singular integral operator with variable Calderón–Zygmund kernel. J. Math. Inequal. 8(3), 453–464 (2014)

34. Xie, D.-X., Li, J.: A new analysis of electrostatic free energy minimization and Poisson–Boltzmann equation for protein in ionic solvent. Nonlinear Anal., Real World Appl. 21, 185–196 (2015)

35. Zhou, W.-J., Wang, F.: A PRP-based residual method for large-scale monotone nonlinear equations. Appl. Math. Comput. 261, 1–7 (2015)

36. Dai, Z.-F., Chen, X.-H., Wen, F.-H.: A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations. Appl. Math. Comput. 270, 378–386 (2015)

37. Liu, Y.-C., Wu, J.: Multiple solutions of ordinary differential systems with min-max terms and applications to the fuzzy differential equations. Adv. Differ. Equ. 2015, Article ID 379 (2015)

38. Fang, X.-P., Deng, Y.-J., Li, J.: Plasmon resonance and heat generation in nanostructures. Math. Methods Appl. Sci. 38(18), 4663–4672 (2015)

39. Dai, Z.-F.: Comments on a new class of nonlinear conjugate gradient coefficients with global convergence properties. Appl. Math. Comput. 276, 297–300 (2016)

40. Li, J.-L., Sun, G.-Y., Zhang, R.-M.: The numerical solution of scattering by infinite rough interfaces based on the integral equation method. Comput. Math. Appl. 71(7), 1491–1502 (2016)

41. Tan, Y.-X., Jing, K.: Existence and global exponential stability of almost periodic solution for delayed competitive neural networks with discontinuous activations. Math. Methods Appl. Sci. 39(11), 2821–2839 (2016)

42. Duan, L., Huang, C.-X.: Existence and global attractivity of almost periodic solutions for a delayed differential neoclassical growth model. Math. Methods Appl. Sci. 40(3), 814–822 (2017)

43. Duan, L., Huang, L.-H., Guo, Z.-Y., Fang, X.-W.: Periodic attractor for reaction-diffusion high-order Hopfield neural networks with time-varying delays. Comput. Math. Appl. 73(2), 233–245 (2017)

44. Wang, W.-S., Chen, Y.-Z.: Fast numerical valuation of options with jump under Merton’s model. J. Comput. Appl. Math. 318, 79–92 (2017)

45. Huang, C.-X., Liu, L.-Z.: Boundedness of multilinear singular integral operator with a non-smooth kernel and mean oscillation. Quaest. Math. 40(3), 295–312 (2017)

46. Hu, H.-J., Liu, L.-Z.: Weighted inequalities for a general commutator associated to a singular integral operator satisfying a variant of Hörmander’s condition. Math. Notes 101(5–6), 830–840 (2017)

47. Cai, Z.-W., Huang, J.-H., Huang, L.-H.: Generalized Lyapunov–Razumikhin method for retarded differential inclusions: applications to discontinuous neural networks. Discrete Contin. Dyn. Syst. 22B(9), 3591–3614 (2017)

48. Wang, W.-S.: On A-stable one-leg methods for solving nonlinear Volterra functional differential equations. Appl. Math. Comput. 314, 380–390 (2017)

49. Hu, H.-J., Zou, X.-F.: Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc. Am. Math. Soc. 145(11), 4763–4771 (2017)

50. Tan, Y.-X., Huang, C.-X., Sun, B., Wang, T.: Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition. J. Math. Anal. Appl. 458(2), 1115–1130 (2018)

51. Tang, W.-S., Zhang, J.-J.: Symplecticity-preserving continuous-stage Runge–Kutta–Nyström methods. Appl. Math. Comput. 323, 204–219 (2018)

52. Duan, L., Fang, X.-W., Huang, C.-X.: Global exponential convergence in a delayed almost periodic Nicholson’s blowflies model with discontinuous harvesting. Math. Methods Appl. Sci. 41(5), 1954–1965 (2018)

53. Liu, Z.-Y., Wu, N.-C., Qin, X.-R., Zhang, Y.-L.: Trigonometric transform splitting methods for real symmetric Toeplitz systems. Comput. Math. Appl. 75(8), 2782–2794 (2018)

54. Huang, C.-X., Qiao, Y.-C., Huang, L.-H., Agarwal, R.P.: Dynamical behaviors of a food-chain model with stage structure and time delays. Adv. Differ. Equ. 2018, Article ID 186 (2018)

55. Cai, Z.-W., Huang, J.-H., Huang, L.-H.: Periodic orbit analysis for the delayed Filippov system. Proc. Am. Math. Soc. 146(11), 4667–4682 (2018)

56. Wang, J.-F., Chen, X.-Y., Huang, L.-H.: The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 469(1), 405–427 (2019)

57. Wang, J.-F., Huang, C.-X., Huang, L.-H.: Discontinuity-induced limit cycles in a general planar piecewise linear system of saddle-focus type. Nonlinear Anal. Hybrid Syst. 33, 162–178 (2019)

58. Jiang, Y.-J., Xu, X.-J.: A monotone finite volume method for time fractional Fokker–Planck equations. Sci. China Math. 62(4), 783–794 (2019)

59. Peng, J., Zhang, Y.: Heron triangles with figurate number sides. Acta Math. Hung. 157(2), 478–488 (2019)

60. Tian, Z.-L., Liu, Y., Zhang, Y., Liu, Z.-Y., Tian, M.-Y.: The general inner-outer iteration method based on regular splittings for the PageRank problem. Appl. Math. Comput. 356, 479–501 (2019)

61. Wang, W.-S., Chen, Y.-Z., Fang, H.: On the variable two-step IMEX BDF method for parabolic integro-differential equations with nonsmooth initial data arising in finance. SIAM J. Numer. Anal. 57(3), 1289–1317 (2019)

62. Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012)

63. Zhao, T.-H., Zhou, B.-C., Wang, M.-K., Chu, Y.-M.: On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, Article ID 42 (2019)

64. Wang, J.-L., Qian, W.-M., He, Z.-Y., Chu, Y.-M.: On approximating the Toader mean by other bivariate means. J. Funct. Spaces 2019, Article ID 6082413 (2019)

65. Qian, W.-M., Xu, H.-Z., Chu, Y.-M.: Improvements of bounds for the Sándor–Yang means. J. Inequal. Appl. 2019, Article ID 73 (2019)

66. He, X.-H., Qian, W.-M., Xu, H.-Z., Chu, Y.-M.: Sharp power mean bounds for two Sándor–Yang means. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2627–2638 (2019)

67. Qian, W.-M., He, Z.-Y., Zhang, H.-W., Chu, Y.-M.: Sharp bounds for Neuman means in terms of two-parameter contraharmonic and arithmetic mean. J. Inequal. Appl. 2019, Article ID 168 (2019)

68. Chu, Y.-M., Wang, G.-D., Zhang, X.-H.: The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 284(5–6), 653–663 (2011)

69. Chu, Y.-M., Xia, W.-F., Zhang, X.-H.: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 105, 412–421 (2012)

70. Wu, S.-H., Chu, Y.-M.: Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters. J. Inequal. Appl. 2019, Article ID 57 (2019)

71. Zhang, X.-M., Chu, Y.-M., Zhang, X.-H.: The Hermite–Hadamard type inequality of GA-convex functions and its applications. J. Inequal. Appl. 2010, Article ID 507560 (2010)

72. Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable integral inequalities of the Hermite–Hadamard type in terms of GG- and GA-convexities. J. Funct. Spaces 2019, Article ID 6926107 (2019)

73. Adil Khan, M., Chu, Y.-M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 15(1), 1414–1430 (2017)

74. Adil Khan, M., Hanif, M., Khan, Z.A., Ahmad, K., Chu, Y.-M.: Association of Jensen’s inequality for s-convex function with Csiszár divergence. J. Inequal. Appl. 2019, Article ID 162 (2019)

75. Khurshid, Y., Adil Khan, M., Chu, Y.-M., Khan, Z.A.: Hermite–Hadamard–Fejér inequalities for conformable fractional integrals via preinvex functions. J. Funct. Spaces 2019, Article ID 3146210 (2019)

76. Song, Y.-Q., Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M.: Integral inequalities involving strongly convex functions. J. Funct. Spaces 2018, Article ID 6595921 (2018)

77. Zaheer Ullah, S., Adil Khan, M., Chu, Y.-M.: Majorization theorems for strongly convex functions. J. Inequal. Appl. 2019, Article ID 58 (2019)

78. Zaheer Ullah, S., Adil Khan, M., Khan, Z.A., Chu, Y.-M.: Integral majorization type inequalities for the functions in the sense of strong convexity. J. Funct. Spaces 2019, Article ID 9487823 (2019)

79. Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M.: The concept of coordinate strongly convex functions and related inequalities. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 2235–2251 (2019)

80. Chu, Y.-M., Adil Khan, M., Ali, T., Dragomir, S.S.: Inequalities for α-fractional differentiable functions. J. Inequal. Appl. 2017, Article ID 93 (2017)

81. Adil Khan, M., Begum, S., Khurshid, Y., Chu, Y.-M.: Ostrowski type inequalities involving conformable fractional integrals. J. Inequal. Appl. 2018, Article ID 70 (2018)

82. Adil Khan, M., Chu, Y.-M., Kashuri, A., Liko, R., Ali, G.: Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, Article ID 6928130 (2018)

83. Adil Khan, M., Iqbal, A., Suleman, M., Chu, Y.-M.: Hermite–Hadamard type inequalities for fractional integrals via Green’s function. J. Inequal. Appl. 2018, Article ID 161 (2018)

84. Adil Khan, M., Khurshid, Y., Du, T.-S., Chu, Y.-M.: Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, Article ID 5357463 (2018)

85. Adik Khan, M., Wu, S.-H., Ullah, H., Chu, Y.-M.: Discrete majorization type inequalities for convex functions on rectangles. J. Inequal. Appl. 2019, Article ID 16 (2019)

86. Dragomir, S.S.: On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 5(4), 775–788 (2001)

87. Delavar, M.R., Dragomir, S.S.: On η-convexity. Math. Inequal. Appl. 20(1), 203–216 (2017)

88. Eshaghi Gordji, M., Rostamian Delavar, M., Dragomir, S.S.: Some inequalities related to η-convex functions. Available at http://www.ajmaa.org/RGMIA/papers/v18/v18a08.pdf

Not applicable.

## Funding

This work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485).

## Author information

Authors

### Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

### Corresponding author

Correspondence to Yu-Ming Chu.

## Ethics declarations

### Competing interests

The authors declare that they have no competing interests. 