# Exclusion sets in Dashnic–Zusmanovich localization sets

## Abstract

A new eigenvalue localization set is given by excluding some proper subsets that do not contain any eigenvalues of matrices from Dashnic–Zusmanovich localization sets. As an application, a sufficient condition for non-singularity of matrices is obtained. In order to locate all eigenvalues of matrices precisely, another set including two positive integers s and k is presented. By adjusting the parameters s and k, one can locate all eigenvalues and judge the non-singularity of matrices accurately.

## 1 Introduction

Let n be a positive integer, $$n\geq 2$$ and $$N=\{1,2,\ldots ,n\}$$. $$\mathbb{C}$$ (or, respectively, $$\mathbb{R}$$) denotes the set of all complex (or, respectively, real) numbers, $$\mathbb{C}^{n\times n}$$ (or, respectively, $$\mathbb{R}^{n\times n}$$) denotes the set of all $${n\times n}$$ complex (or, respectively, real) matrices and I stands for the identity matrix. Let $$A=[a_{ij}]\in \mathbb{C}^{n\times n}$$ and $$\sigma (A)$$ be the set of all eigenvalues of A. Eigenvalue problems of matrices has a wide range of practical applications, such as image restoration [1], linear and multilinear algebra [2], higher order Markov chains [3], etc. In order to locate all eigenvalues of matrices, the authors in [4,5,6,7,8,9,10,11,12,13] found some regions including all eigenvalues of matrices in the complex plane. The first work is due to Geršgorin, who presented such a region called the Geršgorin disk theorem [5], which consists of n disks centered at the diagonal elements of the matrix.

### Theorem 1

([5, Geršgorin set])

Let $$A=[a_{ij}]\in \mathbb{C}^{n\times n}$$. Then

\begin{aligned}& \sigma (A) \subseteq \varGamma (A) = \bigcup_{i\in N} \varGamma _{i}(A), \end{aligned}

where

\begin{aligned}& \varGamma _{i}(A)= \bigl\{ z\in \mathbb{C}: \vert z-a_{ii} \vert \leq r_{i}(A) \bigr\} \end{aligned}

and

\begin{aligned}& r_{i}(A)=\sum_{j\in N, j\neq i} \vert a_{ij} \vert . \end{aligned}

Although Geršgorin set is concise, its result is not accurate enough. Hence, tighter sets than $$\varGamma (A)$$ are conjectured till now. The Dashnic–Zusmanovich localization set, which is tighter than Geršgorin set, provided by Dashnic–Zusmanovich (DZ) [14], is described as follows.

### Theorem 2

([14, DZ set])

Let $$A=[a_{ij}]\in {\mathbb{C}} ^{n\times n}$$. Then

\begin{aligned}& \sigma (A)\subseteq D(A)=\bigcap_{i\in N}\bigcup _{j\in N, j\neq i} D _{ij}(A), \end{aligned}

where

\begin{aligned}& D_{ij}(A)=\bigl\{ z\in \mathbb{C}: \vert z-a_{ii} \vert \bigl( \vert z-a_{jj} \vert -r^{i}_{j}(A) \bigr)\leq r _{i}(A) \vert a_{ji} \vert \bigr\} \end{aligned}

and

\begin{aligned}& r_{j}^{i}(A)=r_{j}(A)- \vert a_{ji} \vert . \end{aligned}

It is generally accepted that an eigenvalue localization set is connected with one kind of non-singular matrices [7, 8]. The non-singularity criterions for matrices derived from the Geršgorin set in Theorem 1 and DZ set in Theorem 2 are as follows.

### Theorem 3

([7])

If $$A=[a_{ij}]\in {\mathbb{C}} ^{n\times n}$$ is an SDD matrix, i.e., for each $$i\in N$$, we have

\begin{aligned}& \vert a_{ii} \vert >r_{i}(A), \end{aligned}

then it is non-singular.

### Theorem 4

([7])

If $$A=[a_{ij}]\in {\mathbb{C}} ^{n\times n}$$ is a DZ matrix, i.e., there exists an index $$i\in N$$, for all $$j\in N$$, $$j\neq i$$,

\begin{aligned}& \vert a_{ii} \vert \bigl( \vert a_{jj} \vert -r_{j}^{i}(A)\bigr)>r_{i}(A) \vert a_{ji} \vert , \end{aligned}

then it is non-singular.

By excluding some proper subsets that contain no eigenvalues of matrices from some existing eigenvalue localization sets, the authors in [15,16,17,18] obtained some tighter sets and some sufficient conditions for non-singularity of matrices. Inspired by these effective results, we in this paper first present a new eigenvalue localization set by excluding some proper subsets from DZ set, and we obtain a new sufficient condition for non-singularity of matrices. In order to precisely locate all eigenvalues of matrices, we in Sect. 3 present another set which includes two positive integers s and k, and show by an example that, by adjusting the parameters s and k, one can locate all eigenvalues and judge the non-singularity of matrices accurately.

## 2 Exclusion sets in Dashnic–Zusmanovich localization sets

In this section, we present a new eigenvalue inclusion set by excluding some proper subsets that contain no eigenvalues of matrices from DZ sets, and, as an application, we provide a sufficient condition to judge the non-singularity of matrices.

### Theorem 5

Let $$A=[a_{ij}]\in \mathbb{C}^{n\times n}$$. Then

\begin{aligned}& \sigma (A)\subseteq \varOmega (A)=\bigcap_{i\in N} \bigcup_{j\in N, j \neq i} \bigl(D_{ij}(A)\setminus \varOmega _{ij}(A) \bigr), \end{aligned}

where

\begin{aligned}& \varOmega _{ij}(A)=\bigl\{ z\in \mathbb{C}: \vert z-a_{ii} \vert \bigl( \vert z-a_{jj} \vert +r_{j}^{i}(A)\bigr)< \bigl(2 \vert a _{ij} \vert -r_{i}(A)\bigr) \vert a_{ji} \vert \bigr\} . \end{aligned}

### Proof

Let λ be an eigenvalue of A and $$x=(x_{1},\ldots ,x_{n})^{T} \in \mathbb{C}^{n}\setminus \{0\}$$ be its eigenvector. Then

\begin{aligned}& Ax=\lambda x. \end{aligned}
(1)

Let $$|x_{p}|=\max _{j\in N}|x_{j}|$$. Obviously, $$|x_{p}|>0$$. For any $$i\in N$$, $$i\neq p$$, the pth formula of (1) can be written as

\begin{aligned}& (\lambda -a_{pp})x_{p}=\sum _{s\neq p,i}a_{ps}x_{s}+a_{pi}x_{i}. \end{aligned}
(2)

Taking the absolute value of (2) and using the triangle inequality, we have

$$\vert \lambda -a_{pp} \vert \vert x_{p} \vert \leq \sum_{s\neq p,i} \vert a_{ps} \vert \vert x_{s} \vert + \vert a_{pi} \vert \vert x _{i} \vert \leq r_{p}^{i}(A) \vert x_{p} \vert + \vert a_{pi} \vert \vert x_{i} \vert ,$$

i.e.,

$$\bigl( \vert \lambda -a_{pp} \vert -r_{p}^{i}(A)\bigr) \vert x_{p} \vert \leq \vert a_{pi} \vert \vert x_{i} \vert .$$
(3)

If $$|x_{i}|>0$$, then from the ith formula of (1), i.e.,

\begin{aligned}& (\lambda -a_{ii})x_{i}=\sum _{t\neq i}a_{it}x_{t}, \end{aligned}
(4)

we have

\begin{aligned}& \vert \lambda -a_{ii} \vert \vert x_{i} \vert \leq r_{i}(A) \vert x_{p} \vert . \end{aligned}
(5)

Multiplying (3) and (5) and noting that $$|x_{p}||x_{i}|>0$$, we have

\begin{aligned}& \vert \lambda -a_{ii} \vert \bigl( \vert \lambda -a_{pp} \vert -r_{p}^{i}(A)\bigr) \leq r_{i}(A) \vert a_{pi} \vert . \end{aligned}
(6)

If $$|x_{i}|=0$$ in (3), then $$|\lambda -a_{pp}|-r _{p}^{i}(A)\leq 0$$ as $$|x_{p}|>0$$, which implies that (6) also holds. Therefore, $$\lambda \in D_{ip}(A)$$. On the other hand, from (2) and (4), we have

\begin{aligned}& a_{pi}x_{i}=(\lambda -a_{pp})x_{p}- \sum_{s\neq p,i}a_{ps}x_{s} \end{aligned}

and

\begin{aligned}& a_{ip}x_{p}=(\lambda -a_{ii})x_{i}- \sum_{t\neq i,p}a_{it}x_{t}, \end{aligned}

\begin{aligned} \vert a_{pi} \vert \vert x_{i} \vert \leq & \vert \lambda -a_{pp} \vert \vert x_{p} \vert +\sum_{s\neq p,i} \vert a _{ps} \vert \vert x_{s} \vert \leq \vert \lambda -a_{pp} \vert \vert x_{p} \vert +\sum _{s\neq p,i} \vert a_{ps} \vert \vert x _{p} \vert \\ =&\bigl( \vert \lambda -a_{pp} \vert +r_{p}^{i}(A)\bigr) \vert x_{p} \vert \end{aligned}
(7)

and

\begin{aligned}& \vert a_{ip} \vert \vert x_{p} \vert \leq \vert \lambda -a_{ii} \vert \vert x_{i} \vert + \sum_{t\neq i,p} \vert a_{it} \vert \vert x _{t} \vert \leq \vert \lambda -a_{ii} \vert \vert x_{i} \vert +r_{i}^{p}(A)) \vert x_{p} \vert , \end{aligned}

i.e.,

\begin{aligned}& \bigl( \vert a_{ip} \vert -r_{i}^{p}(A) \bigr) \vert x_{p} \vert \leq \vert \lambda -a_{ii} \vert \vert x_{i} \vert . \end{aligned}
(8)

By (7) and (8), we have

\begin{aligned}& \vert a_{pi} \vert \bigl(2 \vert a_{ip} \vert -r_{i}(A)\bigr)\leq \vert \lambda -a_{ii} \vert \bigl( \vert \lambda -a_{pp} \vert +r _{p}^{i}(A) \bigr), \end{aligned}

which implies that $$\lambda \notin \varOmega _{ip}(A)$$. Hence, $$\lambda \in (D_{ip}(A)\setminus \varOmega _{ip}(A) )$$.

For some certain $$i\in N$$, $$i\neq p$$, since we do not know which p is appropriate to λ, we can only conclude that

\begin{aligned}& \lambda \in \bigcup_{p\in N, i \neq p} \bigl(D_{ip}(A) \setminus \varOmega _{ip}(A) \bigr). \end{aligned}

Furthermore, by the arbitrariness of i, we have

\begin{aligned}& \lambda \in \bigcap_{i\in N}\bigcup _{j\in N, j\neq i} \bigl(D_{ij}(A) \setminus \varOmega _{ij}(A) \bigr). \end{aligned}

The conclusion follows. □

Now, a comparison theorem for Theorems 1, 2 and 5 is obtained.

### Theorem 6

Let $$A=[a_{ij}]\in \mathbb{C}^{n\times n}$$. Then

\begin{aligned}& \varOmega (A)\subseteq D(A)\subseteq \varGamma (A). \end{aligned}

### Proof

It is showed in Theorem 7 of [19] that $$D(A)\subseteq \varGamma (A)$$. For any $$i,j\in N$$, $$j\neq i$$, by $$(D_{ij}(A)\setminus \varOmega _{ij}(A)) \subseteq D_{ij}(A)$$, obviously,

\begin{aligned}& \bigcap_{i\in N}\bigcup_{j\in N, i\neq j} \bigl(D_{ij}(A)\setminus \varOmega _{ij}(A)\bigr)\subseteq \bigcap_{i\in N}\bigcup_{j\in N, i\neq j}D_{ij}(A). \end{aligned}

Hence, $$\varOmega (A)\subseteq D(A)$$ holds. □

Next, based on the fact that $$\det (A)=0$$ if and only if $$0\in \sigma (A)$$ for a matrix A, we can obtain the following condition for judging the non-singularity of matrices.

### Corollary 1

Let $$A=[a_{ij}]\in \mathbb{C}^{n\times n}$$. If there exists $$i\in N$$, for any $$j\in N$$, $$j\neq i$$, either

\begin{aligned}& \vert a_{ii} \vert \bigl( \vert a_{jj} \vert -r_{j}^{i}(A) \bigr)>r_{i}(A) \vert a_{ji} \vert , \end{aligned}
(9)

or

\begin{aligned}& \vert a_{ii} \vert \bigl( \vert a_{jj} \vert +r_{j}^{i}(A)\bigr)< \bigl(2 \vert a_{ij} \vert -r_{i}(A)\bigr) \vert a_{ji} \vert , \end{aligned}
(10)

then A is non-singular.

### Proof

Let $$0\in \sigma (A)$$. By Theorem 5, we have $$0\in \varOmega (A)$$, i.e., for each $$i\in N$$, there exists $$j\in N$$, $$j \neq i$$, such that

\begin{aligned}& \vert a_{ii} \vert \bigl( \vert a_{jj} \vert -r_{j}^{i}(A)\bigr)\leq r_{i}(A) \vert a_{ji} \vert \end{aligned}

and

\begin{aligned}& \vert a_{ii} \vert \bigl( \vert a_{jj} \vert +r_{j}^{i}(A)\bigr)\geq \bigl(2 \vert a_{ij} \vert -r_{i}(A)\bigr) \vert a_{ji} \vert . \end{aligned}

This contradicts (9) and (10). Consequently, $$0\notin \sigma (A)$$, that is, A is non-singular. □

### Remark 1

(i) Let i and j be any two elements of N, and $$i\neq j$$. If $$(2|a_{ij}|-r_{i}(A))|a_{ji}|>0$$, then, by $$|a_{ij}|\leq r_{i}(A)$$, we have $$0<2|a_{ij}|-r_{i}(A)\leq r_{i}(A)$$ and

\begin{aligned} \vert z-a_{ii} \vert \bigl( \vert z-a_{jj} \vert -r^{i}_{j}(A)\bigr) \leq & \vert z-a_{ii} \vert \bigl( \vert z-a_{jj} \vert +r ^{i}_{j}(A) \bigr) \\ < &\bigl(2 \vert a_{ij} \vert -r_{i}(A)\bigr) \vert a_{ji} \vert \\ \leq & r_{i}(A) \vert a_{ji} \vert , \end{aligned}

which implies that

\begin{aligned}& \varOmega _{ij}(A)\subseteq D_{ij}(A) \quad \mbox{and}\quad \bigl(D_{ij}(A)\setminus \varOmega _{ij}(A) \bigr)\subseteq D_{ij}(A). \end{aligned}
(11)

That is to say, $$\varOmega _{ij}(A)$$ is well defined. If $$(2|a_{ij}|-r _{i}(A))|a_{ji}|\leq 0$$, then $$\varOmega _{ij}(A)=\emptyset$$. Obviously, (11) also holds. Here, $$\varOmega _{ij}(A)$$ is called the exclusion set of $$D_{ij}(A)$$.

(ii) As has been shown in [7, 8], the wider the class of non-singular matrices is, the tighter eigenvalue localization set it will lead to. Obviously, this conclusion, in turn, holds true. By Corollary 1, one can conclude that the conditions of Corollary 1 for judging the non-singularity of matrices are weaker than those in Theorems 3 and 4.

Next, an example is given to show that $$\varOmega (A)$$ can catch all eigenvalues of a matrix A more precisely than $$\varGamma (A)$$ and $$D(A)$$, and that Theorems 3 and 4 cannot be used to judge the non-singularity of A in some cases, but Corollary 1 works better.

### Example 1

Let

$$A=\begin{bmatrix} 11&4+\mathbf{{i}}&0&15-\mathbf{{i}} \\ -2-\mathbf{{i}}&10&5-\mathbf{{i}}&0 \\ 0&6&12+\mathbf{{i}}&4 \\ 16&2&0&11 \end{bmatrix}.$$

By computations, all eigenvalues of $$\mathcal{A}$$ are $$26.4293-0.7552\mathbf{{i}}$$, $$-4.4930+0.6450\mathbf{{i}}$$, $$16.0853+0.0217\mathbf{{i}}$$, $$5.9784+1.0885\mathbf{{i}}$$. Next, the eigenvalue location and the determination of non-singularity for A are considered.

(I) Eigenvalue inclusion sets for A.

From Theorem 1, we have

\begin{aligned}& \varGamma (A)= \bigl\{ z\in \mathbb{C}: \vert z-11 \vert \leq 19.1564 \bigr\} . \end{aligned}

From Theorem 2, we have

\begin{aligned}& D(A)=D_{24}(A)= \bigl\{ z\in \mathbb{C}: \vert z-10 \vert \bigl( \vert z-11 \vert -16 \bigr)\leq 15.0662 \bigr\} . \end{aligned}

From Theorem 5, we have

\begin{aligned}& \varOmega (A)= \bigl[D_{12}(A)\cup D_{13}(A) \cup \bigl(D_{24}(A)\setminus \varOmega _{41}(A)\bigr) \cup \bigl(D_{43}(A)\cap \varOmega _{14}(A)\bigr)\bigr], \end{aligned}

where

\begin{aligned}& D_{12}(A)= \bigl\{ z\in \mathbb{C}: \vert z-11 \vert \bigl( \vert z-10 \vert -5.0990 \bigr)\leq 42.8356 \bigr\} , \\& D_{13}(A)= \bigl\{ z\in \mathbb{C}: \vert z-11 \vert \bigl( \vert z-12-\mathbf{{i}} \vert -10 \bigr)\leq 0 \bigr\} , \\& D_{43}(A)= \bigl\{ z\in \mathbb{C}: \vert z-11 \vert \bigl( \vert z-12-\mathbf{{i}} \vert -18 \bigr)\leq 72 \bigr\} , \\& \varOmega _{14}(A)= \bigl\{ z\in \mathbb{C}: \vert z-11 \vert \bigl( \vert z-11 \vert +2 \bigr)\leq 175.568 \bigr\} , \\& \varOmega _{41}(A)= \bigl\{ z\in \mathbb{C}: \vert z-11 \vert \bigl( \vert z-11 \vert +4.1231 \bigr)\leq 210.4662 \bigr\} . \end{aligned}

The eigenvalue localization sets $$\varGamma (A)$$, $$D(A)$$ and $$\varOmega (A)$$ are drawn in Fig. 1, respectively, as red boundary, black boundary and yellow zones, and all eigenvalues are plotted as red asterisks. It is obvious that

\begin{aligned} \sigma (A)\subseteq \varOmega (A)\subseteq D(A)\subset \varGamma (A), \end{aligned}

another way of stating it is, $$\varOmega (A)$$ can capture all eigenvalues of A more precisely than $$D(A)$$ and $$\varGamma (A)$$.

(II) The determination for non-singularity of A.

From Fig. 1, one can see that $$0\in \varGamma (A)$$ and $$0\in D(A)$$, but $$0\notin \varOmega (A)$$, that is, the sets $$\varGamma (A)$$ and $$D(A)$$ cannot be used to judge the non-singularity of A. However, by $$0\notin \varOmega (A)$$, one can conclude that A is non-singular.

Furthermore, as

\begin{aligned} \vert a_{11} \vert =11< 19.1564= r_{1}(A) \end{aligned}

and

\begin{aligned}& \vert a_{11} \vert \bigl( \vert a_{44} \vert -r_{4}^{1}(A) \bigr)=99.0000 < 306.5024=r_{1}(A) \vert a _{41} \vert , \\& \vert a_{22} \vert \bigl( \vert a_{44} \vert -r_{4}^{2}(A) \bigr)=-50.0000 < 14.6702=r_{2}(A) \vert a _{42} \vert , \\& \vert a_{33} \vert \bigl( \vert a_{44} \vert -r_{4}^{3}(A) \bigr)=-84.2912 < 0=r_{3}(A) \vert a _{43} \vert , \\& \vert a_{44} \vert \bigl( \vert a_{33} \vert -r_{3}^{4}(A) \bigr)= 66.4575 < 72.0000 =r _{4}(A) \vert a_{34} \vert , \end{aligned}

we know that the conditions in Theorems 3 and 4 do not hold, that is, Theorems 3 and 4 do not work. However, by

\begin{aligned}& \vert a_{11} \vert \bigl( \vert a_{22} \vert -r_{2}^{1}(A) \bigr)=53.9108 > 42.8350=r_{1}(A) \vert a _{21} \vert , \\& \vert a_{11} \vert \bigl( \vert a_{33} \vert -r_{3}^{1}(A) \bigr)=22.4575 > 0= r_{1}(A) \vert a _{31} \vert , \\& \vert a_{11} \vert \bigl( \vert a_{44} \vert +r_{4}^{1}(A) \bigr)=143.0000 < 174.5631=\bigl(2 \vert a _{14} \vert - r_{1}(A)\bigr) \vert a_{41} \vert , \end{aligned}

we know that there exists an index $$i=1$$, for $$j=2,3,4$$, either (9) or (10) holds. Then we can conclude the non-singularity of A by Corollary 1.

## 3 An eigenvalue localization set with parameters

In this section, an eigenvalue localization set with parameters and its applications is considered.

### Theorem 7

Let $$A=sI-B\in \mathbb{C}^{n\times n}$$ and $$s\in \mathbb{C}$$. Given an arbitrary positive integer k, then

\begin{aligned} \sigma (A)\subseteq \varOmega _{k}^{s}(A)=\bigcap _{i\in N} \bigcup_{j\in N , j\neq i} \bigl(D^{s}_{ij}\bigl(B^{k}\bigr)\setminus \varOmega ^{s} _{ij}\bigl(B^{k}\bigr) \bigr), \end{aligned}

where

\begin{aligned} D^{s}_{ij}\bigl(B^{k}\bigr)= \bigl\{ z\in \mathbb{C}: \bigl\vert (s-z)^{k}-\bigl(B^{k} \bigr)_{ii} \bigr\vert \bigl( \bigl\vert (s-z)^{k}- \bigl(B ^{k}\bigr)_{jj} \bigr\vert -r_{j}^{i} \bigl(B^{k}\bigr)\bigr)\leq r_{i}\bigl(B^{k} \bigr) \bigl\vert \bigl(B^{k}\bigr)_{ji} \bigr\vert \bigr\} \end{aligned}

and

\begin{aligned} \varOmega ^{s}_{ij}\bigl(B^{k}\bigr) =& \bigl\{ z\in \mathbb{C}: \bigl\vert (s-z)^{k}-\bigl(B^{k} \bigr)_{ii} \bigr\vert \bigl( \bigl\vert (s-z)^{k}- \bigl(B ^{k}\bigr)_{jj} \bigr\vert +r_{j}^{i} \bigl(B^{k}\bigr)\bigr) \\ &{}< \bigl(2 \bigl\vert \bigl(B^{k}\bigr)_{ij} \bigr\vert -r_{i}\bigl(B^{k}\bigr)\bigr) \bigl\vert \bigl(B^{k}\bigr)_{ji} \bigr\vert \bigr\} . \end{aligned}

### Proof

Let $$\lambda \in \sigma (A)$$. Given an arbitrary positive integer k, suppose that $$\lambda \notin \varOmega _{k}^{s}(A)$$. Then there exists $$i\in N$$, for all $$j\in N$$, $$j\neq i$$, $$\lambda \notin (D^{s}_{ij}(B ^{k})\setminus \varOmega ^{s}_{ij}(B^{k}) )$$, that is, $$\lambda \notin D^{s}_{ij}(B^{k})$$ or $$\lambda \in \varOmega ^{s}_{ij}(B^{k})$$, i.e.,

\begin{aligned} \bigl\vert (s-\lambda )^{k}-\bigl(B^{k} \bigr)_{ii} \bigr\vert \bigl( \bigl\vert (s-\lambda )^{k}-\bigl(B^{k}\bigr)_{jj} \bigr\vert -r_{j} ^{i}\bigl(B^{k}\bigr)\bigr)> r_{i}\bigl(B^{k}\bigr) \bigl\vert \bigl(B^{k}\bigr)_{ji} \bigr\vert , \end{aligned}

or

\begin{aligned} \bigl\vert (s-\lambda )^{k}-\bigl(B^{k} \bigr)_{ii} \bigr\vert \bigl( \bigl\vert (s-\lambda )^{k}-\bigl(B^{k}\bigr)_{jj} \bigr\vert +r_{j} ^{i}\bigl(B^{k}\bigr)\bigr)< \bigl(2 \bigl\vert \bigl(B^{k}\bigr)_{ij} \bigr\vert -r_{i}\bigl(B^{k}\bigr)\bigr) \bigl\vert \bigl(B^{k}\bigr)_{ji} \bigr\vert . \end{aligned}

By Corollary 1, $$(s-\lambda )^{k}I-B^{k}$$ is non-singular, which implies that $$(s-\lambda )^{k}$$ is not an eigenvalue of $$B^{k}$$.

On the other hand, let x be an eigenvector corresponding to λ, i.e., $$Ax=\lambda x$$, which leads to that $$Bx=(s-\lambda )x$$. Furthermore, we have $$B^{k}x=(s-\lambda )^{k}x$$, which implies that $$(s -\lambda )^{k}$$ is an eigenvalue of $$B^{k}$$. This is a contradiction. Hence, $$\lambda \in \varOmega _{k}^{s}(A)$$. □

By Theorem 7, the following general method for non-singularity of matrices is obtained.

### Corollary 2

Let $$A=sI-B\in \mathbb{C}^{n\times n}$$ and $$s\in \mathbb{C}$$. Given an arbitrary positive integer k, if there exists an index i, for all $$j\in N$$, $$j\neq i$$, either

\begin{aligned} \bigl( \bigl\vert s^{k}-\bigl(B^{k} \bigr)_{ii} \bigr\vert -r_{i}^{j} \bigl(B^{k}\bigr)\bigr) \bigl\vert s^{k}- \bigl(B^{k}\bigr)_{jj} \bigr\vert > \bigl\vert \bigl(B^{k}\bigr)_{ij} \bigr\vert r _{j} \bigl(B^{k}\bigr), \end{aligned}
(12)

or

\begin{aligned} \bigl( \bigl\vert s^{k}-\bigl(B^{k} \bigr)_{ii} \bigr\vert +r_{i}^{j} \bigl(B^{k}\bigr)\bigr) \bigl\vert s^{k}- \bigl(B^{k}\bigr)_{jj} \bigr\vert < \bigl\vert \bigl(B^{k}\bigr)_{ij} \bigr\vert \bigl(2 \bigl\vert \bigl(B ^{k}\bigr)_{ji} \bigr\vert -r_{j} \bigl(B^{k}\bigr)\bigr), \end{aligned}
(13)

then A is non-singular.

### Remark 2

Taking $$k=1$$ and arbitrary complex number s in Theorem 7 and Corollary 2, then they degenerate, respectively, into Theorem 5 and Corollary 1. Hence, Theorem 7 and Corollary 2 can be viewed as generalizations of Theorem 5 and Corollary 1. Furthermore, by selecting appropriate parameters s and k, one may locate all eigenvalues and judge the non-singularity of matrices precisely.

### Example 2

Consider again the matrix A in Example 1. Taking $$s=11$$ and $$k=2$$, the sets $$\varOmega (A)$$ and $$\varOmega _{2}^{11}(A)$$ are drawn in Fig. 2, respectively, as yellow zones and blue zones. All eigenvalues are plotted as red asterisks. It can be seen from Fig. 2 that the set $$\varOmega _{2}^{11}(A)$$ can be used to more precisely locate all eigenvalues of A and judge the non-singularity of A.

## 4 Conclusions

In this paper, we present a new eigenvalue inclusion set $$\varOmega (A)$$ by excluding some proper subsets that contain no eigenvalues of matrices from Dashnic–Zusmanovich localization sets $$D(A)$$, and we prove that $$\varOmega (A)$$ is tighter than $$D(A)$$ for a matrix A. After that, by the set $$\varOmega (A)$$, we obtain a sufficient condition for judging the non-singularity of matrices. To catch all eigenvalues of matrices precisely, we put forward another eigenvalue inclusion set $$\varOmega _{k}^{s}(A)$$ including two parameters s and k. By selecting these two positive integer s and k appropriately, one can locate all eigenvalues of matrices and judge the non-singularity of matrices precisely. However, how to choose s and k to make $$\varOmega _{k}^{s}(A)$$ works better? This question at present is far from being solved.

## References

1. Cui, L.B., Chen, C., Li, W., Ng, M.K.: An eigenvalue problem for even order tensors with its applications. Linear Multilinear Algebra 64, 602–621 (2016)

2. Cui, L.B., Li, M.H., Song, Y.: Preconditioned tensor splitting iterations method for solving multi-linear systems. Appl. Math. Lett. 96, 89–94 (2019)

3. Cui, L.B., Song, Y.: On the uniqueness of the positive Z-eigenvector for nonnegative tensors. J. Comput. Appl. Math. 352, 72–78 (2019)

4. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

5. Geršchgorin, S.: Über die Abgrenzung der Eigenwerte einer Matrix. Izv. Akad. Nauk SSSR, Ser. Mat. 6, 749–754 (1931)

6. Varga, R.S.: Geršgorin and His Circles. Springer, Berlin (2004)

7. Cvetković, L.: H matrix theory vs. eigenvalue localization. Numer. Algorithms 42, 229–245 (2006)

8. Cvetković, L., Erić, M., Peña, J.M.: Eventually SDD matrices and eigenvalue localization. Appl. Math. Comput. 252, 535–540 (2015)

9. Li, C., Li, Y., Kong, X.: New eigenvalue inclusion sets for tensors. Numer. Linear Algebra Appl. 21, 39–50 (2014)

10. Li, C., Chen, Z., Li, Y.: A new eigenvalue inclusion set for tensors and its applications. Linear Algebra Appl. 481, 36–53 (2015)

11. Li, C., Li, Y.: An eigenvalue localization set for tensors with applications to determine the positive (semi-)definiteness of tensors. Linear Multilinear Algebra 64(4), 587–601 (2016)

12. Li, C., Zhou, J., Li, Y.: A new Brauer-type eigenvalue localization set for tensors. Linear Multilinear Algebra 64(4), 727–736 (2016)

13. Li, C., Jiao, A., Li, Y.: An S-type eigenvalue localization set for tensors. Linear Algebra Appl. 493, 469–483 (2016)

14. Dashnic, L.S., Zusmanovich, M.S.: O nekotoryh kriteriyah regulyarnosti matric i lokalizacii ih spectra. Ž. Vyčisl. Mat. Mat. Fiz. 5, 1092–1097 (1970)

15. Melman, A.: Gershgorin disk fragments. Math. Mag. 83, 123–129 (2010)

16. Sang, C., Li, C.: Exclusion sets in eigenvalue localization sets for tensors. Linear Multilinear Algebra (2018). https://doi.org/10.1080/03081087.2018.1494121

17. Sang, C., Zhao, J.: Eventually DSDD matrices and eigenvalue localization. Symmetry 10, 448 (2018)

18. Li, S., Li, Y.: Exclusion sets in the Δ-type eigenvalue inclusion set for tensors. J. Ind. Manag. Optim. 15(2), 507–516 (2019)

19. Cvetković, L., Kostić, V., Varga, R.S.: A new Geršgorin-type eigenvalue inclusion set. Electron. Trans. Numer. Anal. 18, 73–80 (2004)

### Acknowledgements

The authors are grateful to the referees for their useful and constructive suggestions.

### Availability of data and materials

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

## Funding

This work is supported by Science and Technology Top-notch Talents Support Project of Education Department of Guizhou Province (Grant No. QJHKYZ [2016]066), National Natural Science Foundation of China (Grant No. 11501141), and Natural Science Foundation of Guizhou Minzu University.

## Author information

Authors

### Contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

### Corresponding author

Correspondence to Jianxing Zhao.

## Ethics declarations

### Competing interests

The authors declare that they have no competing interests.

### Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Rights and permissions

Reprints and permissions

Zhao, J., She, L. Exclusion sets in Dashnic–Zusmanovich localization sets. J Inequal Appl 2019, 228 (2019). https://doi.org/10.1186/s13660-019-2179-3