Skip to main content

Certain integrals involving multivariate Mittag-Leffler function

Abstract

The objective of this article is to present several new integral equalities involving the multivariate Mittag-Leffler functions which are associated with the Laguerre polynomials. To emphasize our main results, we also consider some important special cases. The main results of our paper are quite general in nature and yield a very large number of integral equalities involving polynomials occurring in problems of mathematical analysis and mathematical physics.

1 Introduction and preliminaries

The function defined by the series representation

$$ E_{\xi } (z)=\sum_{n=0}^{\infty } \frac{z^{n} }{\varGamma (\xi n+1 )} \quad ( \xi > 0, z \in \mathbb{C}) $$
(1)

and its generalization

$$ E_{\xi,\nu } (z)=\sum_{n=0}^{\infty } \frac{z^{n} }{\varGamma (\xi n+ \nu )} \quad ( \xi > 0, \nu > 0, z \in \mathbb{C}) $$
(2)

were introduced and studied by Agarwal [1], Mittag-Leffler [2, 3], Humburt [4], Humbert and Agrawal [5], and Wiman [6, 7], where \(\mathbb{C}\) is the set of complex numbers. The main properties of these functions are given in the book by Erdélyi et al. [8, Sect. 18.1], and a more extensive and detailed account on Mittag-Leffler functions is presented in Dzherbashyan [9, Chap. 2]. In particular, the functions (1) and (2) are entire functions of order \(\rho = 1/\xi \) and type \(\sigma = 1\); see, for example, [9, p. 118]. For a detailed account of various properties, generalizations, and applications of these functions, the reader may refer to an excellent work of Dzherbashyan [9], Kilbas and Saigo [10,11,12,13], Gorenflo and Mainardi [14], Gorenflo, Luchko and Rogosin [15], and Gorenflo, Kilbas and Rogosin [16].

The series representation of a generalization of (2) was introduced by Prabhaker [17] as:

$$ E_{\xi, \nu }^{\delta } (z) = \sum _{n = 0}^{\infty }\frac{(\delta )_{n} }{\varGamma (\xi n + \nu ) n !} z^{n}, $$
(3)

where \(\xi, \nu, \delta \in \mathbb{C}\ (\Re (\xi ) > 0 )\). It is entire function of order \([\Re (\xi ) ] ^{-1} \) (see [17, p. 7]) and \((\delta )_{n} \) denotes the Pochhammer symbol defined as:

$$ (\delta )_{n} =\frac{\varGamma (\delta +n )}{ \varGamma (\delta )} =\textstyle\begin{cases} 1,& n=0,\lambda \in \mathbb{C}/ \{0 \}, \\ \delta (\delta +1 )\cdots (\delta +n-1 ), & n\in \mathbb{C};\delta \in \mathbb{C}. \end{cases} $$
(4)

Srivastava and Tomoviski [18] studied and generalized the Mittag-Leffler-type function \(E_{\xi,\nu }^{\delta } (z)\) as

$$ E_{\xi;\nu }^{\delta;\kappa } (z)=\sum _{n=0}^{\infty }\frac{ (\delta ) _{\kappa n} z^{n} }{\varGamma (\xi n+\nu )n!}, $$
(5)

where \(\delta,\kappa,\xi,\nu,z\in \mathbb{C};\Re (\delta )>0, \Re (\kappa )>0,\Re (\xi )>0\).

A generalization of (5) was initiated by Salim and Faraj [19] as follows:

$$ E_{\xi,\nu,\varepsilon }^{\delta,\kappa,\rho } (z)=\sum _{n=0}^{ \infty }\frac{ (\delta )_{\rho n} }{\varGamma (\xi n+ \nu ) (\kappa )_{\varepsilon n} } \frac{z^{n} }{n!}, $$
(6)

where \(\delta,\xi,\nu,\kappa,z\in \mathbb{C};\min (\Re (\delta ),\Re (\xi ),\Re (\nu ), \Re (\kappa )>0 );\rho,\varepsilon >0,\rho \le \Re (\xi )+\varepsilon \).

Further, a multivariate generalization of Mittag-Leffler function \(E_{\xi _{i};\nu; \varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (\cdot )\), which is a generalization of (6), was studied by Gujar et al. [20] in the following form:

$$ E_{\xi _{i};\nu; \varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1}, \dots,z_{r} )=\sum_{m_{1},\dots,m_{r} =0} ^{\infty }\frac{ (\delta _{1} )_{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} ) ^{m_{1} } \cdots (z_{r} )^{m_{r} } }{\varGamma (\sum_{i=1}^{r}\xi _{i} m_{i} +\nu ) (\kappa _{1} )_{ \varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } }, $$
(7)

where \(\delta _{i},\xi _{i},\nu,\kappa _{i},z_{i}\in \mathbb{C}; \mathop{\min }_{1\le i\le r} (\Re (\delta _{i} ), \Re (\xi _{i} ),\Re (\nu ),\Re (\kappa _{i} ) )>0\) and \(\rho _{i},\varepsilon _{i} >0;\rho _{i} < \Re (\xi _{i} )+\varepsilon _{i}\ (i=1,2,\dots,r)\).

For a more detailed account of various properties, generalizations, and applications in terms of fractions of this function, the reader may refer to Mishra et al. [21], Purohit et al. [22], Saxena et al. [23] and Suthar et al. [24,25,26].

The polynomial \(L_{n}^{ (\mu,\tau )} (x )\) was defined by Prabhaker and Suman [27] as:

$$ L_{n}^{ (\mu,\tau )} (x )=\frac{\varGamma (\mu n+ \tau +1 )}{\varGamma (n+1 )} \sum_{r=0}^{n}\frac{ (-n ) _{r} x^{r} }{r! \varGamma (\mu r+\tau +1 )}, $$
(8)

where \(\mu \in \mathbb{C}^{+},\tau \in \mathbb{C}_{-1}^{+} \); \(n\in \mathbb{N}\). If \(\mu =1\), then (8) reduces to

$$ L_{n}^{ (1,\tau )} (x )=\frac{\varGamma (n+ \tau +1 )}{\varGamma (n+1 )} \sum_{r=0}^{\infty }\frac{ (-n )_{r} x^{r} }{r! \varGamma (r+\tau +1 )} =L _{n}^{\tau } (x ), $$
(9)

where \(L_{n}^{\tau } (x )\) is a well-known generalized Laguerre polynomial (see [28]).

In the sequel, the Konhauser polynomials of the second kind were defined by Srivastava [29] as:

$$ {\mathrm{Z}} _{n}^{\tau } [x;r ]= \frac{\varGamma (rn+ \tau +1 )}{\varGamma (n+1 )} \sum_{j=0}^{n} (-1 ) ^{j} \begin{pmatrix} {n} \\ {j} \end{pmatrix}\frac{x^{rj} }{r! \varGamma (rj+\tau +1 )}, $$
(10)

where \(\tau \in \mathbb{C}_{-1}^{+} \), \(n\in \mathbb{N}\) and \(r\in \mathbb{Z}\).

It can be easily verified that

$$\begin{aligned} & L_{n}^{ (r, \tau )} \bigl(x^{r} \bigr)=\mathrm{Z} _{n} ^{\tau } [x;r ], \end{aligned}$$
(11)
$$\begin{aligned} & L_{n}^{\tau } (x )=\mathrm{Z} _{n}^{\tau } [x;1 ]. \end{aligned}$$
(12)

Further, the polynomial \(\mathrm{Z} _{n}^{ (\mu,\tau )} [x;r ]\) is defined [30] as:

$$ {\mathrm{Z}} _{n}^{ (\mu,\tau )} [x;r ]= \sum _{j=0}^{n} (-1 )^{j} \frac{\varGamma (rn+\tau +1 )x ^{rj} }{j! \varGamma (rj+\tau +1 )\varGamma (\mu n- \eta j+1 )}. $$
(13)

From Eqs. (10) and (13), we obtain

$$ {\mathrm{Z}} _{n}^{\tau } [x;r ]= \mathrm{Z} _{n}^{ (1, \tau )} [x;r ]. $$
(14)

If \(\mu \in {\mathrm{\mathbb{N}}} \), then Eq. (12) can be written in the following form:

$$ {\mathrm{Z}} _{n}^{ (\mu,\tau )} [x;r ]= \frac{ \varGamma (rn+\tau +1 )}{\varGamma (\mu n+1 )} \sum_{j=0}^{n} (-1 )^{j} \frac{ (-\mu n )_{ \mu j} x^{rj} }{j! \varGamma (rj+\tau +1 ) (-1 ) ^{ (\mu -1 )j} }. $$
(15)

The set of polynomials \(L_{n}^{ (\mu,\tau )} [\vartheta;x ]\) is defined [30] as:

$$ L_{n}^{ (\mu,\tau )} [\vartheta;x ]=\sum _{j=0}^{n} (-1 )^{j} \frac{\varGamma (rn+\tau +1 )x ^{j} }{j! \varGamma (rj+\tau +1 )\varGamma (\vartheta n-\vartheta j+1 )}, $$
(16)

where \(\mu,\vartheta \in \mathbb{C}^{+},\tau \in \mathbb{C}_{-1} ^{+} \), \(n\in \mathbb{N}\).

2 Main integral equalities

Throughout this paper, we assume that \(\delta _{i},\xi _{i},v,\kappa _{i},\alpha \in \mathbb{C}; \mathop{\min }_{1\le i\le r} (\Re (\delta _{i} ),\Re (\xi _{i} ), \Re (v ), \Re (\kappa _{i} ) )>0\), \((\rho _{i},\varepsilon _{i} )>0\) and \(\rho _{i} <\Re (\xi _{i} )+\varepsilon _{i} \); \(i=1,2, \dots,r\).

Theorem 1

The following integral equality holds:

$$ \frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i} ;\rho _{i} } \bigl(z_{1} u^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr) \,du=E_{\xi _{i};v+\alpha;\varepsilon _{i} }^{\delta _{i}; \kappa _{i};\rho _{i} } (z_{1}, \dots,z_{r} ). $$
(17)

Proof

Applying Eq. (7) to the left-hand side of Eq. (17), we obtain

$$\begin{aligned} ={}&\sum_{m_{1},\dots,m_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} )^{m_{1} } \cdots (z_{r} )^{m_{r} } }{ \varGamma (\nu +\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} m_{r} } } \\ &{}\times \frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{\nu + \sum _{i=1}^{r}m_{i} \xi _{i} -1} (1-u )^{\alpha -1} \,du \\ ={}&\sum_{m_{1},\dots,m_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} )^{m_{1} } \cdots (z_{r} )^{m_{r} } {\mathrm{B}} (\alpha,\nu +\sum_{i=1}^{r}\xi _{i} m_{i} )}{ \varGamma (\alpha )\varGamma (\nu +\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } } \\ ={}&\sum_{m_{1},\dots,m_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} )^{m_{1} } \cdots (z_{r} )^{m_{r} } }{ \varGamma (\nu +\alpha +\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} m_{r} } } \\ ={}&E_{\xi _{i};\nu +\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i}; \rho _{i} } (z_{1},\dots,z_{r} ). \end{aligned}$$

This completes the proof of Theorem 1. □

Theorem 2

The following integral equality holds:

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{v-1} E_{\xi _{i};\nu;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (s-t ) ^{\xi _{1} },\dots,z_{r} (s-t )^{\xi _{r} } \bigr) \,ds \\ &\quad = (x-t )^{\alpha +v-1} E_{\xi _{i};v+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (x-t ) ^{\xi _{1} },\dots,z_{r} (x-t )^{\xi _{r} } \bigr). \end{aligned}$$
(18)

Proof

Using Eq. (6) in the left-hand side of Eq. (18), we obtain

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{v-1} \\ &\quad{}\times \sum_{m_{1},\dots,m_{r} =0}^{\infty } \frac{ (\delta _{1} )_{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} (s-t )^{\xi _{1} } )^{m _{1} } \cdots (z_{r} (s-t )^{\xi _{r} } )^{m _{r} } }{\varGamma (v+\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} m_{r} } } \,ds. \end{aligned}$$

Changing the variable s to \(u=\frac{s-t}{x-t} \), we obtain

$$\begin{aligned} ={}&\sum_{m_{1},\dots,m_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} )^{m_{1} } \cdots (z_{r} )^{m_{r} } }{ \varGamma (\nu +\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} m_{r} } } \frac{1}{\varGamma (\alpha )} \\ &{}\times \int _{0}^{1} \bigl(x-t-u(x-t) \bigr)^{\alpha -1} \bigl(t+u(x-t)-t \bigr) ^{v+\sum _{i=1}^{r}\xi _{i} m_{i} -1} (x-t)\,du \\ ={}& \sum_{m_{1},\dots,m_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} (x-t )^{\xi _{1} } )^{m_{1} } \cdots (z_{r} (x-t )^{\xi _{r} } )^{m_{r} } }{\varGamma (\nu +\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} ) _{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{ \varepsilon _{r} m_{r} } } \\ &{}\times \frac{ (x-t )^{\alpha +v-1}}{\varGamma (\alpha )} \int _{0}^{1} (1-u )^{\alpha -1} (u )^{v+\sum _{i=1}^{r}\xi _{i} m_{i} -1} \,du \\ ={}& \sum_{m_{1},\dots,m_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} (x-t )^{\xi _{1} } )^{m_{1} } \cdots (z_{r} (x-t )^{\xi _{r} } )^{m_{r} } }{ (x-t ) ^{-\alpha -v+1}\varGamma (v+\alpha +\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } }, \end{aligned}$$

from which, after little simplification, we easily arrive at the required Eq. (18). □

Theorem 3

If \(\omega _{i},\tau,\in \mathbb{C}; \mathop{\min }_{1\le i \le r} (\Re (\omega _{i} ),\Re (\tau ) )>0\), then the following integral equality holds:

$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i};1} \bigl(z_{1} (x-t ) ^{\xi _{1} },\dots,z_{r} (x-t )^{\xi _{r} } \bigr) \\ &\quad{} \times E_{\xi _{i};\tau; \varepsilon _{i} }^{\omega _{i};\kappa _{i};1} \bigl(z_{1} (t )^{\xi _{1} },\dots,z_{r} (t ) ^{\xi _{r} } \bigr)\,dt =x^{\tau +v-1} E_{\xi _{i};v+\tau;\varepsilon _{i} }^{(\omega _{i} +\delta _{i} );\kappa _{i};1} \bigl(z_{1} x^{\xi _{1} },\dots,z_{r} x^{\xi _{r} } \bigr). \end{aligned}$$
(19)

Proof

Applying Eq. (7) to the left-hand side of Eq. (19), we obtain

$$\begin{aligned} ={}&\sum_{m_{1},\dots,m_{r} =0}^{\infty }\sum _{l_{1},\dots,l_{r} =0} ^{\infty }\frac{ (\delta _{1} )_{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (\omega _{1} ) _{\rho _{1} l_{1} } \cdots (\omega _{r} )_{\rho _{r} l_{r} } }{\varGamma (\nu +\sum_{i=1}^{r}\xi _{i} m_{i} )\varGamma (\tau + \sum_{i=1}^{r}\xi _{i} l_{i} ) (\kappa _{1} )_{ \varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } } \\ &{}\times \frac{ (z_{1} )^{m_{1} +l_{1} } \cdots (z _{r} )^{m_{r} +l_{r} } }{ (\kappa _{1} )_{ \varepsilon _{1} l_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} l_{r} }} \int _{0}^{x}t^{\tau +\sum _{i=1}^{r}l_{i} \xi _{i} -1} (x-t )^{v+\sum _{i=1}^{r}m_{i} \xi _{i} -1} \,dt \\ ={}& \sum_{m_{1},\dots,m_{r} =0}^{\infty }\sum _{l_{1},\dots,l_{r} =0} ^{\infty }\frac{x^{\tau +v-1} (\delta _{1} )_{\rho _{1} m _{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (\omega _{1} )_{\rho _{1} l_{1} } \cdots (\omega _{r} )_{ \rho _{r} l_{r} } }{\varGamma (\nu +\sum_{i=1}^{r}\xi _{i} m_{i} ) \varGamma (\tau +\sum_{i=1}^{r}\xi _{i} l_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} m_{r} } } \\ &{}\times \frac{ (z_{1} x^{\xi _{1} } )^{m_{1} +l_{1} } \cdots (z_{r} x^{\xi _{r} } )^{m_{r} +l_{r} } }{ (\kappa _{1} )_{\varepsilon _{1} l_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} l_{r} }} B \Biggl(\tau +\sum_{i=1}^{r}l_{i} \xi _{i},v+ \sum_{i=1}^{r}m_{i} \xi _{i} \Biggr) \\ ={}&x^{\tau +v-1} \sum_{m_{1},\dots,m_{r} =0}^{\infty } \sum_{l_{1},\dots,l_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (\omega _{1} )_{\rho _{1} l_{1} } \cdots (\omega _{r} )_{\rho _{r} l_{r} } }{\varGamma (\tau +v+\sum_{i=1}^{r} (m_{i} +l_{i} )\xi _{i} ) (\kappa _{1} ) _{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{ \varepsilon _{r} m_{r} } } \\ &{}\times \frac{ (z_{1} x^{\xi _{1} } )^{m_{1} +l_{1} } \cdots (z_{r} x^{\xi _{r} } )^{m_{r} +l_{r} }}{ (\kappa _{1} )_{\varepsilon _{1} l_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} l_{r} }} \\ ={}&x^{\tau +v-1} \sum_{m_{1},\dots,m_{r} =0}^{\infty } \sum_{l_{1},\dots,l_{r} =0}^{\infty }\begin{pmatrix} {m_{1} } \\ {l_{1} } \end{pmatrix} \cdots \begin{pmatrix} {m_{r} } \\ {l_{r} } \end{pmatrix}\frac{ (\delta _{1} )_{(m_{1} -l_{1} )\rho _{1} } \cdots (\delta _{r} )_{(m_{r} -l_{r} )\rho _{r} } }{\varGamma (\tau +v+\sum_{i=1}^{r} (m_{i} )\xi _{i} ) } \\ &{}\times \frac{ (\omega _{1} )_{l_{1} \rho _{1} } \cdots (\omega _{r} )_{l_{r} \rho _{r} } (z_{1} x^{\xi _{1} } )^{m_{1} } \cdots (z_{r} x^{\xi _{r} } )^{m_{r} } }{ (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } }. \end{aligned}$$
(20)

Substituting \(\rho _{1} =\cdots =\rho _{r} =1\) in Eq. (20) reduces it to

$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i};1} \bigl(z_{1} (x-t ) ^{\xi _{1} },\dots,z_{r} (x-t )^{\xi _{r} } \bigr) \\ &\qquad \times E_{\xi _{i};\tau; \varepsilon _{i} }^{\omega _{i};\kappa _{i};1} \bigl(z_{1} (t )^{\xi _{1} },\dots,z_{r} (t ) ^{\xi _{r} } \bigr)\,du \\ &\quad=x^{\tau +v-1} \sum_{m_{1},\dots,m_{r} =0}^{\infty } \sum_{l_{1},\dots,l_{r} =0}^{\infty }\begin{pmatrix} {m_{1} } \\ {l_{1} } \end{pmatrix} \cdots \begin{pmatrix} {m_{r} } \\ {l_{r} } \end{pmatrix}\frac{ (\delta _{1} )_{(m_{1} -l_{1} )} \cdots (\delta _{r} )_{(m_{r} -l_{r} )} }{\varGamma (\tau +v+ \sum_{i=1}^{r} (m_{i} )\xi _{i} ) } \\ &\qquad{} \times \frac{ (\omega _{1} )_{l_{1} } \cdots (\omega _{r} )_{l_{r} } (z_{1} x^{\xi _{1} } )^{m_{1} } \cdots (z_{r} x^{\xi _{r} } )^{m_{r} }}{ (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} m_{r} }}. \end{aligned}$$
(21)

Now applying the formula (α+β)m=∑n=0∞(mn)(α)n(β)m−n, Eq. (21) is reduced to the following form:

$$\begin{aligned} &=x^{\tau +v-1} \sum_{m_{1},\dots,m_{r} =0}^{\infty } \sum_{l_{1},\dots,l_{r} =0}^{\infty }\frac{ (\omega _{1} +\delta _{1} )_{m_{1} } \cdots (\omega _{r} +\delta _{r} ) _{m_{r} } (z_{1} x^{\xi _{1} } )^{m_{1} } \cdots (z _{r} x^{\xi _{r} } )^{m_{r} } }{\varGamma (\tau +v+\sum_{i=1} ^{r} (m_{i} )\xi _{i} ) (\kappa _{1} ) _{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{ \varepsilon _{r} m_{r} } } \\ &=x^{\tau +v-1} E_{\xi _{i};v+\tau;\varepsilon _{i} }^{(\omega _{i} + \delta _{i} );\kappa _{i};1} \bigl(z_{1} x^{\xi _{1} },\dots,z_{r} x ^{\xi _{r} } \bigr). \end{aligned}$$

 □

Theorem 4

The following integral equality holds:

$$ \int _{0}^{z}t^{v-1} E_{\xi _{i};\nu;\varepsilon _{i} }^{\delta _{i}; \kappa _{i};\rho _{i} } \bigl(z_{1} t^{\xi _{1} }, \dots,z_{r} t^{\xi _{r} } \bigr) \,dt=z^{v} E_{\xi _{i};\nu +1;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} z^{\xi _{1} }, \dots,z_{r} z ^{\xi _{r} } \bigr). $$
(22)

Proof

Applying Eq. (6) to the left-hand side of Eq. (22), we obtain

$$\begin{aligned} &=\sum_{m_{1},\dots,m_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} )^{m_{1} } \cdots (z_{r} )^{m_{r} } }{ \varGamma (v+\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} ) _{\varepsilon _{r} m_{r} } } \int _{0}^{z}t^{v+\sum _{i=1}^{r}m_{i} \xi _{i} -1} \,dt \\ &=\sum_{m_{1},\dots,m_{r} =0}^{\infty }\frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} )^{m_{1} } \cdots (z_{r} )^{m_{r} } z ^{v+\sum _{i=1}^{r}m_{i} \xi _{i} } }{ (\nu +\sum_{i=1}^{r}m_{i} \xi _{i} ) \varGamma (v+\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } } \\ &=z^{\nu } \sum_{m_{1},\dots,m_{r} =0}^{\infty } \frac{ (\delta _{1} )_{\rho _{1} m_{1} } \cdots (\delta _{r} )_{ \rho _{r} m_{r} } (z_{1} z^{\xi _{1} } )^{m_{1} } \cdots (z_{r} z^{\xi _{r} } )^{m_{r} } }{\varGamma (v+1+\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{ \varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } } \\ &=z^{v} E_{\xi _{i};\nu +1;\varepsilon _{i} }^{\delta _{i};\kappa _{i}; \rho _{i} } \bigl(z_{1} z^{\xi _{1} },\dots,z_{r} z^{\xi _{r} } \bigr). \end{aligned}$$

This completes the proof of Theorem 4. □

Remark 2.1

Upon setting \(\kappa _{1} =\cdots =\kappa _{r} =\varepsilon _{1} =\cdots =\varepsilon _{r} =1\) and \(r=1\), Eqs. (17), (18), (19), and (22) reduce to a result given by Shukla and Prajapati [31, Eqs. (2.4.1), (2.4.2), (2.4.3), (2.4.4)].

Remark 2.2

By setting the parameters in Eqs. (17), (18), (19), and (22), we obtain the known results established by Khan [32, Eqs. (2.4.4), (2.4.5), (2.4.6), (2.4.7)].

Lemma 2.1

([33, Eq. 2.13])

If \(\mu _{1},\mu _{2}, \alpha ', \beta '\in \mathbb{C}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N}}} \), then the following formula holds:

$$\begin{aligned} &L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',x \bigr)L _{m}^{\mu _{1},\tau _{1} } \bigl(\alpha ',x \bigr) \\ &\quad =\sum _{h=0}^{n+m} \sum _{r=0}^{h}\frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 ) }{\varGamma (h-r+1 ) \varGamma (\alpha ' (m-h+r )+1 ) } \\ &\qquad{} \times \frac{ (-x )^{h} }{ \varGamma (r+1 )\varGamma (\beta ' (n-r )+1 )\varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+\tau _{2} +1 )}. \end{aligned}$$
(23)

Theorem 5

If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N}}} \), then the following integral equality holds:

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ', \eta (1-u ) \bigr)L_{m}^{ (\mu _{2},\tau _{2} )} \bigl( \alpha ',\eta (1-u ) \bigr) \\ &\qquad{}\times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} u^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr) \,du \\ &\quad =\sum_{h=0}^{n+m} ( \eta )^{h} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1},\dots,z_{r} ), \end{aligned}$$
(24)

where

$$\begin{aligned} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} ={}& \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix}\frac{(-1)^{h} (\alpha )_{h} }{\varGamma (h+1 ) \varGamma (\alpha ' (m-h+r )+1 )\varGamma (\beta ' (n-r )+1 )} \\ &{}\times \frac{ \varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 )}{\varGamma (\mu _{1} r+\tau _{1} +1 ) \varGamma (\mu _{2} (h-r)+\tau _{2} +1 )}. \end{aligned}$$
(25)

Proof

Using Eqs. (6) and (23) in the left-hand side of Eq. (24), we obtain

$$\begin{aligned} I={}&\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} \sum_{h=0}^{n+m}\sum _{r=0}^{h}\frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 ) }{\varGamma (h-r+1 )\varGamma (\alpha ' (m-h+r )+1 ) } \\ &{}\times \frac{ (-\eta (1-u ) )^{h}}{\varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+\tau _{2} +1 )\varGamma (r+1 )\varGamma (\beta ' (n-r )+1 )} \\ &{}\times \sum_{m_{1},\dots,m_{r} =0}^{\infty } \frac{ (\delta _{1} )_{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} u^{\xi _{1} } )^{m_{1} } \cdots (z _{r} u^{\xi _{r} } )^{m_{r} } }{\varGamma (v+\sum_{i=1}^{r} \xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m _{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } } \,du \\ ={}&\frac{1}{\varGamma (\alpha )} \sum_{h=0}^{n+m} \sum_{r=0} ^{h}\frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 ) }{\varGamma (h-r+1 )\varGamma (\alpha ' (m-h+r )+1 ) \varGamma (r+1 )\varGamma (\beta ' (n-r )+1 )} \\ &{}\times \frac{ (-\eta )^{h}}{\varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+\tau _{2} +1 )} \sum_{m_{1},\dots,m_{r} =0}^{\infty } \frac{ (\delta _{1} ) _{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } }{\varGamma (v+\sum_{i=1}^{r}\xi _{i} m_{i} ) } \\ &{}\times \frac{ (z_{1} )^{m_{1} } \cdots (z_{r} ) ^{m_{r} } }{ (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } } \int _{0} ^{1}u^{v+\sum _{i=1}^{r}\xi _{i} m_{i} -1} (1-u )^{\alpha +h-1} \,du \\ ={}&\frac{1}{\varGamma (\alpha )} \sum_{h=0}^{n+m} \sum_{r=0} ^{h}\frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 )}{\varGamma (h-r+1 )\varGamma (\alpha (m-h+r )+1 ) \varGamma (r+1 )\varGamma (\beta ' (n-r )+1 )} \\ &{}\times \frac{ (-\eta )^{h}\varGamma (\alpha +h )}{ \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )} \\ &{}\times \sum_{m_{1},\dots,m_{r} =0}^{\infty } \frac{ (\delta _{1} )_{\rho _{1} m_{1} } \cdots (\delta _{r} )_{\rho _{r} m_{r} } (z_{1} )^{m_{1} } \cdots (z_{r} ) ^{m_{r} } }{\varGamma (v+\alpha +h+\sum_{i=1}^{r}\xi _{i} m_{i} ) (\kappa _{1} )_{\varepsilon _{1} m_{1} } \cdots (\kappa _{r} )_{\varepsilon _{r} m_{r} } } \\ ={}&\frac{1}{\varGamma (\alpha )} \sum_{h=0}^{n+m} \sum_{r=0} ^{h}\frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 )}{\varGamma (h-r+1 )\varGamma (\alpha ' (m-h+r )+1 ) \varGamma (r+1 )\varGamma (\beta ' (n-r )+1 )} \\ &{} \times \frac{ (-\eta )^{h}\varGamma (\alpha +h )}{ \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )}E_{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1},\dots,z_{r} ). \end{aligned}$$
(26)

Using the fact that (xn)=(−1)nn!(−x)n, where \((-x )_{n} = (-1 )^{n} (x-n+1 ) _{n} \), on the right-hand side of Eq. (26), yields

$$\begin{aligned} ={}&\sum_{h=0}^{n+m} \sum _{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix} \frac{ \varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 ) }{\varGamma (h+1 ) \varGamma (\alpha ' (m-h+r )+1 ) \varGamma (\beta ' (n-r )+1 )} \\ &{}\times \frac{ (-\eta )^{h} (\alpha )_{h}}{ \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )}E_{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1},\dots,z_{r} ), \end{aligned}$$

from which, after little rearrangement, we easily arrive at the required Eq. (24). □

Theorem 6

If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}; \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N,}}} \) then the following integral equality holds:

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{\nu -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',\eta (x-s ) \bigr)L_{m} ^{ (\mu _{2},\tau _{2} )} \bigl( \alpha ',\eta (x-s ) \bigr) \\ &\quad{}\times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (s-t )^{\xi _{1} },\dots,z_{r} (s-t ) ^{\xi _{r} } \bigr) \,ds= (x-t )^{\alpha +\nu -1} \sum_{h=0} ^{n+m} (\eta )^{h} \\ &\quad{}\times (x-t )^{h} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr), \end{aligned}$$
(27)

where \(\Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (25).

Theorem 7

If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}; \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \); \(n,m\in {\mathrm{\mathbb{N}}} \), then the following integral equality holds:

$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',\eta t \bigr)L_{m}^{\mu _{1}, \tau _{1} } \bigl(\alpha ',\eta t \bigr) \\ &\qquad{}\times E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i};1} \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr) E_{\xi _{i};\tau; \varepsilon _{i} }^{\omega _{i} ;\kappa _{i};1} \bigl(z_{1} (t )^{\xi _{1} },\dots,z _{r} (t )^{\xi _{r} } \bigr)\,dt \\ &\quad =x^{\tau +v-1} \sum_{h=0}^{n+m} (\eta x )^{h} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};v+\tau +h;\varepsilon _{i} }^{(\omega _{i} +\delta _{i} ); \kappa _{i};1} \bigl(z_{1} x^{\xi _{1} }, \dots,z_{r} x^{\xi _{r} } \bigr), \end{aligned}$$
(28)

where \(\Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (25).

Theorem 8

If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}; \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \); \(n,m\in {\mathrm{\mathbb{N}}} \), then the following integral equality holds:

$$\begin{aligned} &\int _{0}^{z}t^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ', \eta t \bigr)L_{m}^{\mu _{1},\tau _{1} } \bigl(\alpha ',\eta t \bigr) E_{\xi _{i};\nu;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} t^{\xi _{1} },\dots,z_{r} t^{\xi _{r} } \bigr) \,dt \\ &\quad =z^{v-1} \sum_{h=0}^{n+m} (\eta z )^{h} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};\nu +h+1;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} z^{\xi _{1} }, \dots,z_{r} z^{\xi _{r} } \bigr), \end{aligned}$$
(29)

where \(\Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (25).

Proof

The proofs of Eqs. (27), (28), and (29) are the same as those of Eq. (25), which can be obtained from Eqs. (18), (19), and (22). □

Theorem 9

If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N}}} \), then the following integral equality holds:

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ', \eta (1-u ) \bigr)L_{m}^{ (\mu _{2},\tau _{2} )} \bigl( \alpha ',\eta (1-u ) \bigr) \\ &\qquad{}\times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} u^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr) \,du \\ &\quad =\sum_{h=0}^{n+m} ( \eta )^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1},\dots,z_{r} ), \end{aligned}$$
(30)

where

$$\begin{aligned} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} ={}&\frac{ \varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+ \tau _{2} +1 )}{\varGamma (\alpha 'm+1 )\varGamma (\beta 'n+1 )} \\ &{}\times \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix}\frac{ (-1 )^{h-\alpha '(h-r)-\beta 'r} (\alpha )_{h} (-\alpha 'm)_{\alpha '(h-r)} (-\beta 'n)_{\beta 'r} }{\varGamma (h+1 ) \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )}. \end{aligned}$$
(31)

Proof

Using \((-x )_{n} = (-1 )^{n} (x-n+1 ) _{n} \), Eq. (26) is reduced to

$$\begin{aligned} ={}&\frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 )}{\varGamma (\alpha 'm+1 )\varGamma (\beta 'n+1 )}\sum_{h=0}^{n+m} (\eta )^{h} \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix} \\ &{}\times \frac{ (-1 )^{h-\alpha '(h-r)-\beta 'r} (\alpha )_{h} (-\alpha 'm)_{\alpha '(h-r)} (-\beta 'n)_{\beta 'r} }{\varGamma (h+1 ) \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )} E_{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1},\dots,z_{r} ) \\ ={}&\sum_{h=0}^{n+m} (\eta )^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1},\ldots,z_{r} ), \end{aligned}$$

where \(\wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (31). □

Theorem 10

If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N}}} \), then the following integral equality holds:

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{\nu -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',\eta (x-s ) \bigr)L_{m} ^{ (\mu _{2},\tau _{2} )} \bigl( \alpha ',\eta (x-s ) \bigr) \\ &\quad{} \times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (s-t )^{\xi _{1} },\dots,z_{r} (s-t ) ^{\xi _{r} } \bigr) \,ds= (x-t )^{\alpha +\nu -1} \sum_{h=0} ^{n+m} (\eta )^{h} \\ &\quad{} \times (x-t )^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr), \end{aligned}$$
(32)

where \(\wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (31).

Theorem 11

If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \); \(n,m\in {\mathrm{\mathbb{N}}} \), then the following integral equality holds:

$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',\eta t \bigr)L_{m}^{\mu _{1}, \tau _{1} } \bigl(\alpha ',\eta t \bigr) \\ &\qquad{}\times E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i};1} \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr) E_{\xi _{i};\tau; \varepsilon _{i} }^{\omega _{i} ;\kappa _{i};1} \bigl(z_{1} (t )^{\xi _{1} },\dots,z _{r} (t )^{\xi _{r} } \bigr)\,dt \\ &\quad =x^{\tau +v-1} \sum_{h=0}^{n+m} (\eta x )^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};v+\tau +h;\varepsilon _{i} }^{(\omega _{i} +\delta _{i} ); \kappa _{i};1} \bigl(z_{1} x^{\xi _{1} }, \dots,z_{r} x^{\xi _{r} } \bigr), \end{aligned}$$
(33)

where \(\wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (31).

Theorem 12

If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \); \(n,m\in {\mathrm{\mathbb{N}}} \), then the following integral equality holds:

$$\begin{aligned} &\int _{0}^{z}t^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ', \eta t \bigr)L_{m}^{\mu _{1},\tau _{1} } \bigl(\alpha ',\eta t \bigr) E_{\xi _{i};\nu;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} t^{\xi _{1} },\dots,z_{r} t^{\xi _{r} } \bigr) \,dt \\ &\quad =z^{v-1} \sum_{h=0}^{n+m} (\eta z )^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} E _{\xi _{i};\nu +h+1;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} z^{\xi _{1} }, \dots,z_{r} z^{\xi _{r} } \bigr), \end{aligned}$$
(34)

where \(\wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (31).

Proof

The proofs of Eqs. (32), (33), and (34) are the same as that of Eq. (30). □

Remark 2.3

Upon setting \(\kappa _{1} =\cdots =\kappa _{r} =\varepsilon _{1} =\cdots \varepsilon _{r} =1\), Eqs. (17), (18), (19), (22), (24), (27), (28), (29), (30), (32), (33), and (34) are reduced to Eqs. (2.1), (2.3), (2.5), (2.10), (2.20), (2.27), (2.28), (2.29), (2.31), (2.35), (2.36), and (2.37) established by Agarwal et al. [33].

3 Special cases

In this section, we emphasize special cases by selecting particular values of parameters.

(i) Putting \(\alpha '=\beta '=1\), the results in Eqs. (30), (32), (33), and (34) are reduced to the following form:

Corollary 1

If \(\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{\mathbb{N}}} \), then

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\eta (1-u ) \bigr)L_{m}^{ (\mu _{2},\tau _{2} )} \bigl(\eta (1-u ) \bigr) \\ &\qquad{}\times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} u^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr) \,du \\ &\quad =\sum_{h=0}^{n+m} (\eta )^{h} \frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 )}{ \varGamma (m+1 )\varGamma (n+1 )}\sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix} \\ &\qquad{} \times \frac{(\alpha )_{h} (-m)_{(h-r)} (-n)_{r} }{\varGamma (h+1 ) \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )} E_{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1},\dots,z_{r} ). \end{aligned}$$
(35)

Corollary 2

If \(\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{\mathbb{N}}} \), then

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{\nu -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\eta (x-s ) \bigr)L_{m}^{ (\mu _{2},\tau _{2} )} \bigl(\eta (x-s ) \bigr) \\ &\qquad{}\times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (s-t )^{\xi _{1} },\dots,z_{r} (s-t ) ^{\xi _{r} } \bigr) \,ds \\ &\quad = (x-t )^{\alpha +\nu -1} \sum_{h=0}^{n+m} (\eta ) ^{h} (x-t )^{h} \frac{\varGamma (\mu _{1} n+\tau _{1} +1 ) \varGamma (\mu _{2} m+\tau _{2} +1 )}{\varGamma (m+1 ) \varGamma (n+1 )} \\ &\qquad{}\times \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix}\frac{(\alpha )_{h} (-m)_{(h-r)} (-n)_{r} }{\varGamma (h+1 ) \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )} \\ &\qquad{} \times E_{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z _{r} (x-t )^{\xi _{r} } \bigr). \end{aligned}$$
(36)

Corollary 3

If \(\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \),; \(n,m\in {\mathrm{\mathbb{N}}} \), then

$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} (\eta t )L_{m}^{\mu _{1},\tau _{1} } (\eta t ) \\ &\qquad{}\times E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i};1} \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr) E_{\xi _{i};\tau; \varepsilon _{i} }^{\omega _{i} ;\kappa _{i};1} \bigl(z_{1} (t )^{\xi _{1} },\dots,z _{r} (t )^{\xi _{r} } \bigr)\,dt \\ &\quad =x^{\tau +v-1} \sum_{h=0}^{n+m} ( \eta x )^{h} \frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 )}{ \varGamma (m+1 )\varGamma (n+1 )} \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix} \\ &\qquad{}\times \frac{(\alpha )_{h} (-m)_{(h-r)} (-n)_{r} }{\varGamma (h+1 ) \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )} E_{\xi _{i};v+\tau +h;\varepsilon _{i} }^{(\omega _{i} +\delta _{i} );\kappa _{i};1} \bigl(z_{1} x^{\xi _{1} },\dots,z _{r} x^{\xi _{r} } \bigr). \end{aligned}$$
(37)

Corollary 4

If \(\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(n,m\in {\mathrm{\mathbb{N}}} \), then

$$\begin{aligned} &\int _{0}^{z}t^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} (\eta t )L _{m}^{\mu _{1},\tau _{1} } (\eta t ) E_{\xi _{i};\nu; \varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} t ^{\xi _{1} },\dots,z_{r} t^{\xi _{r} } \bigr) \,dt \\ &\quad{}=z^{v-1} \sum_{h=0}^{n+m} ( \eta z )^{h} \frac{\varGamma (\mu _{1} n+\tau _{1} +1 )\varGamma (\mu _{2} m+\tau _{2} +1 )}{ \varGamma (m+1 )\varGamma (n+1 )} \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix} \\ &\qquad{}\times \frac{(\alpha )_{h} (-m)_{(h-r)} (-n)_{r} }{\varGamma (h+1 ) \varGamma (\mu _{1} r+\tau _{1} +1 )\varGamma (\mu _{2} (h-r)+ \tau _{2} +1 )} E_{\xi _{i};\nu +h+1;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} z^{\xi _{1} },\dots,z_{r} z ^{\xi _{r} } \bigr). \end{aligned}$$
(38)

(ii) Putting \(\mu _{1} =\mu _{2} =\alpha '=\beta '=1\) and using Eq. (12), the results in Eqs. (30), (32), (33), and (34) reduced to the following form:

Corollary 5

If \(\eta \in \mathbb{C}^{+}, \tau _{1},\tau _{2} \in \mathbb{C}_{-1} ^{+} \) and \(n,m\in {\mathrm{\mathbb{N}}} \), then

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} L_{n}^{ (1,\tau _{1} )} \bigl(\eta (1-u ); 1 \bigr)L_{m}^{ (1,\tau _{2} )} \bigl(\eta (1-u ); 1 \bigr) \\ &\qquad{}\times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} u^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr) \,du \\ &\quad =\sum_{h=0}^{n+m} (\eta )^{h} \frac{\varGamma (n+\tau _{1} +1 )\varGamma (m+\tau _{2} +1 )}{\varGamma (m+1 ) \varGamma (n+1 )} \\ &\qquad{}\times \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix}\frac{(\alpha )_{h} (-m)_{(h-r)} (-n)_{r} }{\varGamma (h+1 ) \varGamma (r+\tau _{1} +1 )\varGamma ((h-r)+\tau _{2} +1 )} E_{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i}; \kappa _{i};\rho _{i} } (z_{1},\dots,z_{r} ). \end{aligned}$$
(39)

Corollary 6

If \(\eta \in \mathbb{C}^{+}, \tau _{1},\tau _{2} \in \mathbb{C}_{-1} ^{+} \) and \(n,m\in {\mathrm{\mathbb{N}}} \), then

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{\nu -1} L_{n}^{ (1,\tau _{1} )} \bigl(\eta (x-s );1 \bigr)L_{m}^{ (1,\tau _{2} )} \bigl(\eta (x-s );1 \bigr) \\ &\qquad{}\times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (s-t )^{\xi _{1} },\dots,z_{r} (s-t ) ^{\xi _{r} } \bigr) \,ds \\ &\quad= (x-t )^{\alpha +\nu -1} \sum_{h=0}^{n+m} (\eta ) ^{h} (x-t )^{h} \frac{\varGamma (n+\tau _{1} +1 ) \varGamma (m+\tau _{2} +1 )}{\varGamma (m+1 )\varGamma (n+1 )} \\ &\qquad{}\times \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix}\frac{(\alpha )_{h} (-m)_{(h-r)} (-n)_{r} }{\varGamma (h+1 ) \varGamma (r+\tau _{1} +1 )\varGamma ((h-r)+\tau _{2} +1 )} \\ &\qquad {}\times E_{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i}; \rho _{i} } \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t )^{\xi _{r} } \bigr). \end{aligned}$$
(40)

Corollary 7

If \(\eta \in \mathbb{C}^{+}, \tau _{1},\tau _{2} \in \mathbb{C}_{-1} ^{+} \), \(n,m\in {\mathrm{\mathbb{N}}} \), then

$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} (\eta t;1 )L_{m}^{\mu _{1},\tau _{1} } (\eta t;1 ) \\ &\qquad{}\times E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i};1} \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr) E_{\xi _{i};\tau; \varepsilon _{i} }^{\omega _{i} ;\kappa _{i};1} \bigl(z_{1} (t )^{\xi _{1} },\dots,z _{r} (t )^{\xi _{r} } \bigr) \,dt \\ &\quad =x^{\tau +v-1} \sum_{h=0}^{n+m} ( \eta x )^{h} \frac{\varGamma (n+\tau _{1} +1 )\varGamma (m+\tau _{2} +1 )}{ \varGamma (m+1 )\varGamma (n+1 )} \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix} \\ &\qquad{} \times \frac{(\alpha )_{h} (-m)_{(h-r)} (-n)_{r} }{\varGamma (h+1 ) \varGamma (r+\tau _{1} +1 )\varGamma ((h-r)+\tau _{2} +1 )} E_{\xi _{i};v+\tau +h;\varepsilon _{i} }^{(\omega _{i} + \delta _{i} );\kappa _{i};1} \bigl(z_{1} x^{\xi _{1} },\dots,z_{r} x ^{\xi _{r} } \bigr). \end{aligned}$$
(41)

Corollary 8

If \(\eta \in \mathbb{C}^{+}, \tau _{1},\tau _{2} \in \mathbb{C}_{-1} ^{+} \), \(n,m\in {\mathrm{\mathbb{N}}} \), then

$$\begin{aligned} &\int _{0}^{z}t^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} (\eta t;1 )L _{m}^{\mu _{1},\tau _{1} } (\eta t;1 ) E_{\xi _{i};\nu; \varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} t ^{\xi _{1} },\dots,z_{r} t^{\xi _{r} } \bigr) \,dt \\ &\quad =z^{v-1} \sum_{h=0}^{n+m} ( \eta z )^{h} \frac{\varGamma (n+ \tau _{1} +1 )\varGamma (m+\tau _{2} +1 )}{\varGamma (m+1 ) \varGamma (n+1 )} \sum_{r=0}^{h} \begin{pmatrix} {h} \\ {r} \end{pmatrix} \\ &\qquad{} \times \frac{(\alpha )_{h} (-m)_{(h-r)} (-n)_{r} }{\varGamma (h+1 ) \varGamma (r+\tau _{1} +1 )\varGamma ((h-r)+\tau _{2} +1 )} E_{\xi _{i};\nu +h+1;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} z^{\xi _{1} },\dots,z_{r} z^{\xi _{r} } \bigr). \end{aligned}$$
(42)

(iii) Putting \(\mu _{1} =\mu _{1} =0, \alpha '=\beta '=1\), the results in Eqs. (30), (32), (33), and (34) are reduced to the following form:

Corollary 9

If \(\eta \in \mathbb{C}^{+}, \tau _{1},\tau _{2} \in \mathbb{C}_{-1} ^{+} \) and \(n,m\in {\mathrm{\mathbb{N}}} \), then

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} \bigl(1-\eta (1-u ) \bigr)^{m} E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} u ^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr) \,du \\ &\quad =\sum_{h=0}^{m} ( \eta )^{h} (-m )_{h} (\alpha )_{h} E_{\xi _{i};v+h+\alpha;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } (z_{1},\dots,z_{r} ). \end{aligned}$$
(43)

Corollary 10

If \(\eta \in \mathbb{C}^{+}, \tau _{1},\tau _{2} \in \mathbb{C}_{-1} ^{+} \) and \(n,m\in {\mathrm{\mathbb{N}}} \), then

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{\nu -1} \bigl(1-\eta (x-s ) \bigr) ^{m} \\ &\quad{}\times E_{\xi _{i};v;\varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (s-t )^{\xi _{1} },\dots,z_{r} (s-t ) ^{\xi _{r} } \bigr) \,ds= (x-t )^{\alpha +\nu -1} \sum_{h=0} ^{m} \bigl(\eta (x-t ) \bigr)^{h} \\ &\quad{}\times (-m )_{h} (\alpha )_{h} E_{\xi _{i};v+h+\alpha; \varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t )^{\xi _{r} } \bigr). \end{aligned}$$
(44)

Corollary 11

If \(\eta \in \mathbb{C}^{+}, \tau _{1},\tau _{2} \in \mathbb{C}_{-1} ^{+} \) and \(n,m\in {\mathrm{\mathbb{N}}} \), then

$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} (1-\eta t ) ^{m} E_{\xi _{i};v; \varepsilon _{i} }^{\delta _{i};\kappa _{i};1} \bigl(z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr) \\ &\qquad{}\times E_{\xi _{i};\tau; \varepsilon _{i} }^{\omega _{i};\kappa _{i};1} \bigl(z_{1} (t )^{\xi _{1} },\dots,z_{r} (t ) ^{\xi _{r} } \bigr)\,dt \\ &\quad =x^{\tau +v-1} \sum_{h=0}^{m} (\eta x )^{h} (-m ) _{h} (\alpha )_{h} E_{\xi _{i};v+\tau +h;\varepsilon _{i} }^{(\omega _{i} +\delta _{i} );\kappa _{i};1} \bigl(z_{1} x^{\xi _{1} }, \dots,z _{r} x^{\xi _{r} } \bigr). \end{aligned}$$
(45)

Corollary 12

If \(\eta \in \mathbb{C}^{+}, \tau _{1},\tau _{2} \in \mathbb{C}_{-1} ^{+} \) and \(n,m\in {\mathrm{\mathbb{N}}} \), then

$$\begin{aligned} &\int _{0}^{z}t^{v-1} (1-\eta t )^{m} E_{\xi _{i};\nu; \varepsilon _{i} }^{\delta _{i};\kappa _{i};\rho _{i} } \bigl(z_{1} t ^{\xi _{1} },\dots,z_{r} t^{\xi _{r} } \bigr) \,dt \\ &\quad =z^{v-1} \sum_{h=0}^{m} (\eta z )^{h} (-m ) _{h} (\alpha )_{h} E_{\xi _{i};\nu +h+1;\varepsilon _{i} }^{\delta _{i} ;\kappa _{i};\rho _{i} } \bigl(z_{1} z^{\xi _{1} }, \dots,z_{r} z^{\xi _{r} } \bigr). \end{aligned}$$
(46)

Remark 3.1

If we put \(\kappa _{1} =\cdots =\kappa _{r} =\varepsilon _{1} =\cdots = \varepsilon _{r} =1\), then Eqs. (35)–(46) are reduced to Eqs. (3.1), (3.2), (3.3), (3.4), (3.6), (3.7), (3.8), (3.9), (3.11), (3.16), (3.17), (3.18) established in Agarwal et al. [33].

(iv) Setting \(\rho _{i} =\kappa _{i} =\varepsilon _{i} =1, \xi _{1} =\cdots =\xi _{r} =1\), the multivariate Mittag-Leffler function reduces to the confluent hypergeometric series, and we have the following results, which are obtained from the main results in (17), (18), (19), (22), (24), (27), (28), (29), (30), (32), (33), and (34).

Corollary 13

The following integral equality holds:

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z_{1} u^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr] \,du \\ &\quad =\varphi _{2}^{(r)} [\delta _{1},\dots,\delta _{r}; v+\alpha; z _{1}, \dots,z_{r} ]. \end{aligned}$$
(47)

Corollary 14

Then following integral equality holds:

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{v-1} \\ &\qquad{}\times\varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z_{1} (s-t )^{\xi _{1} }, \dots,z_{r} (s-t )^{\xi _{r} } \bigr] \,ds \\ &\quad = (x-t )^{\alpha +v-1} \varphi _{2}^{(r)} \bigl[\delta _{1} ,\dots,\delta _{r}; v+\alpha; z_{1} (s-t )^{\xi _{1} }, \dots,z_{r} (s-t )^{\xi _{r} } \bigr]. \end{aligned}$$
(48)

Corollary 15

Then following integral equality holds:

$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z_{1} (x-t ) ^{\xi _{1} },\dots,z_{r} (x-t )^{\xi _{r} } \bigr] \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z _{1} t^{\xi _{1} },\dots,z_{r} t^{\xi _{r} } \bigr]\,dt \\ &\quad =x^{\tau +v-1} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r} ; v+\tau; z_{1} t^{\xi _{1} },\dots,z_{r} t^{\xi _{r} } \bigr]. \end{aligned}$$
(49)

Corollary 16

Then following integral equality holds:

$$\begin{aligned} &\int _{0}^{z}t^{v-1} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z_{1} t^{\xi _{1} },\dots,z_{r} t^{\xi _{r} } \bigr] \,dt \\ &\quad =z^{v-1} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v+1; z_{1} z^{\xi _{1} },\dots,z_{r} z^{\xi _{r} } \bigr]. \end{aligned}$$
(50)

Corollary 17

If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N}}} \), then the following integral equality holds:

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{\nu -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',\eta (x-s ) \bigr)L_{m} ^{ (\mu _{2},\tau _{2} )} \bigl( \alpha ',\eta (x-s ) \bigr) \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; _{1} (s-t )^{\xi _{1} },\dots,z_{r} (s-t ) ^{\xi _{r} } \bigr] \,ds \\ &\quad= (x-t )^{\alpha +\nu -1} \sum_{h=0}^{n+m} \bigl(\eta (x-t ) \bigr)^{h} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} \\ &\qquad{} \times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r};v+h+ \alpha; z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr], \end{aligned}$$
(51)

where \(\Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (25).

Corollary 18

If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N}}} \), then the following integral equality holds:

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ', \eta (1-u ) \bigr)L_{m}^{ (\mu _{2},\tau _{2} )} \bigl( \alpha ',\eta (1-u ) \bigr) \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z _{1} u^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr] \,du \\ &\quad =\sum_{h=0}^{n+m} ( \eta )^{h} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} \varphi _{2}^{(r)} [\delta _{1},\dots,\delta _{r}; v+\alpha; z _{1},\dots,z_{r} ], \end{aligned}$$
(52)

where \(\Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (25).

Corollary 19

If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \); \(n,m\in {\mathrm{\mathbb{N}}} \), then the following integral equality holds:

$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',\eta t \bigr)L_{m}^{\mu _{1}, \tau _{1} } \bigl(\alpha ',\eta t \bigr) \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z _{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr] \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z _{1} (t )^{\xi _{1} },\dots,z_{r} (t )^{\xi _{r} } \bigr]\,dt \\ &\quad =x^{\tau +v-1} \sum_{h=0}^{n+m} (\eta x )^{h} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r};v+\tau +h; z _{1} x^{\xi _{1} }, \dots,z_{r} x^{\xi _{r} } \bigr], \end{aligned}$$
(53)

where \(\Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (25).

Corollary 20

If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \); \(n,m\in {\mathrm{\mathbb{N}}} \), then the following integral equality holds:

$$\begin{aligned} &\int _{0}^{z}t^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ', \eta t \bigr)L_{m}^{\mu _{1},\tau _{1} } \bigl(\alpha ',\eta t \bigr) \varphi _{2}^{(r)} \bigl[\delta _{1}, \dots,\delta _{r}; v; z_{1} t ^{\xi _{1} }, \dots,z_{r} t^{\xi _{r} } \bigr] \,dt \\ &\quad =z^{v-1} \sum_{h=0}^{n+m} (\eta z )^{h} \Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; \nu +h+1; z _{1} t^{\xi _{1} }, \dots,z_{r} t^{\xi _{r} } \bigr], \end{aligned}$$
(54)

where \(\Im _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (25).

Corollary 21

If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N}}} \), then the following integral equality holds:

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{0}^{1}u^{v-1} (1-u ) ^{\alpha -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ', \eta (1-u ) \bigr)L_{m}^{ (\mu _{2},\tau _{2} )} \bigl( \alpha ',\eta (1-u ) \bigr) \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z _{1} u^{\xi _{1} },\dots,z_{r} u^{\xi _{r} } \bigr] \,du \\ &\quad =\sum_{h=0}^{n+m} ( \eta )^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} \varphi _{2}^{(r)} [\delta _{1},\dots,\delta _{r}; v+h+\alpha; z_{1},\dots,z_{r} ], \end{aligned}$$
(55)

where \(\wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (31).

Corollary 22

If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \) and \(n,m\in {\mathrm{ \mathbb{N}}} \), then the following integral equality holds:

$$\begin{aligned} &\frac{1}{\varGamma (\alpha )} \int _{t}^{x} (x-s ) ^{\alpha -1} (s-t )^{\nu -1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',\eta (x-s ) \bigr)L_{m} ^{ (\mu _{2},\tau _{2} )} \bigl( \alpha ',\eta (x-s ) \bigr) \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z _{1} (s-t )^{\xi _{1} },\dots,z_{r} (s-t ) ^{\xi _{r} } \bigr] \,ds \\ &\quad = (x-t )^{\alpha +\nu -1} \sum_{h=0}^{n+m} \bigl(\eta (x-t ) \bigr)^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} \\ &\qquad{} \times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v+h+ \alpha; z_{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr], \end{aligned}$$
(56)

where \(\wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (31).

Corollary 23

If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \); \(n,m\in {\mathrm{\mathbb{N}}} \), then the following integral equality holds:

$$\begin{aligned} &\int _{0}^{x}t^{\tau -1} (x-t )^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ',\eta t \bigr)L_{m}^{\mu _{1}, \tau _{1} } \bigl(\alpha ',\eta t \bigr) \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z _{1} (x-t )^{\xi _{1} },\dots,z_{r} (x-t ) ^{\xi _{r} } \bigr] \\ &\qquad{}\times \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v; z _{1} (t )^{\xi _{1} },\dots,z_{r} (t )^{\xi _{r} } \bigr]\,dt \\ &\quad =x^{\tau +v-1} \sum_{h=0}^{n+m} (\eta x )^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; v+\tau +h; z _{1} x^{\xi _{1} }, \dots,z_{r} x^{\xi _{r} } \bigr], \end{aligned}$$
(57)

where \(\wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (31).

Corollary 24

If \(\alpha ',\beta ',\eta \in \mathbb{C}^{+}, \mu _{1},\mu _{2},\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \), \(\tau _{1},\tau _{2} \in \mathbb{C}_{-1}^{+} \); \(n,m\in {\mathrm{\mathbb{N}}} \), then the following integral equality holds:

$$\begin{aligned} &\int _{0}^{z}t^{v-1} L_{n}^{ (\mu _{1},\tau _{1} )} \bigl(\beta ', \eta t \bigr)L_{m}^{\mu _{1},\tau _{1} } \bigl(\alpha ',\eta t \bigr) \varphi _{2}^{(r)} \bigl[\delta _{1}, \dots,\delta _{r}; v; z_{1} t ^{\xi _{1} }, \dots,z_{r} t^{\xi _{r} } \bigr] \,dt \\ &\quad =z^{v-1} \sum_{h=0}^{n+m} (\eta z )^{h} \wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ',\beta '} \varphi _{2}^{(r)} \bigl[\delta _{1},\dots,\delta _{r}; \nu +h+1; z _{1} z^{\xi _{1} }, \dots,z_{r} z^{\xi _{r} } \bigr], \end{aligned}$$
(58)

where \(\wp _{\mu _{1},\tau _{1},\mu _{2},\tau _{2} }^{m,n,\alpha ', \beta '} \) is given by Eq. (31).

(v) Setting \(\rho _{i} =\kappa _{i} =\varepsilon _{i} =\delta _{i} =\xi _{i} =v=r=1\), the multivariate Mittag-Leffler function is reduced to the exponential function \(E_{1;1; 1}^{1;1;1} (z )=E_{1,1} (z )=\exp (z)\); and we can find a similar line of results associated with exponential function from Eqs. (47)–(58).

References

  1. Agarwal, R.P.: A propos d’une note de M. Pierre Humbert (French). C. R. Acad. Sci. 236, 2031–2032 (1953)

    MathSciNet  MATH  Google Scholar 

  2. Mittag-Leffler, G.M.: Sur la nouvelle fonction \(E_{\alpha } (x)\). C. R. Math. Acad. Sci. Paris 137, 554–558 (1903)

    MATH  Google Scholar 

  3. Mittag-Leffler, G.M.: Sur la representation analytiqie d’une fonction monogene (cinquieme note). Acta Math. 29, 101–181 (1905)

    Article  MathSciNet  Google Scholar 

  4. Humbert, P.: Quelques resultants d’le function de Mittag-Leffler. C.R. Acad. Sci. Paris 236, 1467–1468 (1953)

    MathSciNet  MATH  Google Scholar 

  5. Humbert, P., Agarwal, R.P.: Sur la fonction de Mittag-Leffler et quelques unes de ses generalizations. Bull. Sci. Math. 77(2), 180–185 (1953)

    MathSciNet  MATH  Google Scholar 

  6. Wiman, A.: Über den Fundamental satz in der Theorie der Functionen \(E_{\alpha } (x)\). Acta Math. 29, 191–201 (1905)

    Article  MathSciNet  Google Scholar 

  7. Wiman, A.: Über die Nullstellun der Funktionen \(E_{\alpha } (x)\). Acta Math. 29, 217–234 (1905)

    Article  MathSciNet  Google Scholar 

  8. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, Vol. III. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  9. Dzherbashyan, M.M.: Integral Transforms and Representations of Function in Computer Domain (Russian). Nauka, Moscow (1966)

    Google Scholar 

  10. Kilbas, A.A., Saigo, M.: On solution of integral equations of Abel–Volterra type. Differ. Integral Equ. 8, 993–1011 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Kilbas, A.A., Saigo, M.: Fractional integrals and derivatives of Mittag-Leffler type function (Russian). Dokl. Akad. Nauk Belarusi 39(4), 22–26 (1995)

    MathSciNet  Google Scholar 

  12. Kilbas, A.A., Saigo, M.: On Mittag-Leffler type function, fractional calculus operators and solutions of integral equations. Integral Transforms Spec. Funct. 4, 355–370 (1996)

    Article  MathSciNet  Google Scholar 

  13. Kilbas, A.A., Saigo, M.: Solution in closed form of a class of linear differential equations of fractional order. Differ. Equ. 33, 194–204 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Gorenflo, R., Mainardi, F.: The Mittag-Leffler type functions in the Riemann–Liouville fractional calculus. In: Boundary Value Problems. Special Functions and Fractional Calculus (Proc. Int. Conf. Minsk 1996), Belarusian State Univ., Minsk, pp. 215–225 (1996)

    Google Scholar 

  15. Gorenflo, R., Luchko, Y., Rogosin, S.V.: Mittag-Leffer type function, notes on growth properties and distribution of zeros. Preprint No. A04-97, Freie Universität Berlin, Serie A Mathematik, Berlin (1997)

  16. Gorenflo, R., Kilbas, A.A., Rogosin, S.V.: On the generalized Mittag-Leffler type function. Integral Transforms Spec. Funct. 7, 215–224 (1998)

    Article  MathSciNet  Google Scholar 

  17. Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  18. Srivastava, H.M., Tomovski, Z.: Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211(1), 198–210 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Salim, T.O., Faraj, A.W.: A generalization of Mittag-Leffler function and integral operator associated with fractional calculus. Fract. Calc. Appl. Anal. 3, 1–13 (2012)

    Google Scholar 

  20. Gurjar, M.K., Prajapati, J.C., Gupta, K.: A study of generalized Mittag-Leffler function via fractional calculus. J. Inequal. Spec. Funct. 5(3), 6–13 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Mishra, V.N., Suthar, D.L., Purohit, S.D.: Marichev–Saigo–Maeda fractional calculus operators, Srivastava polynomials and generalized Mittag-Leffler function. Cogent Math. 4, Article ID 1320830 (2017)

    Article  MathSciNet  Google Scholar 

  22. Purohit, S.D., Kalla, S.L., Suthar, D.L.: Fractional integral operators and the multiindex Mittag-Leffler functions. Scientia, Ser. A, Math. Sci. 21, 87–96 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Saxena, R.K., Ram, J., Suthar, D.L.: Generalized fractional calculus of the generalized Mittag-Leffler functions. J. Indian Acad. Math. 31(1), 165–172 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Suthar, D.L., Amsalu, H.: Generalized fractional integral operators involving Mittag-Leffler function. Appl. Appl. Math. 12(2), 1002–1016 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Suthar, D.L., Habenom, H., Tadesse, H.: Generalized fractional calculus formulas for a product of Mittag-Leffler function and multivariable polynomials. Int. J. Appl. Comput. Math. 4(1), 1–12 (2018)

    Article  MathSciNet  Google Scholar 

  26. Suthar, D.L., Purohit, S.D.: Unified fractional integral formulae for the generalized Mittag-Leffler functions. J. Sci. Arts 27(2), 117–124 (2014)

    MathSciNet  Google Scholar 

  27. Prabhakar, T.R., Suman, R.: Some results on the polynomials \(L_{n}^{\alpha,\beta } (x)\). Rocky Mt. J. Math. 8(4), 751–754 (1978)

    Article  Google Scholar 

  28. Rainville, E.D.: Special Functions. Macmillan, New York (1960)

    MATH  Google Scholar 

  29. Srivastava, H.M.: A multilinear generating function for the Konhauser sets of bi-orthogonal polynomials suggested by the Laguerre polynomials. Pac. J. Math. 117(1), 183–191 (1985)

    Article  Google Scholar 

  30. Shukla, A.K., Prajapati, J.C., Salehbhai, I.A.: On a set of polynomials suggested by the family of Konhauser polynomial. Int. J. Math. Anal. 3(13–16), 637–643 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336(2), 797–811 (2007)

    Article  MathSciNet  Google Scholar 

  32. Khan, M.A.: On some properties of the generalized Mittag-Leffler function. SpringerPlus 2, 337 (2013) https://doi.org/10.1186/2193-1801-2-337

    Article  Google Scholar 

  33. Agarwal, P., Chand, M., Jain, S.: Certain integrals involving generalized Mittag-Leffler functions. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 85(3), 359–371 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the referee for his/her valuable remarks and comments for the improvement of the paper.

Availability of data and materials

Not applicable.

Funding

Not available.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to D. L. Suthar.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suthar, D.L., Amsalu, H. & Godifey, K. Certain integrals involving multivariate Mittag-Leffler function. J Inequal Appl 2019, 208 (2019). https://doi.org/10.1186/s13660-019-2162-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-019-2162-z

MSC

Keywords