- Research
- Open Access
- Published:
Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions
Journal of Inequalities and Applications volume 2019, Article number: 204 (2019)
Abstract
In this paper we use the fixed point index to study the existence of positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions. Here we use appropriate nonnegative matrices to depict the coupling behavior for our nonlinearities.
1 Introduction
In this paper we consider the system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions
where \(\beta \in (2,3]\), \(D^{\beta }\) is the Hadamard fractional derivative of fractional order β, and \(f_{i}\) (\(i=1,2\)), h, g satisfy the following conditions:
-
(H1)
\(f_{i}\) (\(i=1,2\)) are nonnegative continuous functions on \([1,e]\times \mathbb{R}^{+}\times \mathbb{R}^{+}\),
-
(H2)
\(h,g\ge 0\) (≢0) on \([1,e]\) with \(\int _{1}^{e} h(t) ( \log t)^{\beta -1} \frac{dt}{t}\cdot \int _{1}^{e} g(t) (\log t)^{ \beta -1} \frac{dt}{t} \in (0,1) \).
Fractional-order differential equations is a rapidly developing area of research; we refer the reader to [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48] and the references therein. In [1,2,3,4,5,6,7,8,9], the authors used iterative techniques to study existence and uniqueness of solutions for fractional boundary value problems. In [1] the authors studied positive solutions for the p-Laplacian fractional Riemann–Stieltjes integral boundary value problem
where \(D_{t}^{\alpha }\), \(D_{t}^{\beta }\), \(D_{t}^{\gamma }\) are the Riemann–Liouville fractional derivatives, and they not only obtained existence and uniqueness of positive solutions for (1.2), but also constructed an iteration sequence for the unique positive solution. In [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32], the authors used fixed point methods to study the existence of (positive) solutions fractional order equations. In [10] Mawhin’s continuation theorem was used to study the following fractional order boundary value problem at resonance:
where \({}^{c}D^{q}\) is the Caputo fractional derivative, \(I_{\eta }^{ \gamma ,\delta }\) is a Erdélyi–Kober type integral, and \({}^{\rho }I^{p}\) denotes the generalized Riemann–Liouville type integral boundary conditions. For fractional differential systems, see [23,24,25,26,27,28,29,30,31,32]. In [23], using the Leray–Schauder alternative and the Banach contraction principle, the authors studied existence and uniqueness of solutions for the system of nonlinear Caputo type sequential fractional integro-differential equations
Hadamard fractional differential equations are also popular in the literature; see [33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48] and the references therein. In [33], the authors used the Banach contraction principle, the Leray–Schauder’s alternative, and Krasnoselskii’s fixed-point theorem to study the existence and uniqueness of solutions for the coupled system of nonlinear sequential Caputo and Hadamard fractional differential equations with coupled separated boundary conditions
where \({}^{C}D^{p_{i}}\), \({}^{H}D^{q_{i}}\) are respectively the Caputo and Hadamard fractional derivatives. In [34] the authors established positive solutions for the coupled Hadamard fractional integral boundary value problems
where \(\alpha ,\beta \in (n-1,n]\) and \(n\ge 3\), \(D^{\alpha }\), \(D^{ \beta }\) are the Hadamard fractional derivatives and their nonlinearities f, g satisfy the following conditions:
- \((\mathrm{H})_{\mathrm{Yang}1}\) :
-
There exists \([\theta _{1},\theta _{2}]\subset (1,e)\) such that \(\liminf_{u\to +\infty }\min_{t\in [\theta _{1},\theta _{2}] }\frac{f(t,u,v)}{u}=+\infty \) and \(\liminf_{v\to +\infty }\min_{t\in [\theta _{1},\theta _{2}] }\frac{g(t,u,v)}{v}=+\infty \);
or
- \((\mathrm{H})_{\mathrm{Yang}2}\) :
-
There exists \([\theta _{1},\theta _{2}]\subset (1,e)\) such that \(\liminf_{v\to +\infty }\min_{t\in [\theta _{1},\theta _{2}] }\frac{f(t,u,v)}{v}=+\infty \) and \(\liminf_{u\to +\infty }\min_{t\in [\theta _{1},\theta _{2}] }\frac{g(t,u,v)}{u}=+\infty \).
Motivated by the above, in this paper we study the existence of positive solutions for the system of nonlinear Hadamard fractional differential equations (1.1) involving coupled integral boundary conditions. We use appropriate nonnegative matrices to depict the coupling behavior for our nonlinearities, and note that they can grow both superlinearly and sublinearly. We remark here that our conditions for nonlinear terms are not as restrictive as those in \((\mathrm{H})_{\mathrm{Yang}1}\) and \((\mathrm{H})_{\mathrm{Yang}2}\); see (H3)–(H6) in Sect. 3.
2 Preliminaries
In this section, we first provide some material for Hadamard fractional calculus; for details, see the book [49].
Definition 2.1
The Hadamard derivative of fractional order q for a function \(g: [1,\infty )\rightarrow \mathbb{R}\) is defined as
where \(n=[q]+1\); \([q]\) denotes the integer part of the real number q and \(\log (\cdot )=\log _{e}(\cdot )\).
Definition 2.2
The Hadamard fractional integral of order q for a function \(g: [1,\infty )\rightarrow \mathbb{R}\) is defined as
provided the integral exists.
In what follows, we calculate the Green’s functions associated with (1.1) and study some properties of these Green’s functions.
Lemma 2.3
(see [34, Lemma 2.3])
Let \(x,y\in C[1,e]\). Then the integral boundary value problem
can be transformed into the following Hammerstein type integral equations:
where
here, \(d_{g,h}\), \(d_{g}\), \(d_{h}\) are three positive constants defined in the proof.
Proof
From Lemma 2.3 of [34] we have
where \(c_{1i},c_{2i}\in \mathbb{R}\), \(i=1,2,3\). Note that \(u(1)=v(1)=u'(1)=v'(1)=0\) implies \(c_{12},c_{13},c_{22},c_{23}=0\). Then we have
Using the conditions \(u(e)=\int _{1}^{e} h(s) v(s)\frac{ds}{s}\), \(v(e)= \int _{1}^{e} g(s) u(s)\frac{ds}{s}\), we obtain
This implies that
Let \(d_{g,h}=1-\int _{1}^{e} h(t) (\log t)^{\beta -1} \frac{dt}{t} \cdot \int _{1}^{e} g(t) (\log t)^{\beta -1} \frac{dt}{t}\), \(d_{h}=\int _{1}^{e} h(t) (\log t)^{\beta -1} \frac{dt}{t}\), \(d_{g}= [4]\int _{1}^{e} g(t) (\log t)^{\beta -1} \frac{dt}{t}\). Then
Consequently, we have
Similarly, we also obtain that
This completes the proof. □
From Lemma 2.3, we note (1.1) is equivalent to the Hammerstein type integral equations
Lemma 2.4
The function \(G_{1}(t,s)\) satisfies the following inequalities:
-
(I1)
\(\frac{1}{\varGamma (\beta )} (\log t)^{\beta -1}(1-\log t)\log s(1- \log s)^{\beta -1}\le G_{1}(t,s)\le \frac{\beta -1}{{\varGamma (\beta )}}\log s(1-\log s)^{\beta -1} \) for \(t,s\in [1,e]\),
-
(I2)
\(\frac{1}{\varGamma (\beta )} (\log t)^{\beta -1}(1-\log t)\log s(1- \log s)^{\beta -1}\le G_{1}(t,s)\le \frac{\beta -1}{{\varGamma (\beta )}}(\log t)^{\beta -1}(1-\log t) \) for \(t,s\in [1,e]\).
Proof
We note a result from [14]. Let \(\beta \in (n-1,n]\) with \(n\in \mathbb{N}\), \(n\ge 3\). Then the function
has the following properties:
-
(R1)
\(G(z,l)=G(1-l,1-z)\) for \(z,l\in [0,1]\);
-
(R2)
\(\varGamma (\beta )k(z)q(l)\le G(z,l)\le (\beta -1)q(l)\) for \(z,l\in [0,1]\);
-
(R3)
\(\varGamma (\beta )k(z)q(l)\le G(z,l)\le (\beta -1)k(z)\) for \(z,l\in [0,1]\), where \(k(z)=\frac{z^{\beta -1}(1-z)}{\varGamma (\beta )}\), \(q(l)=\frac{l(1-l)^{ \beta -1}}{\varGamma (\beta )}\).
Now, we turn our attention to \(G_{1}\). If logt, logs are regarded as z, l, then from (R2), (R3) we have
Thus (I1), (I2) hold. This completes the proof. □
Let \(\mu (t)=\frac{1}{\varGamma (\beta )}\log t(1-\log t)^{\beta -1}\) for \(t\in [1,e]\).
Lemma 2.5
Let \(\kappa _{1}=\frac{\beta ^{2}\varGamma (\beta )}{ \varGamma (2\beta +2)}\), \(\kappa _{2}=\frac{\beta -1}{\varGamma (\beta +2)}\). Then, for any \(s\in [1,e]\), the following inequalities hold:
This is a direct result from Lemma 2.4(I1), so we omit its proof.
Let \(E:=C[1,e]\), \(\|u\|:=\max_{t\in [1,e]}|u(t)|\), \(P:=\{u\in E:u(t) \geq 0, \forall t\in [1,e]\}\). Then \((E,\|\cdot \|)\) is a real Banach space and P is a cone on E. From Lemma 2.3 and (2.4), we define operators \(A_{i}:P\times P \to P\) as follows:
and
Note \(A_{i}:P\times P\to P\), \(A:P\times P\to P\times P\) are completely continuous operators and \((u,v)\) solves (1.1) if and only if \((u,v)\) is a fixed point of the operator A.
Lemma 2.6
Let \(P_{0}=\{z\in P: z(t)\ge \frac{(\log t)^{ \beta -1}(1-\log t)}{\beta -1}\|z\|, \forall t\in [1,e] \}\). Then \(P_{0}\) is also a cone on E, and \(A_{i}(P\times P)\subset P_{0}\), \(i=1,2\).
Proof
We only prove \(A_{1}(P\times P)\subset P_{0}\). From Lemma 2.4(I1), for \(t\in [1,e]\), we have
and
Note that \(\beta -1>1\), so we have
This completes the proof. □
Lemma 2.7
(see [50])
Let E be a real Banach space and P be a cone on E. Suppose that \(\varOmega \subset E\) is a bounded open set and that \(A:\overline{\varOmega }\cap P\to P\) is a continuous compact operator. If there exists \(\omega _{0}\in P\backslash \{0\}\) such that
then \(i(A,\varOmega \cap P,P)=0\), where i denotes the fixed point index on P.
Lemma 2.8
(see [50])
Let E be a real Banach space and P be a cone on E. Suppose that \(\varOmega \subset E\) is a bounded open set with \(0\in \varOmega \) and that \(A:\overline{\varOmega }\cap P \to P\) is a continuous compact operator. If
then \(i(A,\varOmega \cap P,P)=1\).
3 Main results
Let
Now we list our assumptions for the nonlinearities \(f_{i}\) (\(i=1,2\)).
-
(H3)
There are \(a_{1i}, b_{1i}\ge 0\) (\(i=1,2\)) and \(l_{1},l_{2}>0\) such that
$$ \begin{aligned}[b] & a_{11}(\kappa _{1}+\kappa _{3}d_{h})+a_{12}\kappa _{4}< 1,\qquad b_{12}(\kappa _{1}+d_{g} \kappa _{4})+b_{11}\kappa _{3}< 1, \\ &\det \begin{pmatrix} b_{11}(\kappa _{1}+\kappa _{3}d_{h})+b_{12}\kappa _{4} & a_{11}(\kappa _{1}+\kappa _{3}d_{h})+a_{12}\kappa _{4}-1 \\ b_{12}(\kappa _{1}+d_{g} \kappa _{4})+b_{11}\kappa _{3}-1 & a_{12}(\kappa _{1}+d_{g}\kappa _{4})+a _{11}\kappa _{3} \end{pmatrix}>0, \\ & \begin{pmatrix} f_{1}(t,x,y) \\ f_{2}(t,x,y) \end{pmatrix}\ge \begin{pmatrix} a_{11}x+b_{11}y-l_{1} \\ a_{12}x+b_{12}y-l_{2} \end{pmatrix}, \quad \forall (t,x,y)\in [1,e]\times \mathbb{R}^{+} \times \mathbb{R}^{+}. \end{aligned} $$ -
(H4)
There are \(a_{2i}, b_{2i}\ge 0\) (\(i=1,2\)) and \(r_{1}>0\) such that
$$ \begin{aligned}[b] & (\kappa _{2}+\kappa _{5}d_{h})a_{21}+\kappa _{6}a_{22}< 1,\qquad (\kappa _{2}+d _{g}\kappa _{6})b_{22}+\kappa _{5}b_{21}< 1, \\ & \det \begin{pmatrix} 1-(\kappa _{2}+\kappa _{5}d_{h})a_{21}-\kappa _{6}a_{22} & -(\kappa _{2}+ \kappa _{5}d_{h})b_{21}-\kappa _{6}b_{22} \\ -(\kappa _{2}+d_{g}\kappa _{6})a_{22}-\kappa _{5}a_{21} & 1-(\kappa _{2}+d_{g}\kappa _{6})b_{22}- \kappa _{5}b_{21} \end{pmatrix}>0, \\ & \begin{pmatrix} f_{1}(t,x,y) \\ f_{2}(t,x,y) \end{pmatrix}\le \begin{pmatrix} a_{21}x+b_{21}y \\ a_{22}x+b_{22}y \end{pmatrix},\quad \forall (t,x,y)\in [1,e]\times [0,r_{1}] \times [0,r_{1}]. \end{aligned} $$ -
(H5)
There are \(a_{3i}, b_{3i}\ge 0\) (\(i=1,2\)) and \(r_{2}>0\) such that
$$ \begin{aligned}[b] & a_{31}(\kappa _{1}+\kappa _{3}d_{h})+a_{32}\kappa _{4}< 1,\qquad b_{32}(\kappa _{1}+d_{g} \kappa _{4})+b_{31}\kappa _{3}< 1, \\ & \det \begin{pmatrix} b_{31}(\kappa _{1}+\kappa _{3}d_{h})+b_{32}\kappa _{4} & a_{31}(\kappa _{1}+\kappa _{3}d_{h})+a_{32}\kappa _{4}-1 \\ b_{32}(\kappa _{1}+d_{g} \kappa _{4})+b_{31}\kappa _{3}-1 & a_{32}(\kappa _{1}+d_{g}\kappa _{4})+a _{31}\kappa _{3} \end{pmatrix}>0, \\ & \begin{pmatrix} f_{1}(t,x,y) \\ f_{2}(t,x,y) \end{pmatrix}\ge \begin{pmatrix} a_{31}x+b_{31}y \\ a_{32}x+b_{32}y \end{pmatrix},\quad \forall (t,x,y)\in [1,e]\times [0,r_{2}] \times [0,r_{2}]. \end{aligned} $$ -
(H6)
There are \(a_{4i}, b_{4i}\ge 0\) (\(i=1,2\)) and \(l_{3},l_{4}>0\) such that
$$ \begin{aligned}[b] & (\kappa _{2}+\kappa _{5}d_{h})a_{41}+\kappa _{6} a_{42}< 1,\qquad (\kappa _{2}+d _{g}\kappa _{6})b_{42}+\kappa _{5}b_{41}< 1, \\ & \det \begin{pmatrix} 1-(\kappa _{2}+\kappa _{5}d_{h})a_{41}-\kappa _{6} a_{42} & -(\kappa _{2}+ \kappa _{5}d_{h})b_{41}-\kappa _{6}b_{42} \\ -(\kappa _{2}+d_{g}\kappa _{6})a_{42}-\kappa _{5}a_{41} & 1-(\kappa _{2}+d_{g}\kappa _{6})b_{42}- \kappa _{5}b_{41} \end{pmatrix}>0, \\ & \begin{pmatrix} f_{1}(t,x,y) \\ f_{2}(t,x,y) \end{pmatrix}\le \begin{pmatrix} a_{41}x+b_{41}y+l_{3} \\ a_{42}x+b_{42}y+l_{4} \end{pmatrix}, \quad \forall (t,x,y)\in [1,e]\times \mathbb{R}^{+}\times \mathbb{R}^{+}. \end{aligned} $$
Let \(B_{\rho }:=\{u\in E:\|u\|<\rho \}\) for \(\rho >0\) in the sequel.
Theorem 3.1
Suppose that (H1)–(H4) hold. Then (1.1) has a positive solution.
Proof
Let \(S_{1}=\{(u,v)\in P\times P: (u,v)=A(u,v)+\lambda (\varphi _{1},\varphi _{1}), \forall \lambda \ge 0\}\), where \(\varphi _{1}\) is a fixed element in \(P_{0}\). We claim that \(S_{1}\) is a bounded set in \(P\times P\). Note if there exists \((u,v)\in S_{1}\) such that
then this, together with Lemma 2.6, implies that
From (3.1) we have
From the definitions of \(A_{i}\) (\(i=1,2\)), multiplying by \(\mu (t)\) and integrating from 1 to e, Lemmas 2.4 and 2.5 enable us to obtain
Combining this with (H3), we have
and
Solving this matrix inequality, we have
Hence, there exist \(M_{1}>0\), \(M_{2}>0\) such that
Note (3.2), and we find
This proves that \(S_{1}\) is bounded in \(P\times P\). As a result, if we choose \(R_{1}> \{r_{1},\frac{M_{1}(\beta -1)\varGamma (2\beta +2)}{ \beta ^{2}\varGamma (\beta )} , \frac{M_{2}(\beta -1)\varGamma (2\beta +2)}{ \beta ^{2}\varGamma (\beta )} \}\) (\(r_{1}\) is defined by (H4)), then we have
From Lemma 2.7 we have
Next we claim that
where \(r_{1}\) is defined by (H4). Suppose (3.7) is not true. Then there exist \((u,v)\in \partial B_{r_{1}}\cap (P\times P)\) and \(\lambda \in [0,1]\) such that \((u,v) = \lambda A(u,v)\), which implies that
Multiplying by \(\mu (t)\) and integrating from 1 to e, Lemmas 2.4 and 2.5 enable us to obtain
Substituting (H4) into this matrix inequality, we obtain
Consequently, we get
Therefore, (H4) implies that
Hence,
Note that \(\mu (t)\not \equiv 0\) for \(t\in [1,e]\), so \(u(t)=v(t) \equiv 0\), \(t\in [1,e]\), which implies that \(\|u\|=\|v\|=0\), contradicting \((u,v)\in \partial B_{r_{1}}\cap (P\times P)\). As a result, (3.7) holds. From Lemma 2.8 we have
Therefore the operator A has at least one fixed point on \((B_{R_{1}} \backslash \overline{B}_{r_{1}})\cap (P\times P)\). Equivalently, (1.1) has at least one positive solution. This completes the proof. □
Theorem 3.2
Suppose that (H1)–(H2), (H5)–(H6) hold. Then (1.1) has a positive solution.
Proof
We use similar methods as in Theorem 3.1 to prove this theorem. We first claim that
where \(\varphi _{2}\in P\) is a given element. Suppose the claim is not true. Then there exist \((u,v)\in \partial B_{r_{2}}\cap (P\times P)\) and \(\lambda \ge 0\) such that \((u,v) =A(u,v)+\lambda (\varphi _{2},\varphi _{2})\), which implies that
Similar to (3.4), (3.5), from (H5) we obtain
and
Thus \(u(t)=v(t)\equiv 0\) for \(t\in [1,e]\), and \(\|u\|=\|v\|=0\), which contradicts \((u,v)\in \partial B_{r_{2}}\cap {(P\times P)}\). Consequently, (3.12) holds, and from Lemma 2.7 we have
Let \(S_{2}=\{(u,v)\in P\times P: (u,v)=\lambda A(u,v), \forall \lambda \in [0,1] \}\). Now we prove that \(S_{2}\) is bounded in \(P\times P\). Note if there exists \((u,v)\in S_{2}\), then
and similar to (3.9), (3.10), and by (H6) we have
Thus
Solving this matrix inequality, we have
Hence, there exist \(M_{3}>0\), \(M_{4}>0\) such that
Note that \((u,v)\in S_{2}\), and from Lemma 2.6, we find \(u,v\in P_{0}\). Thus, we obtain
This proves that \(S_{2}\) is bounded in \(P\times P\). As a result, if we take \(R_{2}> \{r_{2},\frac{M_{3}(\beta -1)\varGamma (2\beta +2)}{ \beta ^{2}\varGamma (\beta )}, \frac{M_{4}(\beta -1)\varGamma (2\beta +2)}{ \beta ^{2}\varGamma (\beta )} \}\) (\(r_{2}\) is defined by (H5)), we conclude that
From Lemma 2.8 we have
From (3.13) and (3.15) we have
Therefore the operator A has at least one fixed point on \((B_{R_{2}} \backslash \overline{B}_{r_{2}})\cap (P\times P)\). Equivalently, (1.1) has at least one positive solution. This completes the proof. □
Example 3.3
Let \(\beta =2.5\), \(h(t)=g(t)=\log t\) for \(t\in [1,e]\). Then \(d_{h}=d_{g}=\int _{1}^{e} (\log t)^{\beta } \frac{dt}{t}=\frac{2}{7}\), \(d_{g,h}=1-\int _{1}^{e} h(t) (\log t)^{ \beta -1} \frac{dt}{t}\cdot \int _{1}^{e} g(t) (\log t)^{\beta -1} \frac{dt}{t}=1-\frac{4}{49}=\frac{45}{49}\). This implies that (H2) holds. Next, we calculate \(\kappa _{i}\) (\(i=1,2,3,4,5,6\)) as follows:
Case 1. Let \(a_{11}=10\), \(a_{12}=600\), \(b_{11}=630\), \(b_{12}=7\), \(a_{21}=3\), \(a_{22}=4\), \(b_{21}=3\), \(b_{22}=2\). Then we have
and
Let \(f_{1}(t,x,y)= (10x+630 y)^{\gamma _{1}}\), \(f_{2}(t,x,y)=(600x+7 y)^{ \gamma _{2}} \) for \(t\in [1,e]\), \(x,y\in \mathbb{R}^{+}\), \(\gamma _{1}, \gamma _{2}>1\). Then we have
and
As a result, (H3)–(H4) hold.
Case 2. Let \(a_{31}=8\), \(a_{32}=620\), \(b_{31}=630\), \(b_{32}=7\), \(a_{41}=3\), \(a_{42}=4\), \(b_{41}=3\), \(b_{42}=2\). Then we have
and
Let \(f_{1}(t,x,y)= (8x+630 y)^{\gamma _{3}}\), \(f_{2}(t,x,y)=(620x+7 y)^{ \gamma _{4}} \) for \(t\in [1,e]\), \(x,y\in \mathbb{R}^{+}\), \(\gamma _{3}, \gamma _{4}\in (0,1)\). Then we have
and
As a result, (H5)–(H6) hold.
References
Zhang, X., Wu, J., Liu, L., Wu, Y., Cui, Y.: Convergence analysis of iterative scheme and error estimation of positive solution for a fractional differential equation. Math. Model. Anal. 23(4), 611–626 (2018)
Wu, J., Zhang, X., Liu, L., Wu, Y., Cui, Y.: The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity. Bound. Value Probl. 2018, Article ID 82 (2018)
He, J., Zhang, X., Liu, L., Wu, Y., Cui, Y.: Existence and asymptotic analysis of positive solutions for a singular fractional differential equation with nonlocal boundary conditions. Bound. Value Probl. 2018, Article ID 189 (2018)
Cui, Y.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)
Cui, Y., Ma, W., Sun, Q., Su, X.: New uniqueness results for boundary value problem of fractional differential equation. Nonlinear Anal., Model. Control 23(1), 31–39 (2018)
Zou, Y., He, G.: On the uniqueness of solutions for a class of fractional differential equations. Appl. Math. Lett. 74, 68–73 (2017)
Yue, Z., Zou, Y.: New uniqueness results for fractional differential equation with dependence on the first order derivative. Adv. Differ. Equ. 2019, Article ID 38 (2019)
Zhai, C., Li, P., Li, H.: Single upper-solution or lower-solution method for Langevin equations with two fractional orders. Adv. Differ. Equ. 2018, Article ID 360 (2018)
Ahmad, B., Alghanmi, M., Ntouyas, S.K., Alsaedi, A.: Fractional differential equations involving generalized derivative with Stieltjes and fractional integral boundary conditions. Appl. Math. Lett. 84, 111–117 (2018)
Sun, Q., Meng, S., Cui, Y.: Existence results for fractional order differential equation with nonlocal Erdélyi–Kober and generalized Riemann–Liouville type integral boundary conditions at resonance. Adv. Differ. Equ. 2018, Article ID 243 (2018)
Sheng, K., Zhang, W., Bai, Z.: Positive solutions to fractional boundary-value problems with p-Laplacian on time scales. Bound. Value Probl. 2018, Article ID 70 (2018)
Dong, X., Bai, Z., Zhang, S.: Positive solutions to boundary value problems of p-Laplacian with fractional derivative. Bound. Value Probl. 2017, Article ID 5 (2017)
Tian, Y., Sun, S., Bai, Z.: Positive solutions of fractional differential equations with p-Laplacian. J. Funct. Spaces 2017, Article ID 3187492 (2017)
Yuan, C.: Multiple positive solutions for \((n-1, 1)\)-type semipositone conjugate boundary value problems of nonlinear fractional differential equations. Electron. J. Qual. Theory Differ. Equ. 36, 1 (2010)
He, L., Dong, X., Bai, Z., Chen, B.: Solvability of some two-point fractional boundary value problems under barrier strip conditions. J. Funct. Spaces 2017, Article ID 1465623 (2017)
Zuo, M., Hao, X., Liu, L., Cui, Y.: Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions. Bound. Value Probl. 2017, Article ID 161 (2017)
Bai, Z., Dong, X., Yin, C.: Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions. Bound. Value Probl. 2016, Article ID 63 (2016)
Sun, Q., Ji, H., Cui, Y.: Positive solutions for boundary value problems of fractional differential equation with integral boundary conditions. J. Funct. Spaces 2018, Article ID 6461930 (2018)
Song, Q., Bai, Z.: Positive solutions of fractional differential equations involving the Riemann–Stieltjes integral boundary condition. Adv. Differ. Equ. 2018, Article ID 183 (2018)
Zou, Y., He, G.: The existence of solutions to integral boundary value problems of fractional differential equations at resonance. J. Funct. Spaces 2017, Article ID 2785937 (2017)
Ma, W., Meng, S., Cui, Y.: Resonant integral boundary value problems for Caputo fractional differential equations. Math. Probl. Eng. 2018, Article ID 5438592 (2018)
Ma, W., Cui, Y.: The eigenvalue problem for Caputo type fractional differential equation with Riemann–Stieltjes integral boundary conditions. J. Funct. Spaces 2018, Article ID 2176809 (2018)
Ahmad, B., Luca, R.: Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions. Chaos Solitons Fractals 104, 378–388 (2017)
Qi, T., Liu, Y., Zou, Y.: Existence result for a class of coupled fractional differential systems with integral boundary value conditions. J. Nonlinear Sci. Appl. 10, 4034–4045 (2017)
Qiu, X., Xu, J., O’Regan, D., Cui, Y.: Positive solutions for a system of nonlinear semipositone boundary value problems with Riemann–Liouville fractional derivatives. J. Funct. Spaces 2018, Article ID 7351653 (2018)
Hao, X., Wang, H., Liu, L., Cui, Y.: Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-Laplacian operator. Bound. Value Probl. 2017, Article ID 182 (2017)
Qi, T., Liu, Y., Cui, Y.: Existence of solutions for a class of coupled fractional differential systems with nonlocal boundary conditions. J. Funct. Spaces 2017, Article ID 6703860 (2017)
Zhang, Y.: Existence results for a coupled system of nonlinear fractional multi-point boundary value problems at resonance. J. Inequal. Appl. 2018, Article ID 198 (2018)
Zhang, X., Liu, L., Zou, Y.: Fixed-point theorems for systems of operator equations and their applications to the fractional differential equations. J. Funct. Spaces 2018, Article ID 7469868 (2018)
Zhang, X., Liu, L., Wu, Y., Zou, Y.: Existence and uniqueness of solutions for systems of fractional differential equations with Riemann–Stieltjes integral boundary condition. Adv. Differ. Equ. 2018, Article ID 204 (2018)
Li, H., Zhang, J.: Positive solutions for a system of fractional differential equations with two parameters. J. Funct. Spaces 2018, Article ID 1462505 (2018)
Zhao, Y., Hou, X., Sun, Y., Bai, Z.: Solvability for some class of multi-order nonlinear fractional systems. Adv. Differ. Equ. 2019, Article ID 23 (2019)
Asawasamrit, S., Ntouyas, S., Tariboon, J.: Coupled systems of sequential Caputo and Hadamard fractional differential equations with coupled separated boundary conditions. Symmetry 10(2), Article ID 701 (2018)
Yang, W.: Positive solutions for singular coupled integral boundary value problems of nonlinear Hadamard fractional differential equations. J. Nonlinear Sci. Appl. 8(2), 110–129 (2015)
Zhai, C., Wang, W., Li, H.: A uniqueness method to a new Hadamard fractional differential system with four-point boundary conditions. J. Inequal. Appl. 2018, Article ID 207 (2018)
Zhang, K., Fu, Z.: Solutions for a class of Hadamard fractional boundary value problems with sign-changing nonlinearity. J. Funct. Spaces 2019, Article ID 9046472 (2019)
Zhang, K., Wang, J., Ma, W.: Solutions for integral boundary value problems of nonlinear Hadamard fractional differential equations. J. Funct. Spaces 2018, Article ID 2193234 (2018)
Benhamida, W., Graef, J.R., Hamani, S.: Boundary value problems for Hadamard fractional differential equations with nonlocal multi-point boundary conditions. Fract. Differ. Calc. 8(1), 165–176 (2018)
Benchohra, M., Bouriah, S., Nieto, J.J.: Existence of periodic solutions for nonlinear implicit Hadamard’s fractional differential equations. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112(1), 25–35 (2018)
Wang, G., Pei, K., Agarwal, R.P., Zhang, L.: Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line. J. Comput. Appl. Math. 343, 230–239 (2018)
Tariboon, J., Cuntavepanit, A., Ntouyas, S.K., Nithiarayaphaks, W.: Separated boundary value problems of sequential Caputo and Hadamard fractional differential equations. J. Funct. Spaces 2018, Article ID 6974046 (2018)
Huang, H., Liu, W.: Positive solutions for a class of nonlinear Hadamard fractional differential equations with a parameter. Adv. Differ. Equ. 2018, Article ID 96 (2018)
Matar, M.M.: Solution of sequential Hadamard fractional differential equations by variation of parameter technique. Abstr. Appl. Anal. 2018, Article ID 9605353 (2018)
Yang, W.: Monotone iterative technique for a coupled system of nonlinear Hadamard fractional differential equations. J. Appl. Math. Comput. in press
Abbas, S., Benchohra, M., Hamidi, N., Henderson, J.: Caputo–Hadamard fractional differential equations in Banach spaces. Fract. Calc. Appl. Anal. 21(4), 1027–1045 (2018)
Vivek, D., Kanagarajan, K., Elsayed, E.M.: Nonlocal initial value problems for implicit differential equations with Hilfer–Hadamard fractional derivative. Nonlinear Anal., Model. Control 23(3), 341–360 (2018)
Ahmad, B., Ntouyas, S.K.: Nonlocal initial value problems for Hadamard-type fractional differential equations and inclusions. Rocky Mt. J. Math. 48(4), 1043–1068 (2018)
Belhannache, F., Hamani, S., Henderson, J.: Upper and lower solutions methods for impulsive Caputo–Hadamard fractional differential inclusions. Electron. J. Differ. Equ. 2019, 22, 1–13 (2019)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Boston (2006)
Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press, Orlando (1988)
Acknowledgements
Not applicable.
Availability of data and materials
Not applicable.
Funding
This work was supported financially by the National Natural Science Foundation of China (11871302, 11601048), Natural Science Foundation of Chongqing (cstc2016jcyjA0181), Doctoral Scientific Research Foundation of Qufu Normal University and Youth Foundation of Qufu Normal University (BSQD20130140), and Natural Science Foundation of Chongqing Normal University (16XYY24).
Author information
Authors and Affiliations
Contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Jiang, J., O’Regan, D., Xu, J. et al. Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions. J Inequal Appl 2019, 204 (2019). https://doi.org/10.1186/s13660-019-2156-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-019-2156-x
MSC
- 34B18
- 34B10
- 34B15
Keywords
- Hadamard fractional differential equations
- Integral boundary conditions
- Positive solutions
- Fixed point index