- Research
- Open Access
- Published:
Regularity of weak solutions to obstacle problems for nondiagonal quasilinear degenerate elliptic systems
Journal of Inequalities and Applications volume 2019, Article number: 184 (2019)
Abstract
Let \(X=\{X_{1} ,\ldots ,X_{m} \}\) be a system of smooth real vector fields satisfying Hörmander’s rank condition. We consider the interior regularity of weak solutions to an obstacle problem associated with the nonhomogeneous nondiagonal quasilinear degenerate elliptic system
After proving the higher integrability and a Campanato type estimate for the weak solutions to the obstacle problem for the homogeneous nondiagonal quasilinear degenerate elliptic system, the interior Morrey regularity and Hölder continuity of weak solutions to the obstacle problem for the nonhomogeneous system are obtained.
1 Introduction
Let \(\varOmega \subset \mathbb{R}^{n}\) be a bounded domain and \(\{X_{1} ,\ldots,X_{m}\}\) be a system of smooth real vector fields in \(\mathbb{R}^{n}(m\le n)\), satisfying Hörmander’s rank condition [1]:
The main purpose of this paper is to consider the obstacle problem for the nonhomogeneous nondiagonal quasilinear degenerate elliptic system
where \(i,j=1,2,\ldots ,N\); \(\alpha ,\beta =1,2,\ldots ,m\), \(X_{\alpha }^{\ast }\) is the formal adjoint of \(X_{\alpha }\), \(B_{i}\) and \(g_{i}^{\alpha }\) are both Carathéodory functions from \((x,u, \xi )\in \varOmega \times \mathbb{R}^{N}\times \mathbb{R}^{mN}\) into \(\mathbb{R}\), the coefficients \(A_{ij}^{\alpha \beta }(x,u)\) are bounded functions satisfying some assumptions that will be specified later.
Given an obstacle function \(\psi =(\psi ^{1},\ldots ,\psi ^{N})\) and a boundary value function \(\theta =(\theta ^{1},\ldots,\theta ^{N})\) with \(\theta (x)\geq \psi (x)\) a.e. in Ω, we define
Here we write \(\theta (x)\ge \psi (x)\) to mean \(\theta ^{i}(x)\ge \psi ^{i}(x)\) for \(i=1,\ldots,N\).
A function \(u\in \mathfrak{K}_{\psi }^{\theta }(\varOmega ,\mathbb{R} ^{N})\) is said to be a weak solution to the \(\mathfrak{K}_{\psi }^{ \theta }\)-obstacle problem for (1.1) if
for all \(\phi \in C_{0}^{\infty }(\varOmega ,\mathbb{R}^{N})\) with \(\phi (x) +u(x)\ge \psi (x)\) a.e. \(x\in \varOmega \).
In the classical Euclidean setting, the interior regularity for solutions of elliptic equations and systems has been extensively investigated. Campanato in [2] and [3] obtained gradient estimates for solutions to linear elliptic equations and systems in divergence form with continuous coefficients. Applying Campanato’s approach (see also [4] and [5]), Huang [6] proved the gradient estimates in the generalized Morrey spaces \(L_{\varphi }^{2,\lambda }\) of weak solutions to the linear elliptic systems
where the coefficients \(a_{ij}^{\alpha \beta }(x)\in L^{\infty } \cap {\mathrm{VMO}}\). Similar results for the nonlinear elliptic systems of the form (1.1) with X replaced by the usual gradient \(D=(D_{1},\ldots ,D_{n})\) were given by Daněček and Viszus in [7, 8], and [9]. For more related papers, we refer readers to [10,11,12]. Using the techniques that appeared in these papers, the local Morrey regularity and Hölder continuity of weak solutions to the obstacle problems associated with elliptic equations with constant coefficients or continuous coefficients have been obtained in [4, 13, 14], and [15].
The study of interior regularity for degenerate elliptic equations and systems has attracted much attention (see, e.g., [16,17,18,19], etc.). Di Fazio and Fanciullo in [16] pointed out that the local gradient estimates in [6] still hold true for the diagonal degenerate elliptic systems. The Morrey and Campanato regularities for weak solutions to the nondiagonal degenerate elliptic systems were established by Dong and Niu [19]. Another method of the so-called A-harmonic approximation for proving partial optimal Hölder regularity for weak solutions to nonlinear elliptic or subelliptic systems can be found in [20,21,22,23] and the references therein.
Since the degenerate obstacle problem is an important topic in various branches of the applied sciences, such as mechanical engineering and robotics, mathematical finance, image reconstruction and neurophysiology, a large amount of work has been devoted to the study of regularity for solutions to the relevant problems (see, for example, [24,25,26,27,28,29]). Gianazza and Marchi in [28] proved a Wiener criterion and an estimate on the modulus of continuity for weak solutions to the obstacle problem for a quasilinear degenerate elliptic equation constructed by Hörmander vector fields. Marchi in [29] derived the Hölder continuity of the horizontal gradient of weak solutions to the double obstacle problem for subelliptic equations in the Heisenberg group. Du and Li in [25, 26] proved the global higher integrability and interior regularity for subelliptic obstacle problems.
However, as far as we know, there is no result concerning the problem of regularity for solutions to the obstacle problem related to the nondiagonal degenerate elliptic systems. In this paper, we try to fill this gap. The aim of this paper is to establish the Hölder regularity results for weak solutions to the \(\mathfrak{K}_{\psi } ^{\theta }\)-obstacle problem for (1.1). In order to state our results, we make the following hypotheses:
- (H1):
-
The coefficients \(A_{ij}^{\alpha \beta } (x,u)=a^{\alpha \beta }(x) \delta _{ij}+B_{ij}^{\alpha \beta }(x,u)\), where \(a^{\alpha \beta }(x) \in L^{\infty }(\varOmega )\cap \text{VMO}(\varOmega )\) satisfying the strong ellipticity condition
$$ a^{\alpha \beta }(x)\xi _{\alpha }\xi _{\beta }\ge \nu \vert \xi \vert ^{2},\quad \mbox{a.e. } x\in \varOmega ,\forall \xi \in \mathbb{R}^{m} $$(1.2)for some \(\nu >0\), and \(B_{ij}^{\alpha \beta } \) are measurable and there exists a constant \(0<\delta <\frac{1}{2}\) small enough such that, for any \((x,u)\in \varOmega \times \mathbb{R}^{N}\),
$$ \bigl\vert B_{ij}^{\alpha \beta }(x,u) \bigr\vert \leq \delta \nu ; $$ - (H2):
-
For any \((x,u,\xi )\in \varOmega \times \mathbb{R}^{N}\times \mathbb{R}^{mN}\),
$$\begin{aligned}& \bigl\vert B_{i} (x,u,\xi ) \bigr\vert \leq f_{i} (x)+L \vert \xi \vert ^{\gamma _{0}}, \\& \bigl\vert g_{i}^{\alpha }(x,u,\xi ) \bigr\vert \leq f_{i}^{\alpha }(x)+L \vert \xi \vert ^{\gamma }, \end{aligned}$$where \(1\leq \gamma _{0}<1/q_{0}\), \(q_{0}=Q/(Q+2)\), \(0\leq \gamma <1\), \(L>0\) is a constant, and
$$f_{i} \in L_{X}^{2q_{0},\lambda q_{0}} (\varOmega ),\qquad f_{i}^{\alpha } \in L_{X}^{2,\lambda }(\varOmega ),\quad 0< \lambda < Q. $$Here Q is the homogeneous dimension relative to Ω and in the sequel we set \(f=(f_{i} )\), \(\tilde{f}=(f_{i}^{\alpha })\).
Now we state our main results.
Theorem 1.1
Suppose that (H1) and (H2) hold and \(X\psi \in L_{X}^{\sigma ,\lambda }(\varOmega ,\mathbb{R}^{mN})\), \(\sigma >2\). Let \(u\in S_{X,\mathrm{loc}} ^{1}(\varOmega ,\mathbb{R}^{N})\) be a weak solution to the \(\mathfrak{K} _{\psi }^{\theta }\)-obstacle problem for system (1.1), then \(Xu\in L_{X,\mathrm{loc}}^{2,\lambda } (\varOmega ,\mathbb{R}^{mN})\).
Theorem 1.2
Suppose that (H1) and (H2) hold and \(X\psi \in L_{X}^{\sigma ,\lambda }(\varOmega ,\mathbb{R}^{mN})\), \(\sigma >2\). If \(u\in S_{X,\mathrm{loc}} ^{1}(\varOmega ,\mathbb{R}^{N})\) is a weak solution to the \(\mathfrak{K} _{\psi }^{\theta }\)-obstacle problem for (1.1) and \(0<\lambda <2\), then \(u\in C_{X}^{0,\alpha } (\varOmega ,\mathbb{R}^{N})\) with \(\alpha =1-\frac{\lambda }{2}\).
We apply the idea in [13] for proving the Hölder continuity of weak solutions to the obstacle problem for elliptic equation with continuous coefficients to the obstacle problem associated with a nondiagonal degenerate elliptic system with VMO coefficients. Inspired by the way in [16] and [19], we divide (1.1) into a nondiagonal homogeneous system and a nondiagonal nonhomogeneous system and then consider respectively the corresponding obstacle problem to prove our main results.
The paper is organized as follows. In Sect. 2, we present some concepts and results related to Carnot–Carathéodory spaces that will be used in our proof. In Sect. 3, we first prove the higher integrability for gradients of weak solutions to the \(\mathfrak{K} _{\psi }^{\theta }\)-obstacle problem for the homogeneous system (see (3.1) below) by constructing suitable test functions and using the Gehring lemma on the metric measure space. Based on this result, a Campanato type estimate for gradients of weak solutions to the \(\mathfrak{K}_{\psi }^{\theta }\)-obstacle problem for (3.1) is obtained. Section 4 is devoted to the proofs of our main results. We prove Theorem 1.1 by applying the Campanato type estimate established in Sect. 3 and an iteration lemma (Lemma 2.7 below). Theorem 1.2 is a direct consequence of Theorem 1.1 and the integral characterization of Hölder continuous functions.
2 Preliminaries
Let
be a family of vector fields in \(\mathbb{R}^{n}\) satisfying the Hörmander’s condition. We consider \(X_{\alpha }\) as a first order differential operator acting on \(u\in \operatorname{Lip}(\mathbb{R}^{n})\) defined by
We denote by \(Xu=(X_{1} u,\ldots,X_{m}u)\) the gradient of u with respect to the system \(X=\{X_{1} ,\ldots ,X_{m}\}\), and hence
An absolutely continuous curve \(\gamma :[a,b]\to \mathbb{R}^{n}\) is said to be admissible for the family X if there exist functions \(c_{\alpha }(t)\), \(a\leq t\leq b\), satisfying
The Carnot–Carathéodory distance \(d(x,y)\) generated by X is defined by
Following the accessibility theorem of Chow [30], the distance d is a metric and therefore \((\mathbb{R}^{n},d)\) is a metric space which is called Carnot–Carathéodory space associated with the system X. The metric ball is denoted by
If \(\sigma >0\) and \(B=B(x_{0},R)\), we will write σB to indicate \(B(x_{0},\sigma R)\).
Theorem 2.1
For every compact set \(K\subset \varOmega \), there exist constants \(C_{1} ,C_{2} >0\) and \(0<\lambda <1\) such that
for every \(x,y\in K\). Moreover, there are \(R_{d}>0\) and \(C_{d}\geq 1\) such that
whenever \(x\in K\) and \(R\le R_{d} \).
Here, \(|B(x,R)|\) denotes the Lebesgue measure of \(B(x,R)\). The best constant \(C_{d}\) in (2.1) is called the doubling constant. We say that \(Q=\log _{2} C_{d} \) is the homogeneous dimension relative to Ω. As a consequence of doubling condition (2.1), we have
where \(C=C_{d}^{-2}\).
Now we introduce the Sobolev spaces associated with \(X=\{X_{1} ,\ldots,X _{m}\}\). Given \(1\leq p<\infty \), we define the Sobolev space by
with the norm
Here, \(X_{\alpha }u\) is the distributional derivative of \(u\in L_{ \mathrm{loc}}^{1} (\varOmega ,\mathbb{R}^{N})\) defined by the identity
where \(X_{\alpha }^{\ast }=-\sum_{k=1}^{n}\frac{\partial }{ \partial x_{k}}(b_{\alpha k}\cdot )\) is the formal adjoint of \(X_{\alpha }\), not necessarily a vector field in general. The space \(S_{X,0}^{1,p} (\varOmega ,\mathbb{R}^{N})\) is defined as the completion of \(C_{0}^{\infty }(\varOmega ,\mathbb{R}^{N})\) under the norm \(\|\cdot \|_{S_{X}^{1,p}(\varOmega ,\mathbb{R}^{N})}\). In particular, we denote \(S_{X}^{1,2}(\varOmega ,\mathbb{R}^{N})\) and \(S_{X,0}^{1,2}( \varOmega ,\mathbb{R}^{N})\) by \(S_{X}^{1}(\varOmega ,\mathbb{R}^{N})\) and \(S_{X,0}^{1}(\varOmega ,\mathbb{R}^{N})\), respectively.
The following Sobolev inequalities for vector fields can be found in [33] and [32].
Theorem 2.2
For every compact set \(K\subset \varOmega \), there exist constants \(C>0\) and \(\bar{R}>0\) such that, for any metric ball \(B=B(x_{0},R)\) with \(x_{0}\in K\) and \(0< R\leq \bar{R}\), it holds that, for any \(f\in S _{X}^{1,p}(B_{R})\),
where \(f_{R} =\fint _{B_{R}}f\,dx\) is the integral average of f on \(B_{R}\), and \(1\leq \kappa \leq Q/(Q-p)\), if \(1\leq p< Q\); \(1\leq \kappa <\infty \), if \(p\geq Q\). Moreover,
whenever \(f \in S_{X,0}^{1,p}(B_{R})\).
Now we define the Morrey spaces, the Campanato spaces, VMO, and the Hölder spaces with respect to the Carnot–Caratheodory metric [16, 34]. To simplify our description, we introduce the following notations:
and
Definition 2.3
For \(1< p<\infty \) and \(\lambda \leq Q\), we say that \(f\in L_{ \mathrm{loc}}^{p} (\varOmega ,\mathbb{R}^{N})\) belongs to the Morrey space \(L_{X}^{p,\lambda } (\varOmega ,\mathbb{R}^{N})\) if
\(f\in L_{\mathrm{loc}}^{p}(\varOmega ,\mathbb{R}^{N})\) belongs to the Campanato space \(\mathcal{L}_{X}^{p,\lambda }(\varOmega ,\mathbb{R}^{N})\) if
Definition 2.4
For \(\alpha \in (0,1)\), the Hölder space \(C_{X}^{0,\alpha }(\bar{ \varOmega },\mathbb{R}^{N})\) is the collection of functions \(f:\bar{ \varOmega }\to \mathbb{R}^{N}\) satisfying
We say that \(f\in C_{X}^{0,\alpha } (\varOmega ,\mathbb{R}^{N})\) if \(f\in C_{X}^{0,\alpha } (K,\mathbb{R}^{N})\) for every compact set \(K\subset \varOmega \).
Definition 2.5
We say that \(f\in L_{\mathrm{loc}}^{1} (\varOmega ,\mathbb{R}^{N})\) belongs to \(\mathrm{BMO}(\varOmega ,\mathbb{R}^{N})\) if
f belongs to \(\mathrm{VMO}(\varOmega ,\mathbb{R}^{N})\) if \(f\in {\mathrm{BMO}} (\varOmega ,\mathbb{R}^{N})\) and
The integral characterization for a Hölder continuous function was shown in [34] and [35].
Lemma 2.6
If \(-p<\lambda <0\), then \(\mathcal{L}_{X}^{p,\lambda }(\varOmega ,\mathbb{R}^{N})\simeq C_{X}^{0, \alpha } (\varOmega ,\mathbb{R}^{N})\), \(\alpha =-\frac{\lambda }{p}\).
We end this section with a generalized iteration lemma, see [6, Proposition 2.1].
Lemma 2.7
Let H be a nonnegative almost increasing function on the interval \([0,T]\) and F be a positive function on \((0,T]\). Suppose that
(1) for any \(0<\rho \le R\le T\), there exist A, B, ε and \(a>0\) such that
(2) there exists \(\tau \in (0,a)\) such that \(\frac{\rho ^{\tau }}{F(\rho )}\) is almost increasing in \((0,T]\). Then there exist positive constants \(\varepsilon _{0} \) and C such that, for any \(0\leq \varepsilon \leq \varepsilon _{0}\),
where \(\varepsilon _{0}\) depends only on A, a and τ.
3 Obstacle problem for homogeneous systems
In this section, we deal with the \(\mathfrak{K}_{\psi }^{\theta }\)-obstacle problem related to the homogeneous nondiagonal quasilinear degenerate elliptic system
where \(i,j=1,2,\ldots ,N\), \(\alpha ,\beta =1,2,\ldots ,m\), coefficients \(A_{ij}^{\alpha \beta } (x,u)\) satisfy (H1). The main results are the higher integrability and a Campanato type estimate for the gradients of weak solutions. Let us recall that a function \(u\in S_{X,\mathrm{loc}} ^{1}(\varOmega ,\mathbb{R}^{N})\) is called a weak solution to (3.1) if
for all \(\phi \in C_{0}^{\infty }(\varOmega ,\mathbb{R}^{N})\); a function \(u\in \mathfrak{K}_{\psi }^{\theta } ( {\varOmega ,\mathbb{R}^{N}} )\) is called a weak solution to the \(\mathfrak{K}_{\psi }^{\theta }\)-obstacle problem for (3.1) if
for all \(\phi \in C_{0}^{\infty }(\varOmega ,\mathbb{R}^{N})\) with \(\phi +u\geq \psi \) a.e. Ω.
For the diagonal homogeneous linear degenerate elliptic system with constant coefficients, we have the following estimates (see [35, Theorem 3.2]).
Lemma 3.1
Let \(u\in S_{X,\mathrm{loc}}^{1}(\varOmega ,\mathbb{R}^{N})\) be a weak solution to the linear system
with constant coefficients \(a^{\alpha \beta }\in \mathbb{R}\) for which (1.2) holds. Then, for any \(x_{0}\in \varOmega \), there exist \(c>0\) and \(0< R_{0}<\min \{d_{0},\operatorname{dist}(x_{0},\partial \varOmega ) \}/2\) such that, for any ρ, R with \(0<\rho \leq R\leq R_{0}\), it follows
In order to prove the higher integrability for gradients of weak solutions to the \(\mathfrak{K}_{\psi }^{\theta }\)-obstacle problem for (3.1), we need the Gehring lemma on the metric measure space \((Y,d,\mu )\), where d is a metric and μ is a doubling measure (see [36]).
Lemma 3.2
Let \(q\in [\bar{q},2Q]\), where \(\bar{q}>1\) is fixed. Assume that functions F, G are nonnegative and \(G\in L_{\mathrm{loc}}^{q} (Y, \mu )\), \(F\in L_{\mathrm{loc}}^{r_{0}}(Y,\mu )\) for some \(r_{0}>q\). If there exists a constant \(b>1\) such that, for every ball \(B\subset \sigma B\subset Y\), the following inequality holds:
then there exists a nonnegative constant \(\varepsilon _{0} =\varepsilon _{0}(b,\bar{q},Q,C_{d},\sigma )\) such that \(G\in L_{\mathrm{loc}}^{p} (Y,\mu )\) for \(p\in [q,q+\varepsilon _{0})\). Moreover,
for some positive constant \(C=C(b,\bar{q},Q,C_{d},\sigma )\).
Theorem 3.3
(Higher integrability)
Let \(u\in S_{X,\mathrm{loc}}^{1}(\varOmega ,\mathbb{R}^{N})\) be a weak solution to the \(\mathfrak{K}_{\psi }^{\theta }\)-obstacle problem for (3.1) and \(X\psi \in L_{X}^{\sigma }(\varOmega , \mathbb{R}^{mN})(\sigma >2)\). Then there exists \(p>2\) such that \(u\in S_{X,\mathrm{loc}}^{1,p}(\varOmega ,\mathbb{R}^{N})\). Furthermore, for any \(B_{R}\subset \subset \varOmega \), we have
where the constant \(c>0\) does not depend on R.
Proof
For the weak solution \(u\in S_{X,\mathrm{loc}}^{1}(\varOmega ,\mathbb{R} ^{N})\) and \(B_{R}\subset \subset \varOmega \), consider the function
where η is a cutoff function on \(B_{R}\), i.e., \(\eta \in C_{0} ^{\infty }(B_{R})\) such that \(0\leq \eta \leq 1\), \(\eta =1\) in \(B_{R/2} \), and \(|X\eta |\leq c/R\). Since \(u_{R} \geq \psi _{R}\), we have
a.e. in Ω and it is an admissible function for (3.2). Taking \(\phi =-\eta ^{2}(u-\psi -(u- \psi )_{R})\) in (3.2), we immediately get
By means of assumption (H1), Young and Sobolev inequalities, we see that
Choosing \(\varepsilon =\nu /3\) and noting \(\eta =1\) on \(B_{R/2}\), it follows
Dividing by \(|B_{R/2}|\) on both sides, we get
Now in Lemma 3.2 we set \(G=|Xu|^{2q_{0}}\), \(F=|X\psi |^{2q _{0}}\) and \(q=1/{q_{0}}\). Then
and
If we set \(p=2q_{0} r\), then \(p\in [2,2+2q_{0}\varepsilon _{0})\), and
where c does not depend on R. The proof is complete. □
By virtue of the above result, we can establish a Campanato type estimate for the gradients of weak solutions to the \(\mathfrak{K}_{ \psi }^{\theta }\)-obstacle problem for (3.1).
Theorem 3.4
Let \(u\in S_{X,\mathrm{{loc}}}^{1}(\varOmega ,\mathbb{R}^{N})\) be a weak solution to the \(\mathfrak{K}_{\psi }^{\theta }\)-obstacle problem for (3.1) and \(X\psi \in L_{X}^{\sigma ,\lambda } ( \varOmega ,\mathbb{R}^{mN})\), \(\sigma >2\). Then, for any \(x_{0}\in \varOmega \), there exist \(c>0\) and \(0< R_{0}<\min \{d_{0},\operatorname{dist}(x _{0},\partial \varOmega )\}/2\) such that, for any ρ, R with \(0<\rho \leq R\leq R_{0}\), it follows
where \(2< p<\sigma \).
Proof
Let \(B_{R} =B(x_{0},R)\subset \subset \varOmega \). In \(B_{R/2} \) we split u as \(u=U+w\), where \(U\in S_{X}^{1}(B_{R/2},\mathbb{R}^{N})\) is the weak solution to the following boundary value problem for homogeneous system with constant coefficients:
Denote \((a^{\alpha \beta })_{R/2}:=(a^{\alpha \beta }(x))_{R/2}\). Therefore, by Lemma 3.1, there exist \(c>0\) and \(0< R_{0}< \min \{d_{0},\operatorname{dist}(x_{0},\partial \varOmega )\}/2\) such that, for all \(0<\rho <R/2\),
Using (3.6), we know from (3.2) that, for all \(\phi \in S_{X,0}^{1}(B_{R/2},\mathbb{R}^{N})\) with \(\phi +u \geq \psi \) a.e. \(B_{R/2}\),
Since \(U-u\in S_{X,0}^{1}(B_{R/2},\mathbb{R}^{N})\), we can choose \(\phi =U\vee \psi -u\in S_{X,0}^{1} (B_{R/2},\mathbb{R}^{N})\) as a test function in (3.8), where \(U\vee \psi \) is a vector-valued function with components \(U^{i}\vee \psi ^{i}=\max \{U^{i},\psi ^{i}\}\). Then
Noting \((u-U\vee \psi )^{i}=w^{i}+(U-U\vee \psi )^{i}\), it follows by using the Hölder inequality that
Recalling (1.2) and taking \(\varepsilon =\frac{\nu }{3}\), we have
Since \(a^{\alpha \beta }(x)\in L^{\infty }\cap \text{VMO}\) and invoking (3.4) in Theorem 3.3, we conclude that there exists \(p>2\) such that
On the other hand, \(U-U\vee \psi \in S_{X,0}^{1}(B_{R/2},\mathbb{R} ^{N})\) satisfies
for all \(\varphi \in S_{X,0}^{1}(B_{R/2},\mathbb{R}^{N})\). Thus choosing \(\varphi =U-U\vee \psi \) in (3.13) and noting \((U\vee \psi )^{i}= \psi ^{i}\) for \(x\in {\mathrm{supp}}(U-U\vee \psi )^{i}\), we obtain from (1.2) that
Letting \(\varepsilon =\frac{\nu }{2}\), we get
Inserting (3.12) and (3.14) into (3.11), we have
Then it follows by using (3.7) and (3.15) that, for any \(0<\rho <R/2\),
It is obvious that the above inequality is valid for \(R/2\leq \rho \leq R\). Thus, for all \(0<\rho \leq R\), we have
□
4 Proofs of the main results
In this section, we prove Theorem 1.1 and Theorem 1.2.
Proof of Theorem 1.1
For fixed \(x_{0} \in \varOmega \), let \(B_{R}=B(x_{0},R)\subset \subset \varOmega \). Assume that the function u is a weak solution to the \(\mathfrak{K}_{\psi }^{\theta }\)-obstacle problem for (1.1), i.e., for any \(\phi \in C_{0}^{\infty }( \varOmega ,\mathbb{R}^{N})\) with \(\phi +u\geq \psi \) a.e. Ω,
Let \(U_{0}\in \mathfrak{K}_{\psi }^{u}(B_{R},\mathbb{R}^{N})\) be a weak solution to the \(\mathfrak{K}_{\psi }^{u}\)-obstacle problem for (3.1), i.e.,
for any \(\bar{\phi }\in C_{0}^{\infty }(B_{R},\mathbb{R}^{N})\) with \(\bar{\phi }+U_{0}\geq \psi \) a.e. \(B_{R}\).
Since \(U_{0}-u\in S_{X,0}^{1}(B_{R},\mathbb{R}^{N})\), we can take \(\phi =U_{0}-u:=-w_{0} \) in (4.1) and hence
Noting that \(w_{0}+U_{0} =u\geq \psi \) a.e. \(B_{R}\), we obtain from (4.2) that
Using (H1)–(H2), Hölder and Sobolev inequalities, (4.3) becomes
where \(2^{\ast }=\frac{2Q}{Q-2}\). Choosing \(\varepsilon >0\) such that \(\varepsilon +\nu \delta <\nu \), we have
On the other hand, since \(1\leq \gamma _{0} <\frac{1}{q_{0}}\) and \(0\leq \gamma <1\), the Hölder inequality implies that
and
Putting (4.7) and (4.8) into (4.6), it follows
where \(\omega (R)=|B_{R}|^{\frac{1-\gamma _{0}q_{0}}{q_{0}}} (\int _{B _{R}}|Xu|^{2}\,dx )^{\gamma _{0} -1}\).
Consequently, we have by using (3.5) and (4.9) that, for any \(0<\rho \leq R\),
where \(\vartheta = (\eta _{R} (a^{\alpha \beta } ) ) ^{\frac{p-2}{p}}+\delta +\omega (R)+\varepsilon \). By the absolute continuity of Lebesgue integral, we see that \(\omega (R)\to 0\) as \(R\to 0\). Making use of the VMO hypothesis on the coefficients \(a^{\alpha \beta }(x)\), we know that there exists \(0< R_{0} \leq d_{0} \) such that ϑ is small enough for any \(0< R\leq R_{0}\). Taking
we claim that \(\frac{\rho ^{\tau }}{F(\rho )}\) is almost increasing and it follows from (2.2) that
Thus we obtain by Lemma 2.7 that, for any \(0<\rho \leq R\),
which implies \(Xu\in L_{X,\mathrm{loc}}^{2,\lambda }(\varOmega , \mathbb{R}^{mN})\). The proof is finished. □
From Theorem 1.1 and Lemma 2.6, we can prove the Hölder continuity for the weak solutions.
Proof of Theorem 1.2
Let \(u\in S_{X,\mathrm{loc}}^{1}( \varOmega ,\mathbb{R}^{N})\) be a weak solution to the \(\mathfrak{K}_{ \psi }^{\theta }\)-obstacle problem for (1.1) and \(0<\lambda <2\). For any \(B_{\rho }\subset B_{R}\subset \subset \varOmega \), it follows by Theorem 2.2 and (4.11) that
which implies \(u\in \mathcal{L}_{X,\mathrm{loc}}^{2,\lambda -2} ( \varOmega ,\mathbb{R}^{N})\). Noting \(0<\lambda <2\), Theorem 1.2 follows immediately from Lemma 2.6. □
References
Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)
Campanato, S.: Equazioni ellittiche del II∘ ordine e spazi \({\mathcal {L}}^{(2,\lambda )}\). Ann. Mat. Pura Appl. 69(4), 321–381 (1965)
Campanato, S.: Sistemi ellittici in forma divergenza. Regolarita all’interno. Quaderni. Pisa, Scuola Normale Superiore (1980)
Giaquinta, M.: Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Mathematics Studies, vol. 105. Princeton University Press, Princeton (1983)
Chen, Y., Wu, L.: Second Order Elliptic Equations and Elliptic Systems. American Mathematical Society, Providence (1998), 246 pp.
Huang, Q.: Estimates on the generalized Morrey spaces \(L_{\varphi}^{2,\lambda }\) and BMOψ for linear elliptic systems. Indiana Univ. Math. J. 45(2), 397–439 (1996)
Daněček, J., Viszus, E.: \(L^{2,\lambda }\)-regularity for nonlinear elliptic systems of second order. In: Applied Nonlinear Analysis. In Honor of the 70th Birthday of Professor Jindřich Nečas, pp. 33–40. Kluwer Academic/Plenum Publishers, New York (1999)
Daněček, J., Viszus, E.: A note on regularity for nonlinear elliptic systems. Arch. Math. 36(3), 229–237 (2000)
Daněček, J., Viszus, E.: \({\mathcal {L}}^{2,\varPhi }\) regularity for nonlinear elliptic systems of second order. Electron. J. Differ. Equ. 2002, 20 (2002)
Zheng, S., Feng, Z.: Regularity for quasi-linear elliptic systems with discontinuous coefficients. Dyn. Partial Differ. Equ. 5(1), 87–99 (2008)
Zheng, S., Zheng, X., Feng, Z.: Regularity for a class of degenerate elliptic equations with discontinuous coefficients under natural growth. J. Math. Anal. Appl. 346(2), 359–373 (2008)
Daněček, J., John, O., Stará, J.: Morrey space regularity for weak solutions of Stokes systems with VMO coefficients. Ann. Mat. Pura Appl. 190(4), 681–701 (2011)
Giaquinta, M.: Remarks on the regularity of weak solutions to some variational inequalities. Math. Z. 177, 15–31 (1981)
Choe, H.J.: A regularity theory for a general class of quasilinear elliptic partial differential equations and obstacle problems. Arch. Ration. Mech. Anal. 114(4), 383–394 (1991)
Choe, H.J.: Regularity for certain degenerate elliptic double obstacle problems. J. Math. Anal. Appl. 169(1), 111–126 (1992)
Di Fazio, G., Fanciullo, M.S.: Gradient estimates for elliptic systems in Carnot-Carathéodory spaces. Comment. Math. Univ. Carol. 43(4), 605–618 (2002)
Gao, D., Niu, P., Wang, J.: Partial regularity for degenerate subelliptic systems associated with Hörmander’s vector fields. Nonlinear Anal., Theory Methods Appl. 73(10), 3209–3223 (2010)
Zheng, S., Feng, Z.: Regularity of subelliptic p-harmonic systems with subcritical growth in Carnot group. J. Differ. Equ. 258(7), 2471–2494 (2015)
Dong, Y., Niu, P.: Regularity for weak solutions to nondiagonal quasilinear degenerate elliptic systems. J. Funct. Anal. 270(7), 2383–2414 (2016)
Tan, Z., Wang, Y., Chen, S.: Partial regularity in the interior for discontinuous inhomogeneous elliptic system with VMO-coefficients. Ann. Mat. Pura Appl. 196(1), 85–105 (2017)
Wang, J., Liao, D., Gao, S., Yu, Z.: Optimal partial regularity for sub-elliptic systems with Dini continuous coefficients under the superquadratic natural growth. Nonlinear Anal., Theory Methods Appl. 114, 13–25 (2015)
Wang, J., Manfredi, J.J.: Partial Hölder continuity for nonlinear sub-elliptic systems with VMO-coefficients in the Heisenberg group. Adv. Nonlinear Anal. 7(1), 97–116 (2018)
Wang, J., Liao, Q., Zhu, M., Liao, D., Hong, P.: Partial regularity for discontinuous sub-elliptic systems with VMO-coefficients involving controllable growth terms in Heisenberg groups. Nonlinear Anal., Theory Methods Appl. 178, 227–246 (2019)
Bigolin, F.: Regularity results for a class of obstacle problems in Heisenberg groups. Appl. Math. 58(5), 531–554 (2013)
Du, G., Li, F.: Global higher integrability of solutions to subelliptic double obstacle problems. J. Appl. Anal. Comput. 8(3), 1021–1032 (2018)
Du, G., Li, F.: Interior regularity of obstacle problems for nonlinear subelliptic systems with VMO coefficients. J. Inequal. Appl. 2018(53), 1 (2018)
Frentz, M.: Regularity in the obstacle problem for parabolic non-divergence operators of Hörmander type. J. Differ. Equ. 255(10), 3638–3677 (2013)
Gianazza, U., Marchi, S.: Interior regularity for solutions to some degenerate quasilinear obstacle problems. Nonlinear Anal., Theory Methods Appl. 36(7), 923–942 (1999)
Marchi, S.: Regularity for the solutions of double obstacle problems involving nonlinear elliptic operators on the Heisenberg group. Matematiche 56(1), 109–127 (2001)
Chow, W.L.: Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung. Math. Ann. 117, 98–105 (1939)
Nagel, A., Stein, E.M., Wainger, S.: Balls and metrics defined by vector fields. I: basic properties. Acta Math. 155, 103–147 (1985)
Hajłasz, P., Koskela, P.: Sobolev Met Poincaré. Mem. Am. Math. Soc. vol. 688 (2000), 101 pp.
Lu, G.: Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander’s condition and applications. Rev. Mat. Iberoam. 8(3), 367–439 (1992)
Lu, G.: Embedding theorems on Campanato-Morrey spaces for vector fields of Hörmander type. Approx. Theory Appl. 14(1), 69–80 (1998)
Xu, C., Zuily, C.: Higher interior regularity for quasilinear subelliptic systems. Calc. Var. Partial Differ. Equ. 5(4), 323–343 (1997)
Zatorska-Goldstein, A.: Very weak solutions of nonlinear subelliptic equations. Ann. Acad. Sci. Fenn., Math. 30(2), 407–436 (2005)
Acknowledgements
The authors are highly grateful to anonymous reviewers for their careful reading of this paper and their insightful comments and suggestions.
Availability of data and materials
Not applicable.
Funding
This work is supported by the National Science Foundation of Shandong Province of China (ZR2019MA067); Guangxi Natural Science Foundation (2017GXNSFBA198130; 2017GXNSFBA198179; 2017GXNSFBA198056); National Natural Science Foundation of China (11701162); Research Fund for the Doctoral Program of Hubei University of Economics (XJ16BS28).
Author information
Authors and Affiliations
Contributions
All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethics approval and consent to participate
Not applicable.
Competing interests
The authors declare that they have no competing interests.
Consent for publication
Not applicable.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Du, G., Zhang, K. & Dong, Y. Regularity of weak solutions to obstacle problems for nondiagonal quasilinear degenerate elliptic systems. J Inequal Appl 2019, 184 (2019). https://doi.org/10.1186/s13660-019-2135-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-019-2135-2
MSC
- 35J70
- 35B65
- 35J50
Keywords
- Nondiagonal quasilinear degenerate elliptic system
- Obstacle problem
- Morrey regularity
- Hölder continuity