Skip to main content

Association of Jensen’s inequality for s-convex function with Csiszár divergence

Abstract

In the article, we establish an inequality for Csiszár divergence associated with s-convex functions, present several inequalities for Kullback–Leibler, Renyi, Hellinger, Chi-square, Jeffery’s, and variational distance divergences by using particular s-convex functions in the Csiszár divergence. We also provide new bounds for Bhattacharyya divergence.

1 Introduction

A real-valued function \(\psi : I \rightarrow \mathbb{R}\) is said to be convex if the inequality

$$ \psi (\alpha {\xi }+\beta {\zeta })\leq \alpha \psi (\xi )+ \beta \psi (\zeta ) $$

holds for all \(\xi , \zeta \in I\) and \(\alpha , \beta \geq 0\) with \(\alpha +\beta =1\). It is well known that \(\psi : I \rightarrow \mathbb{R}\) is convex if and only if

$$ \psi \Biggl(\sum_{i=1}^{n}\alpha _{i}\xi _{i} \Biggr)\leq \sum_{i=1} ^{n}\alpha _{i}\psi (\xi _{i}) $$

for all \(\xi _{i}\in I\) and \(\alpha _{i}\geq 0\) with \(\sum_{i=1}^{n} \alpha _{i}=1\).

Convex function has wide applications in pure and applied mathematics, physics, and other natural sciences [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]; it has many important and interesting properties [21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37] such as monotonicity, continuity, and differentiability. Recently, many generalizations and extensions have been made for the convexity, for example, s-convexity [38], strong convexity [39,40,41], preinvexity [42], GA-convexity [43], GG-convexity [44], Schur convexity [45,46,47,48,49], and others [50,51,52,53,54]. In particular, many remarkable inequalities can be found in the literature [55,56,57,58,59,60,61,62,63,64,65,66,67] via the convexity theory.

Chen [68] generalized the convex function to the s-convex function, gave the relation between the convex and s-convex functions, and established Jensen’s inequality for s-convex function as follows.

Let K be a convex subset of a real linear space and \(s\in (0, \infty )\) be a fixed real positive number. Then the mapping \(f: K\rightarrow \mathbb{R}\) is called s-convex on K if

$$ f(\alpha x+\beta y)\leq \alpha ^{s}f(x)+\beta ^{s}f(y) $$
(1.1)

for all \(x, y\in \mathbb{K}\) and \(\alpha , \beta \geq 0\) with \(\alpha +\beta \).

Lemma 1.1

([68])

Let \(\psi :I \rightarrow \mathbb{R}\) be a convex function defined on interval I. Then the following statements are true:

  1. (i)

    If ψ is non-negative, then ψ is s-convex for \(s\in (0, 1]\).

  2. (ii)

    If ψ is non-positive, then ψ is s-convex for \(s\in [1, \infty )\).

Theorem 1.2

([68])

Let \(i\in \{1,2,\ldots,n\}\), \(\alpha _{i}\geq 0\), \(Q_{n}=\sum_{i=1}^{n} \alpha _{i}^{\frac{1}{s}}>0\), and \(\psi :I\rightarrow \mathbb{R}\) be an s-convex function. Then

$$ \psi \Biggl(\frac{1}{Q_{n}}\sum_{i=1}^{n} \alpha _{i}^{\frac{1}{s}}\xi _{i} \Biggr)\leq \frac{1}{Q_{n}^{s}}\sum_{i=1}^{n}\alpha _{i}\psi (\xi _{i}) $$

for all \(\xi _{i}\in I\).

2 Information divergence measures

Divergence measure is actually the distance between two probability distributions. Divergence measures have been introduced in the effort to solve the problems related to probability theory. Divergence measures have vast applications in a variety of fields such as economics, biology, signal processing, pattern recognition, computational learning, color image segmentation, magnetic resonance image analysis, and so on.

A class of information divergence measures, which is one of the important divergence measures due to its compact behavior, is the Csiszár ϕ-divergence [69] given below:

$$ {I}_{\phi }(\boldsymbol{\eta },\boldsymbol{\zeta })=\sum _{i=1} ^{n}\zeta _{i}\phi \biggl( \frac{\eta _{i}}{\zeta _{i}} \biggr), $$

where \(\boldsymbol{\eta }=(\eta _{1},\eta _{2},\dots ,\eta _{n})\), \(\boldsymbol{\zeta } =(\zeta _{1},\zeta _{2},\dots ,\zeta _{n})\) are positive real n-tuples.

The Csiszár ϕ-divergence is a generalized measure of information on the convex function \(\phi : \mathbb{R}^{+}\rightarrow \mathbb{R}\), where the convexity ensures the non-negativity of divergence measures \({I}_{\phi }(\boldsymbol{\eta }, \boldsymbol{\zeta })\). The following Theorems 2.1 and 2.2 can be found in the literature [70, 71].

Theorem 2.1

If \(\phi :[0, \infty )\rightarrow \mathbb{R}\) is convex, then \({I}_{\phi }(\boldsymbol{\eta },\boldsymbol{\zeta })\) is jointly convex in η and ζ.

Theorem 2.2

Let \(\phi : \mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\) be convex. Then, for every \(p, q \in \mathbb{R}^{n}_{+}\) with \(Q_{n}=\sum_{i=1} ^{n}\zeta _{i}\), we have

$$ {I}_{\phi }(\boldsymbol{\eta },\boldsymbol{\zeta })\geq Q_{n} \phi \biggl(\frac{\sum_{i=1}^{n}\eta _{i}}{\sum_{i=1} ^{n}\zeta _{i}} \biggr). $$
(2.1)

If ϕ is strictly convex, then equality holds in (2.1) if and only if

$$ \frac{\eta _{1}}{\zeta _{1}}=\frac{\eta _{2}}{\zeta _{2}}=\frac{\eta _{3}}{ \zeta _{3}}=\cdots =\frac{\eta _{n}}{\zeta _{n}}. $$

Corollary 2.3

Let \(\phi : \mathbb{R}^{+}\rightarrow \mathbb{R}^{+}\) be convex and normalized (\(\phi (1)=0\)) with \(\sum_{i=1}^{n}\eta _{i}=\sum_{i=1}^{n}\zeta _{i}\). Then we have

$$ {I}_{\phi }(\boldsymbol{\eta },\boldsymbol{\zeta })\geq 0. $$
(2.2)

Equality holds in (2.2) if ϕ is strictly convex and \(\sum_{i=1}^{n}\eta _{i}=\sum_{i=1}^{n}\zeta _{i}\).

Many well-known distance functions or divergences can be obtained for a suitable choice of function ϕ, and they are frequently used in mathematical statistics, signal processing, and information theory. Some of the divergences are Kullback–Leibler, Renyi, Hellinger, Chi-square, Jeffery’s divergences, variational distance, and so on. Some brief introduction to these divergences is given below.

In probability and statistics, observed data is approximated by probability distribution. This approximation results in loss of information. The primitive object of information theory is to estimate how much information is in the data. Entropy is used to measure this information. Approximating a distribution by \(\boldsymbol{\zeta} (\boldsymbol{x})\) for which the actual distribution is \(\boldsymbol{\eta} (\boldsymbol{x})\) results in loss of information. KL-divergence, although not a true metric, is a useful measure of distance between the two distributions. The KL-divergence measure is the insufficiency of encoding the data with respect to the distribution ζ, rather than the true distribution η. The formula for KL-divergence can be obtained by choosing \(\phi (t)=t \log t\) in Csiszár divergence

$$ K(\boldsymbol{\eta },\boldsymbol{\zeta })=\sum_{i=1}^{n} \eta _{i} \log \biggl(\frac{\eta _{i}}{\zeta _{i}} \biggr). $$

The KL-divergence is non-negative if and only if \(\boldsymbol{\eta }= \boldsymbol{\zeta }\). However, it is not true distance between distributions, since it is not symmetric and does not satisfy the triangle inequality.

A logical alternative divergence or extension to KL-divergence is Jaffery’s divergence. It is the sum of the KL-divergence in both directions. It is defined by

$$ J(\boldsymbol{\eta },\boldsymbol{\zeta })=\sum_{i=1}^{n}( \eta _{i}- \zeta _{i})\log \biggl(\frac{\eta _{i}}{\zeta _{i}} \biggr), $$

which corresponds to ϕ-divergence for ϕ defined by

$$ \phi (z)=(z-1)\log {z}, \quad z>0. $$

It exhibits the two properties of metric like KL-divergence but is also symmetric; however, it does not obey the triangle inequality. Its uses are similar to those of KL-divergence.

The Bhattacharyya divergence is defined by

$$ B(\boldsymbol{\eta }, \boldsymbol{\zeta })= \sqrt{\eta _{i}\zeta _{i}}, $$

which corresponds to ϕ-divergence for ϕ defined by

$$ \phi (z)=\sqrt{z}, \quad z>0. $$

It satisfies the first three properties of metric but does not obey the triangle inequality. A nice feature of Bhattacharyya divergence is its limited range. Indeed its range is limited to make it quite attractive for a distance comparison.

The Bhattacharyya divergence is related to Hellinger divergence

$$ H(\boldsymbol{\eta },\boldsymbol{\zeta })=\sum_{i=1}^{n} (\sqrt{ \zeta _{i}}-\sqrt{\eta _{i}} )^{2}, $$

corresponding to a ϕ-divergence for ϕ defined by

$$ \phi (z)= (1-\sqrt{z})^{2}, \quad z>0. $$

Hellinger divergence is in fact a proper metric because it satisfies non-negativity, symmetry, and triangle inequality properties. This makes it an ideal candidate for estimation and classification problems. Test statistics based on Hellinger divergence were developed for the independent samples drawn from two different continuous populations with a common parameter. It is used as a splitting criterion in decision trees, which is an effective way to address the imbalanced data problems. Hellinger divergence has deep roots in information theory and machine learning. It is extensively used in data analysis, especially when the objects being compared are high dimensional empirical probability distribution built from data.

Another ϕ-divergence is the total variational distance. The total variational distance is a distance measure for probability distribution, sometimes called statistical distance or variational distance, and it is defined by

$$ V(\boldsymbol{\eta },\boldsymbol{\zeta })=\sum_{i=1}^{n} \vert \eta _{i}- \zeta _{i} \vert , $$

which corresponds to a ϕ-divergence for ϕ defined by

$$ \phi (z)= \vert z-1 \vert , \quad z>0. $$

Variational distance is a fundamental quantity in statistics and probability which appeared in many diverse applications. In information theory it is used to define strong typicality and asymptotic equipartition of sequences generated by sampling from a given distribution. In decision problems it arises naturally when discriminating the results of observation of two statistical hypotheses. In studying the ergodicity of Markov chains, it is used to define Dobrushin coefficient and establish the contraction property of transition probability distributions. Moreover, distance in total variation of probability measure is related via upper and lower bounds to an anthology of distance and distance metrics.

Another divergence measure is the Renyi divergence defined as

$$ R(\boldsymbol{\eta },\boldsymbol{\zeta })=\sum_{i=1}^{n} \eta _{i}^{ \alpha } \zeta _{i}^{1-\alpha }, $$

which corresponds to a ϕ-divergence for ϕ defined by

$$ \phi (z)=z^{\alpha }, \quad z>0, $$

where \(\alpha >1\). Renyi divergence is related to Renyi entropy much like KL-divergence is related to Shannon’s entropy.

Some other important divergences can be obtained from Csiszár divergence which are given below.

Chi-square divergence. For \(\phi (z)=(z-1)^{2}\) (\(z>0\)) in ϕ-divergence. The \(\chi ^{2}\)-divergence is given by

$$ \chi ^{2}(\boldsymbol{\eta },\boldsymbol{\zeta })=\sum _{i=1}^{n}\frac{( \eta _{i}-\zeta _{i})^{2}}{\zeta _{i}}, $$

and \(\chi ^{2}(\boldsymbol{\eta },\boldsymbol{\zeta })+\chi ^{2}( \boldsymbol{\zeta },\boldsymbol{\eta })\) is known as symmetric Chi- square divergence.

Triangular discrimination. For \(\phi (z)= \frac{(z-1)^{2}}{z+1}\) (\(z>0\)), the triangular discrimination is given by

$$ \triangle (\boldsymbol{\eta },\boldsymbol{\zeta })=\sum _{i=1} ^{n}\frac{(\eta _{i}-\zeta _{i})^{2}}{\eta _{i}+\zeta _{i}}. $$

Relative arithmetic-geometric divergence. For \(\phi (z)= \frac{z+1}{2}\log \frac{1+z}{2z}\) (\(z>0\)), the relative arithmetic-geometric divergence is given by

$$ G(\boldsymbol{\eta },\boldsymbol{\zeta })= \sum_{i=1}^{n} \frac{\eta _{i}+\zeta _{i}}{2}\log \frac{\eta _{i}+\zeta _{i}}{2\eta _{i}}. $$

3 Inequalities for Csiszár divergence

Theorem 3.1

Let \(\phi :\mathbb{R}^{+}\rightarrow \mathbb{R}\) be an s-convex function, \(\boldsymbol{\eta }=(\eta _{1},\eta _{2},\ldots,\eta _{n})\) and \(\boldsymbol{\zeta }=(\zeta _{1},\zeta _{2},\ldots,\zeta _{n})\) be two positive real n-tuples, and \(Q_{n}=\sum_{i=1}^{n}\zeta _{i} ^{\frac{1}{s}}\). Then one has

$$ I_{\phi }(\boldsymbol{\eta }, \boldsymbol{\zeta }) \geq Q_{n}^{s} \phi \biggl(\frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{ \sum_{i=1}^{n}\zeta ^{\frac{1}{s}}_{i}} \biggr). $$
(3.1)

Proof

By taking \(\alpha _{i}\rightarrow \zeta _{i}\) and \(\xi _{i}\rightarrow \frac{ \eta _{i}}{\zeta _{i}}\) in Theorem 1.2, we get

$$ \frac{1}{Q_{n}^{s}}\sum_{i=1}^{n}\zeta _{i}\phi \biggl(\frac{ \eta _{i}}{\zeta _{i}} \biggr)\geq \phi \biggl( \frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}(\frac{\eta _{i}}{\zeta _{i}})}{Q_{n}} \biggr), $$

which is equivalent to (3.1). □

Theorem 3.2

Let \(\boldsymbol{\eta }=(\eta _{1},\eta _{2},\ldots,\eta _{n})\) and \(\boldsymbol{\zeta }=(\zeta _{1},\zeta _{2},\ldots,\zeta _{n})\) be two positive real n-tuples, and \(Q_{n}=\sum_{i=1}^{n}\zeta _{i} ^{\frac{1}{s}}\). Then the following statements are true:

  1. (i)

    If \(\eta _{i}\geq \zeta _{i}\) for \(i\in \{1,2,\ldots,n \}\) and \(s\in (0, 1]\), then

    $$ K(\boldsymbol{\eta },\boldsymbol{\zeta })\geq Q_{n}^{s}\frac{\sum_{i=1} ^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}}}\log \biggl(\frac{\sum_{i=1}^{n} \zeta _{i}^{ \frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}} \biggr). $$
    (3.2)
  2. (ii)

    If \(\eta _{i}<\zeta _{i}\) for \(i\in \{1,2,\ldots,n\}\) and \(s\in [1, \infty )\), then inequality (3.2) holds.

Proof

(i) If \(\phi (z)=z\log z\), where \(z>0\), then \(\phi ^{\prime \prime }(z)= \frac{1}{z}\geq 0\), so \(\phi (z)\) is convex on \((0, \infty )\). Moreover, if \(z\geq 1\), then \(\phi (z)\geq 0\). Hence, by Lemma 1.1, \(\phi (z)\) is s-convex for \(s\in (0, 1]\). Using \(\phi (z)=z\log z\) in Theorem 3.1, we get

$$ \sum_{i=1}^{n}\zeta _{i}\frac{\eta _{i}}{\zeta _{i}}\log \biggl(\frac{ \eta _{i}}{\zeta _{i}} \biggr)\geq Q_{n}^{s}\frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}} \log \biggl(\frac{\sum_{i=1}^{n} \zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{ \sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}} \biggr), $$
(3.3)

which is equivalent to (3.2).

(ii) If \(z\leq 1\), then \(\phi (z)\leq 0\). Hence, by Lemma 1.1, \(\phi (z)\) is s-convex for \(s\in [1, \infty )\); therefore, by utilizing Theorem 3.1, we obtain (3.3). □

Theorem 3.3

Let \(\boldsymbol{\eta }=(\eta _{1},\eta _{2},\ldots,\eta _{n})\) and \(\boldsymbol{\zeta }=(\zeta _{1},\zeta _{2},\ldots,\zeta _{n})\) be two positive real n-tuples, \(Q_{n}=\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}}\) and \(s \in (0, 1]\). Then

$$ H(\boldsymbol{\eta },\boldsymbol{\zeta }) \geq Q_{n}^{s} \biggl(1-\sqrt{ \frac{ \sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n} \zeta ^{\frac{1}{s}}_{i}}} \biggr)^{2}. $$
(3.4)

Proof

If \(\phi (z)=(1-\sqrt{z})^{2}\), where \(z>0\), then \(\phi ^{\prime \prime }(z)= \frac{1}{2z}- \frac{\sqrt{z}-1}{2z^{\frac{3}{2}}}\geq 0\), so \(\phi (z)\) is convex on \((0, \infty )\). Moreover, if \(z>0\), then \(\phi (z)\geq 0\). Hence, by Lemma 1.1, \(\phi (z)\) is s-convex for \(s \in (0, 1]\). Using \(\phi (z)\) in Theorem 3.1, we have

$$\begin{aligned}& \sum_{i=1}^{n}\zeta _{i} \biggl(1-\sqrt{\frac{\eta _{i}}{\zeta _{i}}} \biggr) ^{2} \geq Q_{n}^{s} \biggl(1-\sqrt{\frac{\sum_{i=1}^{n}\zeta _{i}^{ \frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}} \biggr) ^{2}, \\& \sum_{i=1}^{n}(\zeta _{i}+\eta _{i}-2\sqrt{\eta _{i}\zeta _{i}})\geq Q _{n}^{s} \biggl(1-\sqrt{\frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}} \eta _{i}}{\sum_{i=1}^{n}\zeta ^{\frac{1}{s}}_{i}}} \biggr)^{2}, \end{aligned}$$

which is equivalent to (3.4). □

Theorem 3.4

Let \(\boldsymbol{\eta }=(\eta _{1},\eta _{2},\ldots,\eta _{n})\) and \(\boldsymbol{\zeta }=(\zeta _{1},\zeta _{2},\ldots,\zeta _{n})\) be two positive real n-tuples, \(Q_{n}=\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}}\) and \(s\in (0,1]\). Then

$$ \chi ^{2}(\boldsymbol{\eta },\boldsymbol{\zeta })\geq Q_{n}^{s} \biggl(\frac{ \sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}-1 \biggr)^{2}. $$
(3.5)

Proof

If \(\phi (z)=(z-1)^{2}\), where \(z>0\), then \(\phi ^{\prime \prime }(z)=2>0\), so \(\phi (z)\) is convex on \((0, \infty )\). Also, if \(z>0 \), then \(\phi (z)\geq 0\). Hence, by Lemma 1.1, \(\phi (z)\) is s-convex for \(s \in (0, 1]\). Utilizing \(\phi (z)=(z-1)^{2}\) in Theorem 3.1, we have

$$ \sum_{i=1}^{n}\zeta _{i} \biggl( \frac{\eta _{i}}{\zeta _{i}}-1 \biggr) ^{2}\geq Q_{n}^{s} \biggl(\frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}} \eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}-1 \biggr)^{2}, $$

which is equivalent to (3.5). □

Theorem 3.5

Let \(\boldsymbol{\eta }=(\eta _{1},\eta _{2},\ldots,\eta _{n})\) and \(\boldsymbol{\zeta }=(\zeta _{1},\zeta _{2},\ldots,\zeta _{n})\) be two positive real n-tuples, and \(Q_{n}=\sum_{i=1}^{n}\zeta _{i} ^{\frac{1}{s}}\). Then the following statements are true:

  1. (i)

    If \(\eta _{i}\geq \zeta _{i}\) for \(i\in \{1,2,\ldots,n \}\) and \(s \in [1, \infty )\), then

    $$ K(\boldsymbol{\zeta }, \boldsymbol{\eta })\geq Q_{n}^{s}\log \biggl(\frac{ \sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}{\sum_{i=1}^{n} \zeta _{i}^{ \frac{1-s}{s}}\eta _{i}} \biggr). $$
    (3.6)
  2. (ii)

    If \(\eta _{i}<\zeta _{i}\) for \(i\in \{1,2,\ldots,n\}\) and \(s \in (0, 1]\), then inequality (3.6) holds.

Proof

(i) Let \(\phi (z)=-\log {z}\) (\(z>0\)). Then \(\phi ^{\prime \prime }(z)=\frac{1}{z ^{2}}>0\), so \(\phi (z)\) is convex on \((0, \infty )\). Moreover, if \(z\geq 1\), then \(\phi (z)\leq 0\). Hence, by Lemma 1.1, \(\phi (z)\) is s-convex for \(s\in [1, \infty )\). Using \(\phi (z)=- \log {z}\) in Theorem 3.1, we get

$$ \sum_{i=1}^{n}\zeta _{i} \biggl(-\log \biggl(\frac{\eta _{i}}{\zeta _{i}} \biggr) \biggr) \geq Q_{n}^{s} \biggl(-\log \biggl(\frac{\sum_{i=1}^{n}\zeta _{i}^{ \frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}} \biggr) \biggr), $$

which is equivalent to (3.6).

(ii) If \(z\leq 1\), then \(\phi (z)\geq 0\). Hence, by Lemma 1.1, \(\phi (z)\) is s-convex for \(s\in (0, 1]\).

Similarly as above, using the function \(\phi (z)=-\log (z)\) in Theorem 3.1, we obtain (3.6). □

Theorem 3.6

Let \(\boldsymbol{\eta }=(\eta _{1},\eta _{2},\ldots,\eta _{n})\) and \(\boldsymbol{\zeta }=(\zeta _{1},\zeta _{2},\ldots,\zeta _{n})\) be two positive real n-tuples, \(Q_{n}=\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}}\) and \(s \in (0, 1]\). Then

$$ J(\boldsymbol{\eta },\boldsymbol{\zeta })\geq \Biggl(\sum _{i=1}^{n} \zeta _{i}^{\frac{1-s}{s}} \eta _{i}-\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}} \Biggr)\log \biggl(\frac{\sum_{i=1}^{n}\zeta _{i}^{ \frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}} \biggr). $$
(3.7)

Proof

If \(\phi (z)=(z-1)\log z\) (\(z>0\)), then \(\phi ^{\prime \prime }(z)=\frac{z+1}{z ^{2}}\), so \(\phi (z)\) is convex on \((0, \infty )\). Moreover, if \(z>0\), then \(\phi (z)\geq 0\). Hence, by Lemma 1.1, \(\phi (z)\) is s-convex for \(s \in (0, 1]\). Using \(\phi (z)=(z-1)\log z\) in Theorem 3.1, we have

$$\begin{aligned}& \sum_{i=1}^{n}\zeta _{i} \biggl( \frac{\eta _{i}}{\zeta _{i}}-1 \biggr) \log \biggl(\frac{\eta _{i}}{\zeta _{i}} \biggr)\geq Q_{n}^{s} \biggl(\frac{ \sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}-1 \biggr)\log \biggl( \frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}} \biggr), \\& \quad \Rightarrow\quad \sum_{i=1}^{n} (\eta _{i}-\zeta _{i} )\log \biggl(\frac{ \eta _{i}}{\zeta _{i}} \biggr)\geq Q_{n}^{s} \biggl(\frac{\sum_{i=1}^{n} \zeta _{i}^{\frac{1-s}{s}}\eta _{i}-\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}} \biggr) \log \biggl( \frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}} \biggr), \end{aligned}$$

which is equivalent to (3.7). □

Theorem 3.7

Let \(\boldsymbol{\eta }=(\eta _{1},\eta _{2},\ldots,\eta _{n})\) and \(\boldsymbol{\zeta }=(\zeta _{1},\zeta _{2},\ldots,\zeta _{n})\) be two positive real n-tuples, \(Q_{n}=\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}}\) and \(s \in (0, 1]\). Then

$$ R(\boldsymbol{\eta },\boldsymbol{\zeta })\geq Q_{n}^{s} \biggl(\frac{ \sum_{i=1}^{n} \zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}} \biggr)^{\alpha }. $$
(3.8)

Proof

For \(\alpha >1\), the function \(\phi (z)=z^{\alpha }\) (\(z>0\)) is non-negative and convex. Therefore, by Lemma 1.1, \(\phi (z)\) is s-convex for \(s \in (0, 1]\). Using \(\phi (z)=z^{\alpha }\) in Theorem 3.1, we get

$$ \sum_{i=1}^{n}\zeta _{i} \biggl( \frac{\eta _{i}}{\zeta _{i}} \biggr)^{ \alpha }\geq Q_{n}^{s} \biggl( \frac{\sum_{i=1}^{n} \zeta _{i}^{ \frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}} \biggr) ^{\alpha }, $$

which is equivalent to (3.8). □

Theorem 3.8

Let \(\boldsymbol{\eta }=(\eta _{1},\eta _{2},\ldots,\eta _{n})\) and \(\boldsymbol{\zeta }=(\zeta _{1},\zeta _{2},\ldots,\zeta _{n})\) be two positive real n-tuples, \(Q_{n}=\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}}\) and \(s \in (0, 1]\). Then

$$ V(\boldsymbol{\eta },\boldsymbol{\zeta })\geq Q_{n}^{s} \biggl\vert \frac{ \sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}-\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}} \biggr\vert . $$
(3.9)

Proof

If \(\phi (z)=|z-1|\) (\(z\in \mathbb{R}\)), then clearly \(\phi (z)\) is convex on \(\mathbb{R}\). Moreover, for \(z\in \mathbb{R}\), \(\phi (z) \geq 0\). Hence, by Lemma 1.1, \(\phi (z)\) is s-convex for \(s \in (0, 1]\). Using \(\phi (z)=|z-1|\) in Theorem 3.1, we get

$$ \sum_{i=1}^{n}\zeta _{i} \biggl\vert \frac{\eta _{i}}{\zeta _{i}}-1 \biggr\vert \geq Q_{n}^{s} \biggl\vert \frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}-1 \biggr\vert , $$

which is equivalent to (3.9). □

Theorem 3.9

Let \(\boldsymbol{\eta }=(\eta _{1},\eta _{2},\ldots,\eta _{n})\) and \(\boldsymbol{\zeta }=(\zeta _{1},\zeta _{2},\ldots,\zeta _{n})\) be two positive real n-tuples, \(Q_{n}=\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}}\) and \(s \in (0, 1]\). Then

$$ \chi ^{2}(\boldsymbol{\eta },\boldsymbol{\zeta })+\chi ^{2}( \boldsymbol{\zeta },\boldsymbol{\eta })\geq Q_{n}^{s} \biggl( \biggl(\frac{ \sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}-1 \biggr)^{2}+ \biggl( \frac{\sum_{i=1}^{n}\eta _{i} ^{\frac{1-s}{s}}\zeta _{i}}{\sum_{i=1}^{n}\eta _{i}^{\frac{1}{s}}}-1 \biggr) ^{2} \biggr). $$
(3.10)

Proof

If \(\phi (z)=(z-1)^{2}\) (\(z>0\)), then \(\phi ^{\prime \prime }(z)=2>0\), so \(\phi (z)\) is convex on \((0, \infty )\). Also, if \(z>0 \), then \(\phi (z)\geq 0\). Hence, by Lemma 1.1, \(\phi (z)\) is s-convex for \(s \in (0, 1]\).

From Theorem 3.4, we have

$$ \sum_{i=1}^{n} \frac{(\eta _{i}-\zeta _{i})^{2}}{\zeta _{i}}\geq Q_{n} ^{s} \biggl(\frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{ \sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}-1 \biggr)^{2}. $$
(3.11)

By interchanging \(\eta _{i}\) and \(\zeta _{i}\) in Theorem 3.4, we get

$$ \sum_{i=1}^{n} \frac{(\zeta _{i}-\eta _{i})^{2}}{\eta _{i}}\geq Q_{n}^{s} \biggl(\frac{\sum_{i=1}^{n}\eta _{i}^{\frac{1-s}{s}}\zeta _{i}}{\sum_{i=1}^{n}\eta _{i}^{\frac{1}{s}}}-1 \biggr)^{2}. $$
(3.12)

Adding (3.11) and (3.12), we get

$$ \sum_{i=1}^{n}\frac{(\eta _{i}-\zeta _{i})^{2}}{\zeta _{i}}+\sum _{i=1} ^{n}\frac{(\zeta _{i}-\eta _{i})^{2}}{\eta _{i}}\geq Q_{n}^{s} \biggl(\frac{ \sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}-1 \biggr)^{2}+Q_{n}^{s} \biggl(\frac{\sum_{i=1} ^{n}\eta _{i}^{\frac{1-s}{s}}\zeta _{i}}{\sum_{i=1}^{n}\eta _{i}^{ \frac{1}{s}}}-1 \biggr)^{2}, $$

which is equivalent to (3.10). □

Theorem 3.10

Let \(\boldsymbol{\eta }=(\eta _{1},\eta _{2},\ldots,\eta _{n})\) and \(\boldsymbol{\zeta }=(\zeta _{1},\zeta _{2},\ldots,\zeta _{n})\) be two positive real n-tuples, \(Q_{n}=\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}}\) and \(s \in (0, 1]\). Then

$$ \triangle (\boldsymbol{\eta }, \boldsymbol{\zeta })\geq \frac{ (\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}-\sum_{i=1}^{n}\zeta _{i} ^{\frac{1}{s}} )^{2}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}} \eta _{i}+\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}. $$
(3.13)

Proof

If \(\phi (z)=\frac{(z-1)^{2}}{z+1}\) (\(z>0\)), then \(\phi ^{\prime \prime }(z)= \frac{8}{(z+1)^{3}}\geq 0\), so \(\phi (z)\) is convex on \((0, \infty )\). Moreover, if \(z>0\), then \(\phi (z)\geq 0\). Hence, by Lemma 1.1, \(\phi (z)\) is s-convex for \(s \in (0, 1]\). Using \(\phi (z)=\frac{(z-1)^{2}}{z+1}\) in Theorem 3.1, we have

$$\begin{aligned}& \sum_{i=1}^{n}\zeta _{i} \frac{(\frac{\eta _{i}}{\zeta _{i}}-1)^{2}}{\frac{ \eta _{i}}{\zeta _{i}}+1}\geq Q_{n}^{s}\frac{ \Bigl(\frac{\sum_{i=1} ^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}}}-1 \Bigr)^{2}}{ \Bigl(\frac{\sum_{i=1}^{n}\zeta _{i}^{ \frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}+1 \Bigr)}, \\& \sum_{i=1}^{n}\frac{(\eta _{i}-\zeta _{i})^{2}}{\eta _{i}+\zeta _{i}} \geq Q_{n}^{s}\frac{ (\sum_{i=1}^{n}\zeta _{i}^{ \frac{1-s}{s}}\eta _{i}-\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}} ) ^{2}}{\sum_{i=1}^{n}{\zeta _{i}^{\frac{1}{s}} (\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}+\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}} )}}, \end{aligned}$$

which is equivalent to (3.13). □

Theorem 3.11

Let \(\boldsymbol{\eta }=(\eta _{1},\eta _{2},\ldots,\eta _{n})\) and \(\boldsymbol{\zeta }=(\zeta _{1},\zeta _{2},\ldots,\zeta _{n})\) be two positive real n-tuples, and \(Q_{n}=\sum_{i=1}^{n}\zeta _{i} ^{\frac{1}{s}}\). Then the following statements are true:

  1. (i)

    If \(\eta _{i}\geq \zeta _{i}\) for \(i\in \{1,2,\ldots,n \}\) and \(s \in [1, \infty )\), then

    $$ G(\boldsymbol{\eta }, \boldsymbol{\zeta })\geq \frac{\sum_{i=1}^{n} \zeta _{i}^{\frac{1-s}{s}}+\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}{2} \log \frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}+\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}}{2\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}. $$
    (3.14)
  2. (ii)

    If \(\eta _{i}<\zeta _{i}\) for \(i\in \{1,2,\ldots,n\}\) and \(s \in (0, 1] \), then inequality (3.14) holds.

Proof

(i) If \(\phi (z)=\frac{z+1}{2}\log \frac{1+z}{2z}\) (\(z>0\)), then \(\phi ^{\prime \prime }(z)=\frac{1}{2z^{2}(z+1)}>0\), so \(\phi (z)\) is convex on \((0, \infty )\). Moreover, if \(z\geq 1\), then \(\phi (z) \leq 0\). Hence, by Lemma 1.1, \(\phi (z)\) is s-convex for \(s\in [1, \infty )\). Using \(\phi (z)\) in Theorem 3.1, we have

$$ \sum_{i=1}^{n} \zeta _{i} \frac{\eta _{i}+\zeta _{i}}{2 \zeta _{i}}\log \frac{ \eta _{i}+\zeta _{i}}{2 \eta _{i}} \geq Q_{n}^{s} \frac{\frac{\sum_{i=1} ^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}}}+1}{2}\log \frac{1+{\frac{\sum_{i=1}^{n}\zeta _{i}^{ \frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}}}{2\frac{ \sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}}, $$

which is equivalent to (3.14).

(ii) If \(z\in (0,1]\), then \(\phi (z)\geq 0\). Hence, by Lemma 1.1, \(\phi (z)\) is s-convex for \(s\in (0, 1]\). Similar to part (i), using Theorem 3.1, we obtain (3.14). □

Theorem 3.12

Let \(\boldsymbol{\eta }=(\eta _{1},\eta _{2},\ldots,\eta _{n})\) and \(\boldsymbol{\zeta }=(\zeta _{1},\zeta _{2},\ldots,\zeta _{n})\) be two positive real n-tuples, \(Q_{n}=\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}}\) and \(s \in (0, 1]\). Then

$$\begin{aligned} F(\boldsymbol{\eta }, \boldsymbol{\zeta })&=\frac{1}{2}\bigl[G( \boldsymbol{\eta }, \boldsymbol{\zeta })+ G(\boldsymbol{\zeta }, \boldsymbol{\eta })\bigr] \\ &\geq Q_{n}^{s} \biggl[\frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}+\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}{2\sum_{i=1}^{n}\zeta _{i} ^{\frac{1}{s}}}\log \sqrt {{\frac{\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}}+\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{2\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}}} \\ &\quad {}+\frac{\sum_{i=1}^{n}\eta _{i}^{\frac{1-s}{s}}\zeta _{i}+\sum_{i=1}^{n} \eta _{i}^{\frac{1}{s}}}{2\sum_{i=1}^{n}\eta _{i}^{\frac{1}{s}}}\log \sqrt{\frac{ \sum_{i=1}^{n}\eta _{i}^{\frac{1}{s}}+\sum_{i=1}^{n}\eta _{i}^{ \frac{1-s}{s}}\zeta _{i}}{2\sum_{i=1}^{n}\eta _{i}^{\frac{1-s}{s}}\zeta _{i}}} \biggr]. \end{aligned}$$

Proof

If \(\phi (z)=\frac{z+1}{2}\log \frac{1+z}{2z}\) (\(z>0\)). Then \(\phi ^{\prime \prime }(z)=\frac{1}{2z^{2}(z+1)}>0\), so \(\phi (z)\) is convex on \((0, \infty )\). Moreover, if \(z>0\), then \(\phi (z)\geq 0\). Hence, by Lemma 1.1, \(\phi (z)\) is s-convex for \(s \in (0, 1]\). From Theorem 3.11 we have

$$\begin{aligned}& \sum_{i=1}^{n} \frac{\eta _{i}+\zeta _{i}}{2}\log \frac{\eta _{i}+\zeta _{i}}{2 \eta _{i}} \\& \quad \geq Q_{n}^{s}\frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}+ \sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}{2\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}}}\log \frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}+\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{2\sum_{i=1}^{n}\zeta _{i} ^{\frac{1-s}{s}}\eta _{i}}. \end{aligned}$$
(3.15)

By interchanging \(\eta _{i}\) and \(\zeta _{i}\) in Theorem 3.11, we get

$$ \sum_{i=1}^{n} \frac{\eta _{i}+\zeta _{i}}{2}\log \frac{\eta _{i}+\zeta _{i}}{2 \zeta _{i}}\geq Q_{n}^{s} \frac{\sum_{i=1}^{n}\eta _{i}^{ \frac{1-s}{s}}\zeta _{i}+\sum_{i=1}^{n}\eta _{i}^{\frac{1}{s}}}{2\sum_{i=1}^{n}\eta _{i}^{\frac{1}{s}}}\log \frac{\sum_{i=1}^{n}\eta _{i} ^{\frac{1}{s}}+\sum_{i=1}^{n}\eta _{i}^{\frac{1-s}{s}}\zeta _{i}}{2 \sum_{i=1}^{n}\eta _{i}^{\frac{1-s}{s}}\zeta _{i}}. $$
(3.16)

Adding (3.15) and (3.16), we obtain

$$\begin{aligned} \frac{1}{2}\bigl[G(\boldsymbol{\eta }, \boldsymbol{\zeta })+ G( \boldsymbol{\zeta }, \boldsymbol{\eta })\bigr] &\geq Q_{n}^{s} \frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}+\sum_{i=1}^{n}\zeta _{i} ^{\frac{1}{s}}}{2\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}} \frac{1}{2} \log \frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}+\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{2\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}} \eta _{i}} \\ &\quad {}+ Q_{n}^{s}\frac{\sum_{i=1}^{n}\eta _{i}^{\frac{1-s}{s}}\zeta _{i}+ \sum_{i=1}^{n}\eta _{i}^{\frac{1}{s}}}{2\sum_{i=1}^{n}\eta _{i}^{ \frac{1}{s}}}\frac{1}{2}\log \frac{\sum_{i=1}^{n}\eta _{i}^{ \frac{1}{s}}+\sum_{i=1}^{n}\eta _{i}^{\frac{1-s}{s}}\zeta _{i}}{2\sum_{i=1}^{n}\eta _{i}^{\frac{1-s}{s}}\zeta _{i}}, \end{aligned}$$

namely

$$\begin{aligned} F(\boldsymbol{\eta }, \boldsymbol{\zeta })&=\sum_{i=1}^{n} \frac{\eta _{i}+\zeta _{i}}{2}\log \frac{\eta _{i}+{\zeta _{i}}}{2\sqrt{\eta _{i} \zeta _{i}}} \\ & \geq Q_{n}^{s} \biggl[\frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}+\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}{2\sum_{i=1}^{n}\zeta _{i} ^{\frac{1}{s}}}\log \sqrt {{\frac{\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}}+\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{2\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}}} \\ &\quad {}+\frac{\sum_{i=1}^{n}\eta _{i}^{\frac{1-s}{s}}\zeta _{i}+\sum_{i=1}^{n} \eta _{i}^{\frac{1}{s}}}{2\sum_{i=1}^{n}\eta _{i}^{\frac{1}{s}}}\log \sqrt{\frac{ \sum_{i=1}^{n}\eta _{i}^{\frac{1}{s}}+\sum_{i=1}^{n}\eta _{i}^{ \frac{1-s}{s}}\zeta _{i}}{2\sum_{i=1}^{n}\eta _{i}^{\frac{1-s}{s}}\zeta _{i}}} \biggr]. \end{aligned}$$

 □

In the following theorem, we obtain a bound for Bhattacharyya divergence by utilizing an s-convex function that is not convex.

Theorem 3.13

Let \(\boldsymbol{\eta }=(\eta _{1},\eta _{2},\ldots,\eta _{n})\) and \(\boldsymbol{\zeta }=(\zeta _{1},\zeta _{2},\ldots,\zeta _{n})\) be two positive real n-tuples, \(Q_{n}=\sum_{i=1}^{n}\zeta _{i}^{ \frac{1}{s}}\) and \(0< s\leq \frac{1}{2}\). Then

$$ B(\boldsymbol{\eta }, \boldsymbol{\zeta })\geq Q_{n}^{s} \sqrt{\frac{ \sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{\sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}}. $$
(3.17)

Proof

First we show that \(\phi (z)=\sqrt{z}\) is s-convex for \(z>0\) and \(s\in (0, 1/2]\), namely we show that

$$ \sqrt{\lambda {z_{1}}+(1-\lambda ){z_{2}}} \leq \lambda ^{s} \sqrt{z _{1}}+(1-\lambda )^{s} \sqrt{z_{2}} $$
(3.18)

for \(\lambda \in (0, 1)\) and \(s\in (0, 1/2]\).

Squaring both sides, we get

$$ \lambda {z_{1}}+(1-\lambda {z_{2}})\leq \lambda ^{2s} z_{1}+(1-\lambda )^{2s}z_{2}+ 2 \lambda ^{s}(1-\lambda )^{s}\sqrt{z_{1}z_{2}} , $$

which implies that

$$ \bigl(\lambda ^{2s}-\lambda \bigr)z_{1}+ \bigl((1-\lambda )^{2s}-(1-\lambda ) \bigr)z_{2}+ 2\lambda ^{s}(1- \lambda )^{s}\sqrt{z_{1}z_{2}}\geq 0. $$

Let \(\lambda =1/p\) (\(p>1\)). Then

$$ \lambda ^{2s-1}= p^{1-2s}>1 $$

for \(s\in (0, 1/2]\).

Namely,

$$ \lambda ^{2s}- \lambda >0 $$
(3.19)

for \(s\in (0, 1/2]\).

As \(\lambda \in (0, 1)\), \(1- \lambda \in (0, 1)\) and from (3.19), we have

$$ (1-\lambda )^{2s} >(1-\lambda ). $$
(3.20)

From (3.19) and (3.20) we get (3.18), namely \(\phi (z)\) is s-convex for \(s \in (0,\frac{1}{2} ]\).

Now, using \(\phi (z)=\sqrt{z}\) in Theorem 3.1, we obtain

$$ \sum_{i=1}^{n}\zeta _{i}\sqrt{ \frac{\eta _{i}}{\zeta _{i}}} \geq Q_{n} ^{s} \sqrt{ \frac{\sum_{i=1}^{n}\zeta _{i}^{\frac{1-s}{s}}\eta _{i}}{ \sum_{i=1}^{n}\zeta _{i}^{\frac{1}{s}}}}, $$

which is equivalent to (3.17). □

4 Conclusion

In the literature, there are several results for Jensen’s inequality by using convex functions. Particularly, there are many applications of Jensen’s inequality for convex functions in information theory. In this paper, we associated the results for s-convex functions with several divergences and proposed several applications of Jensen’s inequality for s-convex functions in information theory. We have obtained generalized inequalities for different divergences by using Jensen’s inequality for s-convex functions. The results obtained in this paper may also open the new door to obtaining other results in information theory for s-convex functions.

References

  1. Pečarić, J.E., Proschan, F., Tong, Y.L.: Convex Functions, Partial Orderings, and Statistical Applications. Academic Press, Boston (1992)

    MATH  Google Scholar 

  2. Udrişte, C.: Convex Functions and Optimization Methods on Riemannian Manifolds. Kluwer Academic, Dordrecht (1994)

    Book  MATH  Google Scholar 

  3. Huang, C.-X., Yang, Z.-C., Yi, T.-S., Zou, X.-F.: On the basins of attraction for a class of delay differential equations with non-monotone bistable nonlinearities. J. Differ. Equ. 256(7), 2101–2114 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Duan, L., Huang, C.-X.: Existence and global attractivity of almost periodic solutions for a delayed differential neoclassical growth model. Math. Methods Appl. Sci. 40(3), 814–822 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duan, L., Huang, L.-H., Guo, Z.-Y., Fang, X.-W.: Periodic attractor for reaction-diffusion high-order Hopfield neural networks with time-varying delays. Comput. Math. Appl. 73(2), 233–245 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, W.-S., Chen, Y.-Z.: Fast numerical valuation of options with jump under Merton’s model. J. Comput. Appl. Math. 318, 79–92 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hu, H.-J., Liu, L.-Z.: Weighted inequalities for a general commutator associated to a singular integral operator satisfying a variant of Hörmander’s condition. Math. Notes 101(5–6), 830–840 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, Z.-W., Huang, J.-H., Huang, L.-H.: Generalized Lyapunov–Razumikhin method for retarded differential inclusions: applications to discontinuous neural networks. Discrete Contin. Dyn. Syst. 22B(9), 3591–3614 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu, H.-J., Zou, X.-F.: Existence of an extinction wave in the Fisher equation with a shifting habitat. Proc. Am. Math. Soc. 145(11), 4763–4771 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, C., Huang, L.-H.: New criteria on exponential synchronization and existence of periodic solutions of complex BAM networks with delays. J. Nonlinear Sci. Appl. 10(10), 5464–5482 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Tan, Y.-X., Huang, C.-X., Sun, B., Wang, T.: Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition. J. Math. Anal. Appl. 458(2), 1115–1130 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Tang, W.-S., Zhang, J.-J.: Symplecticity-preserving continuous-stage Runge–Kutta–Nyström methods. Appl. Math. Comput. 323, 204–219 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Duan, L., Fang, X.-W., Huang, C.-X.: Global exponential convergence in a delayed almost periodic Nicholson’s blowflies model with discontinuous harvesting. Math. Methods Appl. Sci. 41(5), 1954–1965 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, Z.-Y., Wu, N.-C., Qin, X.-R., Zhang, Y.-L.: Trigonometric transform splitting methods for real symmetric Toeplitz systems. Comput. Math. Appl. 75(8), 2782–2794 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu, B.-W., Tian, X.-M., Yang, L.-S., Huang, C.-X.: Periodic solutions for a Nicholson’s blowflies model with nonlinear mortality and continuously distributed delays. Acta Math. Appl. Sin. 41(1), 98–109 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Zhu, K.-X., Xie, Y.-Q., Zhou, F.: Pullback attractors for a damped semilinear wave equation with delays. Acta Math. Sin. 34(7), 1131–1150 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, Y.: On products of consecutive arithmetic progressions II. Acta Math. Hung. 156(1), 240–254 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, J.-F., Chen, X.-Y., Huang, L.-H.: The number and stability of limit cycles for planar piecewise linear systems of node-saddle type. J. Math. Anal. Appl. 469(1), 405–427 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, J., Ying, J.-Y., Xie, D.-X.: On the analysis and application of an ion size-modified Poisson–Boltzmann equation. Nonlinear Anal., Real World Appl. 47, 188–203 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, Y.-J., Xu, X.-J.: A monotone finite volume method for time fractional Fokker–Planck equations. Sci. China Math. 62(4), 783–794 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lin, L., Liu, Z.-Y.: An alternating projected gradient algorithm for nonnegative matrix factorization. Appl. Math. Comput. 217(24), 9997–10002 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Liu, Z.-Y., Zhang, Y.-L., Santos, J., Ralha, R.: On computing complex square roots of real matrices. Appl. Math. Lett. 25(10), 1565–1568 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang, W.-S.: High order stable Runge–Kutta methods for nonlinear generalized pantograph equations on the geometric mesh. Appl. Math. Model. 39(1), 270–283 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, J., Liu, F., Fang, L., Turner, I.: A novel finite volume method for the Riesz space distributed-order advection-diffusion equation. Appl. Math. Model. 46, 536–553 (2017)

    Article  MathSciNet  Google Scholar 

  25. Tan, Y.-X., Jing, K.: Existence and global exponential stability of almost periodic solution for delayed competitive neural networks with discontinuous activations. Math. Methods Appl. Sci. 39, 2821–2839 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, J.-L., Sun, G.-Y., Zhang, R.-M.: The numerical solution of scattering by infinite rough interfaces based on the integral equation method. Comput. Math. Appl. 71(7), 1491–1502 (2016)

    Article  MathSciNet  Google Scholar 

  27. Dai, Z.-F.: Comments on a new class of nonlinear conjugate gradient coefficients with global convergence properties. Appl. Math. Comput. 276, 297–300 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Dai, Z.-F., Chen, X.-H., Wen, F.-H.: A modified Perry’s conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations. Appl. Math. Comput. 270, 378–386 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Xie, D.-X., Li, J.: A new analysis of electrostatic free energy minimization and Poisson–Boltzmann equation for protein in ionic solvent. Nonlinear Anal., Real World Appl. 21, 185–196 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tang, W.-S., Sun, Y.-J.: Construction of Runge–Kutta type methods for solving ordinary differential equations. Appl. Math. Comput. 234, 179–191 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Liu, Y.-C., Wu, J.: Fixed point theorems in piecewise continuous function spaces and applications to some nonlinear problems. Math. Methods Appl. Sci. 37(4), 508–517 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Li, X.-F., Tang, G.-J., Tang, B.-Q.: Stress field around a strike-slip fault in orthotropic elastic layers via a hypersingular integral equation. Comput. Math. Appl. 66(11), 2317–2326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jiang, Y.-J., Ma, J.-T.: Spectral collocation methods for Volterra-integro differential equations with noncompact kernels. J. Comput. Appl. Math. 244, 115–124 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Dai, Z.-F.: Two modified HS type conjugate gradient methods for unconstrained optimization problems. Nonlinear Anal. 74(3), 927–936 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang, X.-S., Zhu, Q.-X., Huang, C.-X.: Generalized lag-synchronization of chaotic mix-delayed systems with uncertain parameters and unknown perturbations. Nonlinear Anal., Real World Appl. 12(1), 93–105 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou, W.-J., Zhang, L.: Global convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems. Comput. Appl. Math. 29(2), 195–204 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shi, H.-P., Zhang, H.-Q.: Existence of gap solitons in periodic discrete nonlinear Schrödinger equations. J. Math. Anal. Appl. 361(2), 411–419 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Adil Khan, M., Chu, Y.-M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 15(1), 1414–1430 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Song, Y.-Q., Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M.: Integral inequalities involving strongly convex function. J. Funct. Spaces 2018, Article ID 6595921 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Zaheer Ullah, S., Adil Khan, M., Chu, Y.-M.: Majorization theorems for strongly convex functions. J. Inequal. Appl. 2019, Article ID 58 (2019)

    Article  MathSciNet  Google Scholar 

  41. Zaheer Ullah, S., Adil Khan, M., Khan, Z.A., Chu, Y.-M.: Integral majorization type inequalities for the functions in the sense of strong convexity. J. Funct. Spaces 2019, Article ID 9487823 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Khurshid, Y., Adil Khan, M., Chu, Y.-M., Khan, Z.A.: Hermite–Hadamard–Fejér inequalities for conformable fractional integrals via preinvex functions. J. Funct. Spaces 2019, Article ID 3146210 (2019)

    MATH  Google Scholar 

  43. Zhang, X.-M., Chu, Y.-M., Zhang, X.-H.: The Hermite–Hadamard type inequality of GA-convex functions and its applications. J. Inequal. Appl. 2010, Article ID 507560 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable integral inequalities of the Hermite–Hadamard type in terms of GG- and GA-convexities. J. Funct. Spaces 2019, Article ID 6926107 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Chu, Y.-M., Xia, W.-F., Zhao, T.-H.: Schur convexity for a class of symmetric functions. Sci. China Math. 53(2), 465–474 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Chu, Y.-M., Wang, G.-D., Zhang, X.-H.: Schur convexity and Hadamard’s inequality. Math. Inequal. Appl. 13(4), 725–731 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Chu, Y.-M., Wang, G.-D., Zhang, X.-H.: The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 284(5–6), 653–663 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Chu, Y.-M., Xia, W.-F., Zhang, X.-H.: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 105, 412–421 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wu, S.-H., Chu, Y.-M.: Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters. J. Inequal. Appl. 2019, Article ID 57 (2019)

    Article  MathSciNet  Google Scholar 

  50. Chu, Y.-M., Adil Khan, M., Ali, T., Dragomir, S.S.: Inequalities for α-fractional differentiable functions. J. Inequal. Appl. 2017, Article ID 93 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Adil Khan, M., Begum, S., Khurshid, Y., Chu, Y.-M.: Ostrowski type inequalities involving conformable fractional integrals. J. Inequal. Appl. 2018, Article ID 70 (2018)

    Article  MathSciNet  Google Scholar 

  52. Adil Khan, M., Chu, Y.-M., Kashuri, A., Liko, R., Ali, G.: Conformable fractional integrals versions of Hermite–Hadamard inequalities and their applications. J. Funct. Spaces 2018, Article ID 6928130 (2018)

    MATH  Google Scholar 

  53. Adil Khan, M., Khurshid, Y., Du, T.-S., Chu, Y.-M.: Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, Article ID 5357463 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Adil Khan, M., Wu, S.-H., Ullah, H., Chu, Y.-M.: Discrete majorization type inequalities for convex functions on rectangles. J. Inequal. Appl. 2019, Article ID 16 (2019)

    Article  MathSciNet  Google Scholar 

  55. Chu, Y.-M., Wang, M.-K.: Optimal Lehmer mean bounds for the Toader mean. Results Math. 61(3–4), 223–229 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Monotonicity rule for the quotient of two functions and its application. J. Inequal. Appl. 2017, Article ID 106 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function. J. Inequal. Appl. 2017, Article ID 210 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  59. Qian, W.-M., Chu, Y.-M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017, Article ID 374 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  60. Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler–Mascheroni constant. J. Inequal. Appl. 2018, Article ID 118 (2018)

    Article  MathSciNet  Google Scholar 

  61. Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p-elliptic integrals. J. Inequal. Appl. 2018, Article ID 239 (2018)

    Article  MathSciNet  Google Scholar 

  62. Zhao, T.-H., Wang, M.-K., Zhang, W., Chu, Y.-M.: Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018, Article ID 251 (2018)

    Article  MathSciNet  Google Scholar 

  63. Yang, Z.-H., Qian, W.-M., Chu, Y.-M.: Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math. Inequal. Appl. 21(4), 1185–1199 (2018)

    MathSciNet  MATH  Google Scholar 

  64. Yang, Z.-H., Chu, Y.-M., Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl. Math. Comput. 348, 552–564 (2019)

    Article  MathSciNet  Google Scholar 

  65. Zhao, T.-H., Zhou, B.-C., Wang, M.-K., Chu, Y.-M.: On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, Article ID 42 (2019)

    Article  MathSciNet  Google Scholar 

  66. Qiu, S.-L., Ma, X.-Y., Chu, Y.-M.: Sharp Landen transformation inequalities for hypergeometric functions, with applications. J. Math. Anal. Appl. 474(2), 1306–1337 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  67. Wang, M.-K., Chu, Y.-M., Zhang, W.: Monotonicity and inequalities involving zero-balanced hypergeometric function. Math. Inequal. Appl. 22(2), 601–617 (2019)

    MathSciNet  MATH  Google Scholar 

  68. Chen, X.-S.: New convex functions in linear spaces and Jensen’s discrete inequality. J. Inequal. Appl. 2013, Article ID 472 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  69. Csiszár, I.: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hung. 2, 299–318 (1967)

    MathSciNet  MATH  Google Scholar 

  70. Csiszár, I., Körner, J.: Information Theory. Academic Press, New York (1981)

    MATH  Google Scholar 

  71. Dragomir, S.S.: Some inequalities for the Csiszár ϕ-divergence when ϕ is and L-Lipschitzian function and applications. Ital. J. Pure Appl. Math. 15, 57–76 (2004)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Availability of data and materials

Not applicable.

Funding

The research was supported by the Natural Science Foundation of China (Grants Nos. 61673169, 61374086, 11371125, 11401191).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu-Ming Chu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adil Khan, M., Hanif, M., Abdul Hameed Khan, Z. et al. Association of Jensen’s inequality for s-convex function with Csiszár divergence. J Inequal Appl 2019, 162 (2019). https://doi.org/10.1186/s13660-019-2112-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-019-2112-9

MSC

Keywords