- Research
- Open Access
- Published:

# Growth of meromorphic solutions of linear difference equations without dominating coefficients

*Journal of Inequalities and Applications*
**volume 2019**, Article number: 109 (2019)

## Abstract

This paper is devoted to studying the growth of meromorphic solutions of difference equation

where the coefficients \(P_{j}\) (\(j=0,\ldots ,n\)) are meromorphic functions. With some additional conditions on coefficients, we obtain precise estimates of the growth of meromorphic solutions of such an equation.

## Introduction and main results

In this article, we shall consider the linear higher order difference equation

where \(P_{0}(z),\ldots ,P_{n}(z)\) are meromorphic functions. Nevanlinna theory is an important and basic tool in our discussion; for references see [9, 12, 18]. For a meromorphic function \(f(z)\), we denote by \(T(r,f)\), \(N(r,f)\) the characteristic function and the counting function of \(f(z)\), respectively. In particular, we define the order and the lower order of a meromorphic function \(f(z)\) by

while

stand for the exponents of convergence of zero sequence of *f* and the deficiency of *f* at the point *a*, respectively. Let \(\alpha (z)\) be a meromorphic function. We say that \(\alpha (z)\) is a small function with respect to \(f(z)\), if \(T(r,\alpha (z))=o(T(r,f))\), possible outside of a set *E* with finite linear measure.

In [5], Chiang and Feng considered the growth of transcendental entire solutions of linear higher order difference equations.

### Theorem A

*Let*
\(P_{j}(z)\) (\(j=0,1,\ldots ,n\)) *be polynomials*. *If there exists an integer*
*l*, \(0\le l\le n\), *such that*

*Then every meromorphic solution*
\(f(z)\)
*of Eq*. (1) *satisfies*
\(\sigma (f)\geq 1\).

The condition (2) shows the degree of \(P_{l}\) is larger than the other coefficients which means the polynomial \(P_{l}\) is dominating coefficient. Chen [3] weakens the condition (2), and obtained.

### Theorem B

*Let*
\(P_{j}(z)\) (\(j=0,\ldots ,n\)) *be polynomials such that*
\(P_{n}P_{0}\neq 0\)
*and*

*If*
\(f(z)\)
*is a meromorphic solution of Eq*. (1), *then*
\(\sigma (f) \geq 1\), *and*
\(f(z)\)
*assumes every finite value*
\(a\in \mathbb{C}\)
*except zero infinitely often and*
\(\lambda (f-a)=\sigma (f)\).

The above theorems deal with the case that the coefficients of Eq. (1) are polynomials, and there exists a dominating coefficient. Then a natural question arises: can we estimate the growth of the Eq. (1) provided the coefficients are entire functions or meromorphic functions. To answer this question, Chiang and Feng [5] obtained the following.

### Theorem C

*Let*
\(P_{0}(z),\ldots ,P_{n}(z)\)
*be entire functions such that there exists an integer*
*l*, \(0\le l\le n\), *such that*

*If*
\(f(z)\)
*is a nontrivial meromorphic solution of Eq*. (1), *then*
\(\sigma (f)\ge \sigma (P_{l})+1\).

Clearly, since the order of \(P_{l}\) is larger than that of the others, \(P_{l}\) in Theorem C is a dominating coefficient. But if no such coefficient exists, Laine and Yang [13] also proved a similar conclusion in Theorem D below.

### Definition 1.1

([9])

The type of a meromorphic function \(f(z)\) of order *σ* (\(0<\sigma <\infty \)) is defined by

### Theorem D

([13])

*Let*
\(P_{0}(z),\ldots ,P_{n}(z)\)
*be entire functions of finite order so that among those having the maximal order*
\(\sigma :=\max \{\sigma (P_{j}):0\le j\le n \}\), *exactly one has its type strictly greater than the others*. *Then*, *for any meromorphic solution of Eq*. (1), *we have*
\(\sigma (f)\ge \sigma +1\).

The condition about type in Theorem D still means the growth of some coefficient is faster than the others, although there exist several coefficients have the same order. This implies there still exists dominating coefficient. For a linear difference equation with meromorphic coefficients, Chen [4] proved the following result.

### Theorem E

*Let*
\(P_{0}(z),\ldots ,P_{n}(z)\)
*be meromorphic functions such that there exists an integer*
*l*, \(0\le l\le n\), *such that*
\(\sigma (P_{l})>\max \{\sigma (P_{j}):0 \le j\le n, j\ne l\}\)
*and*
\(\delta (\infty , P_{l})>0\). *If*
\(f(z)\)
*is a nontrivial meromorphic solution of Eq*. (1), *then*
\(\sigma (f)\ge \sigma (P_{l})+1\).

Laine and Yang [13] posed the following question, which it is natural to ask.

### Question 1.1

Do all meromorphic solution *f* of Eq. (1) satisfy \(\sigma (f)\ge 1+\max \{\sigma (P_{j}):0\le j\le n\}\), even if there is no dominating coefficient?

In [11], some examples are given to illustrate that the Laine–Yang conjecture is not true in whole. In this paper, we consider this question and shall give estimates of growth of solutions of Eq. (1), and there is no dominating coefficient.

### Theorem 1.1

*Let*
\(P_{j}(z)\) (\(j=0,\ldots ,n\)) *be meromorphic functions*. *If*
\(P_{1}(z)\)
*has a finite deficient value*
*a*, *and*
\(\sigma (P_{j})<\sigma (P_{0})<\frac{1}{2}\), \(j\neq 0,1\), *then every finite order meromorphic solution*
\(f(z)\)
*of Eq*. (1) *satisfies*
\(\sigma (f)\geq \mu (P_{0})-\max \{\sigma (P_{j}),j\neq 0,1\}+1\).

Edrei and Fuchs proved that the number of deficient values cannot be infinite when the zeros and poles of a meromorphic function distributed near some curves. We first give some definitions and results in order to relate their results with Eq. (1).

Let

### Definition 1.2

Let \(f(z)\) be a meromorphic function with finite order of growth (\(0<\sigma (f)< \infty \)). A ray \(\arg z=\theta \) starting from the origin is called a zero-pole accumulation ray of \(f(z)\), if, for any given real number \(\varepsilon >0\), the following equality holds:

Zhang [18] proved that if \(f(z)\) is a meromorphic function with order \(\sigma =\sigma (f)\), \(0<\sigma <\infty \) and \(f(z)\) has *q* zero-pole accumulation rays and *p* deficient values other than 0 and ∞, then \(p\leq q\). We say \(f(z)\in \mathit{EF}\) if \(p=q\geq 1\), and the set of such \(f(z)\) is called an Edrei–Fuchs set. This means that \(f(z)\) is a positive finite order meromorphic function with *p* zero-pole accumulation rays and *p* nonzero finite deficient values.

Now we are in the position to give a result concerning an Edrei–Fuchs set.

### Theorem 1.2

*Let*
\(P_{j}(z)\) (\(j=0,\ldots ,n\)) *be meromorphic functions*. *If*
\(P_{0}(z)\)
*has a deficient value* ∞, \(P_{1}(z)\in \mathit{EF}\), *and*
\(\sigma (P_{j})<\sigma (P_{0})\)
*for*
\(j\neq 0,1\), *then every meromorphic solution*
\(f(z)\)
*of Eq*. (1) *satisfies*
\(\sigma (f)\geq \sigma (P_{0})-\max \{\sigma (P_{j}),j\neq 0,1\}+1\).

### Remark 1.1

In Theorems 1.1 and 1.2, we require one coefficient in the equation to have one or several finite deficient value, but we do not know which one of \(P_{0}\) and \(P_{1}\) has faster growth, and this means there does not exist a dominating coefficient.

Recently, some results about the connections between complex dynamics with linear differential equations have been obtained; see [10, 14]. In the following, we shall consider Question 1.1 from the dynamical system point of view. Some notations of complex dynamics are needed; see [10].

Let \(f:\mathbb{C}\mapsto \widehat{\mathbb{C}}\) be a transcendental meromorphic function. Denote by \(f^{n}\), \(n\in \mathbb{N}\), the *n*th iterate of *f*, that is, \(f^{1}=f,\ldots ,f^{n}=f\circ (f^{n-1})\). The Fatou set of *f* is denoted by \(F(f)\), and the Julia set of *f* is defined by \(J(f)=\widehat{\mathbb{C}}\setminus F(f)\). Let *U* be a connected component of \(F(f)\), then \(f^{n}(U)\) is contained in a component of \(F(f)\), denoted by \(U_{n}\). We say *U* is a wandering domain, if \(U_{n}\cap U_{m}=\emptyset \). Furthermore, if *U* is wandering, and all \(U_{n}\) are multiply-connected and surround 0 and the Euclidean distance \(\operatorname{dist}(0,U_{n})\rightarrow \infty \) as \(n\rightarrow \infty \), then *U* is called a Baker wandering domain. The reader can refer to [2, 19] for more details.

### Definition 1.3

([17])

Let \(f(z)\) be a meromorphic function of order *σ*, where \(0<\sigma <\infty \). A ray \(\arg z=\theta _{0}\) (\(0\leq \theta _{0}<2\pi \)) is named a Borel direction of order *σ* of \(f(z)\), if for any positive number *ε*, the inequality

holds for any finite complex value *a*, with possibly one exceptional value, where \(n(r,\theta _{0}-\varepsilon ,\theta _{0}+\varepsilon ,f=a)\) denotes the number of zeros of \(f(z)-a\) in the region \((|z|\leq r) \cap (\theta _{0}-\varepsilon \leq \arg z\leq \theta _{0}+\varepsilon )\), multiple zeros being counted with their multiplicities.

Suppose that \(f(z)\) is an entire function of finite lower order \(\mu >0\). Let \(q\ (<\infty )\) denote the number of Borel directions and *p* denote the number of finite deficient values of \(f(z)\). Yang in [17] proved that \(p\leq \frac{q}{2}\). We will say that an entire function \(f(z)\) is extremal for Yang’s inequality if \(f(z)\) satisfies the assumptions of Definition 1.3 with \(p=\frac{q}{2}\).

Next, we consider Eq. (1) from the dynamical system point of view, and we can establish the following result.

### Theorem 1.3

*Let*
\(P_{j}(z)\) (\(j=0,\ldots ,n\)) *be entire functions*. *Suppose that*
\(P_{1}(z)\)
*is extremal for Yang’s inequality*, *and*
\(F(P_{0})\)
*has a Baker wandering domain*. *If*
\(\sigma (P_{j})<\sigma (P_{0})\)
*for*
\(j\neq 0,1\), *then every meromorphic solution*
\(f(z)\)
*of Eq*. (1) *satisfies*
\(\sigma (f)\geq \sigma (P_{0})-\max \{\sigma (P_{j}),j\neq 0,1\}+1\).

## Auxiliary results

In order to prove the theorems, we need some lemmas.

### Lemma 2.1

([1])

*Let*
\(f(z)\)
*be a transcendental meromorphic function*, \(0\leq \mu (f) <1\). *Then*, *for every*
\(\alpha \in (\mu (f), 1)\), *there exists a set*
\(E \subset [0, \infty )\)
*such that*
\(\overline{\log \operatorname{dens}}\,E \geq 1-\frac{\mu (f)}{\alpha }\), *where*

\(m(r)=\inf_{|z|=r}{\log |f(z)|}\), *and*
\(M(r)=\sup_{|z|=r}{\log |f(z)|}\).

### Lemma 2.2

([8])

*Let*
\(f(z)\)
*be a non*-*constant meromorphic function with finite order*
*σ*. *For any given*
\(\varepsilon >0\)
*and*
\(0< l<\frac{1}{2}\), *there exist a constant*
\(K(\sigma , \varepsilon )\)
*and a set*
\(E(\varepsilon )\subset [0, \infty )\)
*that satisfy the lower logarithmic density of*
\(\underline{\log \operatorname{dens}}\,E(\varepsilon )\geq 1-\varepsilon \), *such that*, *for*
\(r\in E(\varepsilon )\)
*and each interval*
*J*
*with a length of*
*l*, *we have*

### Lemma 2.3

([5])

*Let*
\(\eta _{1}\), \(\eta _{2}\)
*be two arbitrary complex numbers*, *and let*
\(f(z)\)
*be a meromorphic function of finite order*
*σ*. *Let*
\(\varepsilon >0\)
*be given*, *then there exists a subset*
\(E_{1}\subset \mathbf{R}\)
*with finite logarithmic measure such that*, *for all*
\(r\notin E_{1}\cup [0,1]\), *we have*

### Lemma 2.4

([5])

*Let*
\(f(z)\)
*be a meromorphic function of order*
\(\sigma (f)=\sigma <\infty \). *Then*, *for any given*
\(\varepsilon >0\), *there is a set*
\(E\subset (1, \infty )\)
*that has finite linear measure*
\(m\,E\)
*and finite logarithmic measure*
\(\mathit{lm}\,E\), *such that*, *for all*
*z*
*satisfying*
\(|z|=r\notin E\cup [0, 1]\),

### Lemma 2.5

([19])

*Let*
\(f(z)\)
*be a transcendental meromorphic function with at most finitely many poles*. *If*
\(f(z)\)
*has a Baker wandering domain*, *there exist a constant*
\(0< d<1\)
*and two sequences*
\(\{r_{n}\}\)
*and*
\(\{R_{n}\}\)
*of positive numbers with*
\(r_{n}\rightarrow \infty \)
*and*
\(\frac{R_{n}}{r_{n}}\rightarrow \infty\) (\(n\rightarrow \infty \)) *such that*

*where*
\(|z|=r\), \(G=\bigcup_{n=1}{\{r: r_{n}\leq r\leq R_{n}\}}\).

### Lemma 2.6

([15])

*Let*
\(f(z)\)
*be a meromorphic function of order*
\(0<\sigma <\infty \)
*having*
*p*
*finite deficient values*
\(a_{1}, a_{2}, \ldots , a_{p}\) (\(p\geq 1\)) *and let*
\(g(z)\)
*be a meromorphic function with finite order having a deficient value* ∞. *Suppose that*
\(\beta >1\)
*and*
\(0<\eta <\sigma (f)\)
*are two constants*. *Then there exists a sequence*
\(\{t_{n}\}\)
*such that*

Moreover, for every sufficiently large *n*, there is a set \(F_{n} \subset [t_{n}, (\beta +1)t_{n})\) with \(m(F_{n})\leq \frac{(\beta -1)t _{n}}{4}\) such that, for all \(R\in [t_{n}, \beta t_{n}]\setminus F _{n}\), the arguments *θ* sets \(E_{v}(R)\) (\(v=1, 2, \ldots , p\)) and \(E_{\infty }(R)\) satisfy the following inequalities:

and

where \(M_{1}\), \(M_{2}\) are two positive constants depending only on *f*, *g*, \(\delta _{0}= \min_{0\leq v\leq p}\delta (a _{v}, f)\), \(\delta _{1}=\delta (\infty , g)\), *β* and *η*.

### Lemma 2.7

([15])

*Let*
\(f(z)\in \mathit{EF}\), *then*, *for any given*
\(\varepsilon >0\) (*sufficiently small*) *and*
\(\beta >1\), *when*
*n*
*is sufficiently large*, *there exists a sequence of angular regions*
\(\overline{\varOmega }({\theta _{k}}_{v}, {{\theta _{k}}_{v}}+1, t_{n}, \beta t_{n})\), \(n=1, 2, 3, \ldots \) , \(v=1, 2, \ldots , p\), *such that*, *for every*
\(1\leq v\leq p\), *the inequality*

*holds for*
\(z\in \overline{\varOmega }({\theta _{k}}_{v}, {{\theta _{k}} _{v}}+1, t_{n}, \beta t_{n})\setminus \bigcup_{v=1}^{p}(\gamma _{v})_{n}\), *where*
\(\bigcup_{v=1}^{p}(\gamma _{v})_{n}\)
*is defined by Lemma *2.8
*with the sum of total radius not exceeding*
\(\frac{p}{8}\varepsilon t_{n}\)
*and*
\(t_{n}\), \(\beta t_{n}\), \(d= \min_{1\leq v \neq v'}\{|a _{v}-a_{v}'|\}\)
*and*
\(a_{v}\)
*are deficient values of*
\(f(z)\).

### Lemma 2.8

([16])

*Suppose that*
\(f(z)\)
*is extremal for Yang’s inequality*, *i*.*e*., \(f(z)\)
*is an entire function of lower order*
\(\mu <+ \infty \)
*and it satisfies*
\(p=\frac{q}{2}\)
*where*
*p* (\(1\leq p<+\infty \)) *denotes the number of finite deficient values and*
*q*
*denotes the number of Borel directions of order* ≥*μ*
*of*
\(f(z)\). *Then*, *for every deficient value*
\(a_{i}\) (\(i=1, 2, \ldots , p\)), *there exists a corresponding angular domain*
\(\varOmega (\theta _{k_{i}}, \theta _{k_{i}+1})\)
*such that for every*
\(\varepsilon >0\)
*the inequality*

*holds for*
\(z\in \varOmega (\theta _{k_{i}}+\varepsilon , \theta _{k_{i}+1}- \varepsilon , r_{\varepsilon }, +\infty )\), *where*
\(A(\theta _{k_{i}}, \theta _{k_{i}+1}, \varepsilon , \delta (a_{i}, f))\)
*is a positive constant depending only on*
\(\theta _{k_{i}}\), \(\theta _{k_{i}+1}\), *ε*, \(\delta (a_{i},f)\).

## Proof of Theorem 1.1

We divide our proof into two steps.

*Step* 1. In this step, we use the idea in [20] with some changes. According to Lemma 2.1, for any given constant \(\varepsilon >0\), there exists a set \(E_{1}=E_{1}\{r\in [0, \infty ): m(r)>M(r)\cos \pi \alpha _{0}\}\) with \(\overline{\log \operatorname{dens}}\,E_{1}\geq 1- \frac{\mu (P_{0})}{\alpha _{0}}\), where \(m(r)=\inf_{|z|=r}{\log |P_{0}(z)|}\), and \(M(r)=\sup_{|z|=r}{\log |P _{0}(z)|}\). Therefore, there exists some constant \(r_{0}\) such that, for \(r\in E_{1}\setminus [0, r_{0}]\), we have

Suppose \(P_{1}(z)\) has a finite deficient value *a*, and \(\delta (a, P _{1}(z))= 2\delta >0\). Then by the definition of deficiency, there exits a constant \(r_{1}\) such that, for each \(r>r_{1}>r_{0}\), \(m(r, \frac{1}{P _{1}-a})\geq \delta T(r, P_{1})\) holds. Hence, for \(r>r_{1}\), there exists \(z_{r}\) with \(|z_{r}|=r\) such that

Set \(0<\varepsilon _{0}<1-\frac{\mu (P_{0})}{\alpha _{0}}\). Applying Lemma 2.2 to \(P_{1}(z)-a\), we can choose sufficiently small \(l_{0}\) such that \(K(\sigma (P_{1}), \varepsilon _{0})l_{0}\log \frac{1}{l_{0}}<\frac{ \delta }{4}\), then, for every interval *J* with a length of \(l_{0}\) and all \(r>r_{1}>r_{0}\), \(r\in E(\varepsilon _{0})\), we have

where \(E(\varepsilon _{0})\) is the set of lower logarithmic density \(\underline{\log \operatorname{dens}}\,E(\varepsilon _{0})\geq {1-\varepsilon _{0}}\) determined by Lemma 2.2. Let \(z_{r}=re^{i\theta }\) and \(\phi _{0}=\frac{l _{0}}{4}\). It follows from (10)–(11) that, for all \(|z_{r}|=r\in E( \varepsilon _{0})\setminus [0, r_{1}]\) and \(\theta \in [\theta _{r}- \phi _{0}, \theta _{r}+\phi _{0}]\),

Therefore, for \(|z_{r}|=r\in E(\varepsilon _{0})\setminus [0,r_{1}]\) and \(\theta \in [\theta _{r}-\phi _{0}, \theta _{r}+\phi _{0}]\), we get

Set \(E=E(\varepsilon _{0})\cap E_{1}\). Clearly,

Hence,

Since \(\overline{\log \operatorname{dens}}\,E_{1}+\underline{\log \operatorname{dens}}\,E_{1}^{c}=1\) and \(\overline{\log \operatorname{dens}}\,E_{1}\geq 1-\frac{\mu (P_{0})}{\alpha _{0}}\), we have \(\underline{\log \operatorname{dens}}\,E_{1}^{c}\le \frac{\mu (P_{0})}{\alpha _{0}}\). Thus,

Therefore, from (9) and (12), for any sequence \(\{r_{n}\}\subset E\) and \(\theta _{n}\in [\theta _{r}-\phi _{0},\theta _{r}+\phi _{0}]\),

where \(z_{n}=r_{n}e^{i\theta _{n}}\).

*Step* 2. Now suppose that \(f(z)\) is a non-trivial meromorphic solution of Eq. (1) with \(\sigma (f)< \mu (P_{0})-\max \{\sigma (P_{j}),j \neq 0,1\}+1\). We shall seek a contradiction. Set \(\sigma =\sigma (f)\), \(\alpha =\max \{\sigma (P_{j}),j\neq 0,1\}\). From Eq. (1),

We may choose *ε* so that \(0<4\varepsilon < \mu (P_{0})- \alpha +1-\sigma \). By using Lemma 2.3, for *ε* there exists a set \(E_{2}\subset (1, \infty )\) with finite logarithmic measure \(\mathit{lm}\,E_{2}<\infty \) such that, for all \(|z|=r\notin E_{2}\cup [0, r_{1}]\), we have

Again by Lemma 2.4, there exists a set \(E_{3}\subset (1, \infty )\) with logarithmic measure \(\mathit{lm}\,E_{3}<\infty \) such that, for all \(|z|=r\notin E_{3}\cup [0, r_{1}]\), we have

It follows from (9), (12), (14), (15) and (16) that there exist \(r_{n}\subset E\setminus E_{2}\cup E_{3}\) and \(\theta _{n}\in [ \theta _{r_{n}}-\phi _{0}, \theta _{r_{n}}+\phi _{0}]\) such that, for \(z_{n}=r_{n}e^{i\theta _{n}}\), we have

Clearly \(\mu (P_{0})-\varepsilon \leq \sigma +\alpha -1+3\varepsilon \), and hence \(\mu (P_{0})-\sigma -\alpha +1\leq 4\varepsilon \). We have a contradiction.

## Proof of Theorem 1.2

Suppose that \(f(z)\neq 0\) is a meromorphic solution of Eq. (1) with \(\sigma (f)<\sigma (P_{0})-\max \{\sigma (P_{j}), j\neq 0, 1\}+1\). We shall seek a contradiction. Set \(\sigma =\sigma (f)<\infty \), \(\alpha =\max \{\sigma (P_{j}), j\neq 0, 1\}<\infty \). From Eq. (1), we have

First, we prove \(\sigma (P_{0})<\infty \). If \(\sigma (P_{0})=\infty \), by the difference logarithmic derivative lemma, we get

possible outside of a set *H* satisfying \(\limsup \frac{\int _{H\cap [1,r)} \frac{dt}{t}}{\log r}=0\). Clearly, this is a contradiction since \(\sigma (P_{j})<\infty \) for \(j\ne 0\) and \(\sigma (f)<\infty \). Hence, \(\sigma (P_{0})<\infty \).

Choose *ε* such that \(0<2\varepsilon <\sigma (P_{0})- \alpha -\sigma +1\). Applying Lemma 2.3 to \(f(z)\), there exist a positive constant \(r_{1}\) and a set \(E_{2}\subset [0, \infty )\) with \(m(E_{2})<\infty \) such that, for all *z* satisfying \(|z|=r\notin E _{2}\cup [0,r_{1}]\), we have

It follows from Lemma 2.4 that there exists a set \(E_{3}\subset (0, \infty )\) with logarithmic measure \(\mathit{lm}\,E_{3}<\infty \) such that, for all \(|z|=r\notin E_{3}\cup [0, 1]\), we have

Since \(P_{1}(z)\in \mathit{EF}\), we can assume that \(P_{1}(z)\) has *p* finite deficient values \(a_{1}, a_{2}, \ldots , a_{p}\) with \(\delta (a_{v},P_{1})>0\) for \(1\leq v\leq p\), and \(P_{1}\) has *p* zero-pole accumulation rays \(\arg z=\theta _{k}\)
\((0\leq \theta _{1}< \theta _{2}<\cdots <\theta _{p}, \theta _{p+1}=\theta _{1}+2 \pi )\). Set \(w= \min_{1\leq k\leq p-1}(\theta _{k+1}- \theta _{k})\).

Applying Lemma 2.6 to \(P_{0}(z)\), \(P_{1}(z)\), there exists a sequence of closed intervals \(\{[t_{n}, \beta t_{n}]\}\) with \(t_{n}\rightarrow \infty \), \(t_{n+1}>\beta t_{n}\) and a set \(F_{n}\subset [t_{n},( \beta +1)t_{n}]\) with \(m(F_{n})\leq \frac{(\beta -1)t_{n}}{4}\) and a sequence \(R_{n}\in [t_{n}, \beta t_{n}]\setminus F_{n}\) such that \(P_{0}(z)\), \(P_{1}(z)\) satisfy

and

where \(\theta \in [0, 2\pi )\) and \(M_{1}\), \(M_{2}\) are two positive constants depending only on \(P_{0}\), \(P_{1}\), \(\delta _{1}=\delta ( \infty , P_{0})\), \(\delta _{0}= \min_{0\leq v\leq p} \delta (a_{v}, P_{1})\), *β* and *η*.

Now we choose a sufficiently small \(\varepsilon _{0}\) so that \(0<\varepsilon _{0}<\min \{\frac{M_{1}}{8p},\frac{w}{2}, \frac{M_{2}}{8p}, \frac{\beta -1}{2p}\}\). It follows from Lemma 2.8 that the following inequalities:

hold for \(n\geq n_{1}>n_{0}\) and \(r_{n}e^{i\varphi }\in \bigcup_{v=1} ^{p}\overline{\varOmega }({{\theta _{k}}_{v}}_{+1}+2\varepsilon _{0}, {{\theta _{k}}_{v}}-2\varepsilon _{0}, t_{n}, \beta t_{n})\setminus \bigcup_{v=1}^{p}(\gamma _{v})_{n}\), where \(\bigcup_{v=1}^{p}{(\gamma _{v})}_{n}\) are some disks with the sum of total radius not exceeding \(\frac{p}{8}\varepsilon _{0}t_{n}<\frac{\beta -1}{16}t_{n}\), \(d= \min_{1\le v,v'\le p, v \neq v'}\{|a_{v}-a_{v}'|\}\) and \(a_{v}\), \(a_{v}'\) are deficient values of \(P_{1}(z)\).

It is easy to choose \(R^{*}_{n}\in [t_{n}, \beta t_{n}]\setminus (F _{n}\cup E_{2}\cup E_{3}\cup [0, 1])\) such that, for \(n\geq n_{0}\),

On the other hand, from Lemma 2.6, for such a sequence \(\{R^{*}_{n}\}\) and sufficiently large *n*, we also have

Clearly, by the choice of \(\varepsilon _{0}\), there exists some \(k_{v}\), \(1\leq k_{v}\leq p\), such that

Therefore, from (20), (22) and (24), we can choose \(\theta _{n}\in E _{\infty }(R^{*}_{n})\cap [{{\theta _{k}}_{v}}+2\varepsilon _{0}, {{{\theta _{k}}_{v}}}_{+1}-2\varepsilon _{0}]\) such that

and

hold simultaneously, where \(z_{n}=r_{n}e^{i\theta _{n}}\), \(\beta >1\), \(d= \min_{1\leq v \neq v'}\{|a_{v}-a_{v}'|\}\) and \(a_{v}\), \(a_{v}'\) are deficient values of \(P_{1}(z)\).

Rewrite (17) as

It follows from (18), (19), (25) and (26) that

Clearly \(\sigma (P_{0})\leq \alpha +\sigma -1+2\varepsilon \), and hence \(\sigma (f)\geq \sigma (P_{0})-\max \{\sigma (P_{j}), j\neq 0, 1\}+1+2 \varepsilon \). We have a contradiction.

## Proof of Theorem 1.3

Suppose that \(f\not \equiv 0\) is a meromorphic solution of Eq. (1) with \(\sigma (f)<\sigma (P_{0})-\max \{\sigma (P_{j}), j\neq 0 ,1\}+1\).

Since \(P_{1}(z)\) is extremal for Yang’s inequality, we can assume that \(a_{i}\) (\(i=1, 2, \ldots , 2p\)) are all the finite deficient values of \(P_{1}(z)\). By Lemma 2.8, for every deficient value \(a_{i}\), there exists a corresponding angular domain \(\varOmega (\theta _{j},\theta _{j+1})\) such that for every \(\varepsilon >0\) the inequality

holds for \(z\in \varOmega (\theta _{j}+\varepsilon , \theta _{j+1}-\varepsilon , r_{\varepsilon }, +\infty )\), where \(\varepsilon >0\) and \(A(\theta _{j}, \theta _{j+1}, \varepsilon , \delta (a_{i}, P_{1}))\) is a positive constant depending only on \(\theta _{j}\), \(\theta _{j+1}\), *ε* and \(\delta (a_{i}, f)\). Set \(C=A(\theta _{j}, \theta _{j+1}, \varepsilon , \delta (a_{i}, P_{1}))\) for brevity. Thus

Note that \(P_{0}(z)\) is a transcendental entire function with a Baker wandering domain. According to Lemma 2.5, there exists one integer \(d<1\) and two positive sequences \(\{r_{n}\}\), \(\{R_{n}\}\), such that \(\frac{R_{n}}{r_{n}}\rightarrow \infty \) as \(r_{n}\rightarrow \infty \), \(n\rightarrow \infty \) and \(|z|=r\), \(r\in G\), and we obtain

where \(G=\bigcup_{n=1}\{r: r_{n}\leq r\leq R_{n}\}\). Thus

Let \(0<2\varepsilon <\sigma (P_{0})-\sigma (f)-\alpha +1\). By Lemma 2.3, there exists a set \(E_{2}\subset [0, \infty )\) with finite linear measure and a constant \(\eta >0\) such that, for all *z* satisfying \(|z|=r\notin E_{2}\cup [0, 1]\), (18) holds. From Lemma 2.4, there still exists a set \(E_{3}\subset (0, \infty )\) with finite logarithmic measure such that, for all \(|z|=r\notin E_{3}\cup [0, 1]\), (19) holds.

Hence, for \(z=re^{i\theta }\), \(r\in G\setminus (E_{2}\cup E_{3}\cup [0, 1])\) and \(\theta \in (\theta _{j}, \theta _{j+1})\), we get

and

Rewriting Eq. (1), we have

Therefore, we deduce from (23), (24) and (28) that

Clearly \(\sigma (P_{0})\leq \sigma +\alpha -1+2\varepsilon \), that is, \(2\varepsilon \geq \sigma (P_{0})-\sigma (f)-\alpha +1\). We have a contradiction.

## References

Barry, P.D.: Some theorems related to the \(\cos \pi \rho \) theorem. Proc. Lond. Math. Soc.

**21**(2), 334–360 (1970)Bergweiler, W.: Iteration of meromorphic functions. Bull. Am. Math. Soc.

**29**, 151–188 (1993)Chen, Z.X.: Growth and zeros of meromorphic solution of some linear difference equations. J. Math. Anal. Appl.

**373**, 235–241 (2011)Chen, Z.X., Shon, K.H.: On growth of meromorphic solutions for linear difference equations. Abstr. Appl. Anal.

**2013**Article ID 619296 (2013)Chiang, Y.M., Feng, S.J.: On the Nevanlinna characteristic of \(f(z+\eta)\) and difference equations in the complex plane. Ramanujan J.

**16**(1), 105–129 (2008)Edrei, A., Fuchs, W.: On meromorphic functions with regions free of poles and zeros. Acta Math.

**108**(1), 113–145 (1962)Edrei, A., Fuchs, W.: Bounds for the number of deficient values of certain classes of meromorphic functions. Proc. Lond. Math. Soc.

**12**(1), 315–344 (1962)Fuchs, W.: Proof of a conjecture of G. Polya concerning gap series. Ill. J. Math.

**7**, 661–667 (1963)Hayman, W.K.: Meromorphic Functions. Clarendon, Oxford (1964)

Huang, Z., Wang, J.: On limit directions of Julia sets of linear differential equations. J. Math. Anal. Appl.

**409**, 478–484 (2014)Huang, Z.B., Chen, Z.X., Li, Q.: The properties of the meromophic solutions of some difference equations. Complex Var. Elliptic Equ.

**58**(7), 1023–1036 (2013)Laine, I.: Nevanlinna Theory and Complex Differential Equations. de Gruyter, Berlin (1993)

Laine, I., Yang, C.C.: Clunie theorems for difference and

*q*-difference polynomials. J. Lond. Math. Soc.**76**(3), 556–566 (2007)Wang, J., Chen, Z.X.: Limit directions of Julia sets of entire solutions to complex differential equations. Acta Math. Sci.

**37**(1), 97–107 (2017)Wu, P.C., Wu, S.J., Zhu, J.: On the growth of solutions of second order complex differential equation with meromorphic coefficients. J. Inequal. Appl.

**2012**, 117 (2012)Wu, S.J.: On angular distribution of meromorphic functions. Chin. Sci. Bull.

**38**(3), 85–185 (1993)Yang, L.: Deficient values and angular distribution of entire functions. Trans. Am. Math. Soc.

**308**(2), 583–601 (1988)Zhang, G.H.: Theory of Entire and Meromorphic Functions: Deficient and Asymptotic Values and Singular Directions. Translations of Mathematical Monographs, vol. 122. Am. Math. Soc., Providence (1993)

Zheng, J.H.: On multiply-connected Fatou components in iteration of meromorphic functions. J. Math. Anal. Appl.

**313**(1), 24–37 (2006)Zhu, J., Wu, P.C.: On the growth of solutions of the complex differential equations \(f''+Af'+Bf=0\) (II). Chin. J. Contemp. Math.

**32**(4), 531–538 (2011)

## Funding

The work was supported by NSF of Jiangsu Province (BK2010234), Project of Qinglan of Jiangsu Province.

## Author information

### Authors and Affiliations

### Contributions

Each of the authors contributed to each part of this study equally and approved the final version of this manuscript.

### Corresponding author

## Ethics declarations

### Competing interests

The authors declare that they have no competing interests.

## Additional information

### Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Rights and permissions

**Open Access** This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

## About this article

### Cite this article

Wei, DM., Huang, ZG. Growth of meromorphic solutions of linear difference equations without dominating coefficients.
*J Inequal Appl* **2019, **109 (2019). https://doi.org/10.1186/s13660-019-2065-z

Received:

Accepted:

Published:

DOI: https://doi.org/10.1186/s13660-019-2065-z

### MSC

- 30D35
- 39A32

### Keywords

- Complex difference equation
- Finite order
- Lower order
- Deficient value
- Wandering domain