Skip to main content

Approximation on parametric extension of Baskakov–Durrmeyer operators on weighted spaces


In the present manuscript, we define a non-negative parametric variant of Baskakov–Durrmeyer operators to study the convergence of Lebesgue measurable functions and introduce these as α-Baskakov–Durrmeyer operators. We study the uniform convergence of these operators in weighted spaces.

1 Introduction

In the field of mathematical analysis, Karl Weierstrass established an elegant theorem, the first Weierstrass approximation theorem, in 1885. This theorem has specially a big role in polynomial interpolation corresponding to every continuous function \(f(x)\) on interval \([a,b]\). The proof given by Weierstrass was rigorous and difficult to understand. In 1912, Bernstein [1] gave a simple proof of this theorem by introducing the Bernstein polynomials with the aid of the binomial distribution, hence for \(f\in C[0,1]\), we have

$$ B_{n}(f;x)=\sum_{k=0}^{n} \mathcal{S}_{n,k}(x)f \biggl(\frac{k}{n} \biggr),\quad n\in \mathbb{N}, 0\leq x\leq 1, $$

where \(\mathcal{S}_{n,k}(x)=\binom{n}{k}x^{k}(1-x)^{n-k}\). Many mathematicians researched in this direction and studied various modifications in several functional spaces using different error optimization techniques, i.e., Acar et al. [2,3,4,5,6,7], Acu et al. [8, 9], Barbosu [10], Agrawal et al. [11], Aral [12], Mursaleen et al. [13,14,15,16,17], Srivastava et al. [18,19,20]; for more details see also the references therein and [21,22,23,24,25,26,27,28,29,30].

2 Construction of the α-Baskakov–Durrmeyer operators and estimation of their moments

Recently, Cai, Lian and Zhou [31] presented a new sequence of α-Bernstein operators with \(\alpha \in [-1,1]\). Later, Ali Aral et al. [32] gave a sequence of α-Bernstein operators as follows:

$$ L_{n,\alpha }(f;x)=\sum_{k=0}^{\infty }f \biggl(\frac{k}{n} \biggr) \mathcal{S}_{n,k}^{(\alpha )}(x), \quad n\in \mathbb{N}, x\in [0,\infty ), $$

where \(f\in C_{B}[0,\infty )\) which denotes the set of all continuous and bounded functions and

$$\begin{aligned} \mathcal{S}_{n,k}^{(\alpha )}(x) =&\frac{x^{k-1}}{(1+x)^{n+k-1}} \biggl\{ \frac{\alpha x}{1+x}\binom{n+k-1}{k}-(1-\alpha ) (1+x) \binom{n+k-3}{k-2} \\ &{}+(1-\alpha )y\binom{n+k-1}{k} \biggr\} \end{aligned}$$


$$ \binom{n-3}{-2}=\binom{n-2}{-1}=0. $$

The operators defined by (2.1) are restricted for continuous functions only. To approximate the functions in Lebesgue measurable space, we design a new sequence of operators:

$$ L_{n,\alpha }^{*}(f;x)=\sum _{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \int _{0}^{\infty }\mathcal{Q}_{n,k}(t)f(t)\,dt, $$

where \(\mathcal{Q}_{n,k}(t)=\frac{1}{B(k+1,n)} \frac{t^{k}}{(1+t)^{(n+k+1)}}\). Note that, simply in the case of \(\alpha =1\), the operators reduced to Baskakov–Durrmeyer type operators; for details see [33].

For \(r\in \{0,1,2,3,4\}\), we consider the test functions and central moments,

$$ e_{r}=t^{r} \quad \mbox{and} \quad \psi _{y}^{r}(t;x)=(t-x)^{r}. $$

Lemma 2.1


We have

$$\begin{aligned}& L_{n,\alpha }(e_{0};x) = 1, \\& L_{n,\alpha }(e_{1};x) = x+\frac{2}{n}(\alpha -1), \\& L_{n,\alpha }(e_{2};x) = x^{2}+\frac{4\alpha -3}{n}x+ \frac{1}{n^{2}}(n+4 \alpha -4). \end{aligned}$$

Lemma 2.2

Let the test functions \(e_{r}\) defined by (2.3), then, for all \(L_{n,\alpha }^{*}\), we have

$$\begin{aligned}& L_{n,\alpha }^{*}(e_{0};x) = 1, \\& L_{n,\alpha }^{*}(e_{1};x) = \biggl(\frac{n}{n-1}+ \frac{2(\alpha -1)}{n-1} \biggr)x+\frac{1}{n-1}, \\& L_{n,\alpha }^{*}(e_{2};x) = \biggl(\frac{n^{2}}{(n-2)(n-1)}+ \frac{n(4 \alpha -3)}{(n-2)(n-1)} \biggr)x^{2}+ \frac{(4n+10\alpha -10)}{(n-2)(n-1)}x+ \frac{2}{(n-2)(n-1)}. \end{aligned}$$


Take \(f=e_{0}\), then from Lemma 2.1, we have

$$\begin{aligned} L_{n,\alpha }^{*}(e_{0};x) =&\sum _{k=0}^{\infty }\mathcal{S}_{n,k} ^{(\alpha )}(x) \int _{0}^{\infty }\mathcal{Q}_{n,k}(t)\,dt \\ =&\sum_{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \frac{B(k+1,n)}{B(k+1,n)} \\ =&\sum_{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \\ =&1. \end{aligned}$$

For \(r=1\)

$$\begin{aligned} L_{n,\alpha }^{*}(e_{1};x) =&\sum _{k=0}^{\infty }\mathcal{S}_{n,k} ^{(\alpha )}(x) \int _{0}^{\infty }t \mathcal{Q}_{n,k}(t)\,dt \\ =&\sum_{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \frac{B(k+2,n-1)}{B(k+1,n)} \\ =&\sum_{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \frac{(k+1)B(k+1,n)}{(n-1)B(k+1,n)} \\ =&\sum_{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \frac{(k+1)}{(n-1)} \\ =& \biggl(\frac{n}{n-1}+\frac{2(\alpha -1)}{n-1} \biggr)x+ \frac{1}{n-1}. \end{aligned}$$

For \(r=2\)

$$\begin{aligned} L_{n,\alpha }^{*}(e_{2};x) =&\sum _{k=0}^{\infty }\mathcal{S}_{n,k} ^{(\alpha )}(x) \int _{0}^{\infty }t^{2} \mathcal{Q}_{n,k}(t) \,dt \\ =&\sum_{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \frac{B(k+3,n-2)}{B(k+1,n)} \\ =&\sum_{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \frac{(k+2)(k+1)B(k+1,n)}{(n-2)(n-1)B(k+1,n)} \\ =&\sum_{k=0}^{\infty }\mathcal{S}_{n,k}^{(\alpha )}(x) \frac{(k+2)(k+1)}{(n-2)(n-1)} \\ =&\frac{n^{2}+n(4\alpha -3)}{(n-2)(n-1)}x^{2}+ \frac{(4n+10\alpha -10)}{(n-2)(n-1)}x+\frac{2}{(n-2)(n-1)}. \end{aligned}$$


Lemma 2.3

Let the operators given by (2.2). Then we have

$$\begin{aligned}& L_{n,\alpha }^{*}\bigl(\psi _{x}^{0};x\bigr) = 1, \\& L_{n,\alpha }^{*}\bigl(\psi _{x}^{1};x\bigr) = \frac{2\alpha -1}{n-1}x+ \frac{1}{n-1}, \\& L_{n,\alpha }^{*}\bigl(\psi _{x}^{2};x\bigr) = \frac{2n+2(4\alpha -3)}{(n-2)(n-1)}x^{2}+ \frac{2n+2(5\alpha -3)}{(n-2)(n-1)}x+\frac{2}{(n-2)(n-1)}. \end{aligned}$$


In view of Lemmas 2.1 and 2.2 we can apply the linearity and easily complete the proof. □

3 Approximation in Korovkin and weighted Korovkin spaces

Take \(C_{B}(\mathbb{R^{+}})\) be the space of all bounded and continuous functions defined on the set \(\mathbb{R^{+}}\), where \(\mathbb{R^{+}}=[0, \infty )\) and a normed defined on \(C_{B}\) as

$$ \Vert f \Vert _{C_{B}}=\sup _{x\geq 0} \bigl\vert f(x) \bigr\vert . $$


$$ E:=\biggl\{ f:x\in \mathbb{R^{+}} \text{ and } \lim _{x\rightarrow \infty } \biggl(\frac{f(x)}{1+x^{2}} \biggr)< \infty \biggr\} . $$

Lemma 3.1

For every \(f\in C[0,\infty )\cap E\) the operators \(L_{n,\alpha } ^{*}\) given in (2.2) are uniformly convergent to f on each compact subset of \([0,A]\), whenever \(A\in (0,\infty )\).


In the view of Korovkin-type property, it is enough to show that

$$ L_{n,\alpha }^{*}(e_{s};x)\rightarrow e_{s}(x), \quad \text{for } s=0,1,2. $$

From Lemma 2.2, obviously \(L_{n,\alpha }^{*}(e_{0};y)\rightarrow e_{0}(x)\) as \(n\rightarrow \infty \) and for \(s=1\)

$$ \lim_{n\rightarrow \infty } L_{n,\alpha }^{*}(e_{1};x)= \lim_{n\rightarrow \infty } \biggl(\frac{n+2(\alpha -1)}{n-1}x+ \frac{1}{n-1} \biggr)=e_{1}(x). $$

Similarly, we can prove for \(s=2\) that \(L_{n,\alpha }^{*}(e_{2};x) \rightarrow e_{2}\), which proves Proposition 3.1. □

Suppose \(C[0,\infty )\) is the set of all continuous functions and \(f\in C[0,\infty )\) with the weight function \(\sigma (x)=1+x^{2}\),

$$\begin{aligned}& \mathfrak{P}_{\sigma }(x) = \bigl\{ f: \bigl\vert f(x) \bigr\vert \leq \mathcal{M}_{f}\sigma (x), x\in [0,\infty ) \bigr\} , \\& \mathfrak{Q}_{\sigma }(x) = \bigl\{ f:f\in C[0,\infty )\cap \mathfrak{P}_{\sigma }(x) , x\in [0,\infty ) \bigr\} , \\& \mathfrak{Q}_{\sigma }^{m}(x) = \biggl\{ f:f\in \mathfrak{Q}_{\sigma }(x), \lim_{x\rightarrow \infty }\frac{f(x)}{\sigma (x)}=m, x\in [0,\infty ) \biggr\} , \end{aligned}$$

where the norm defined on weight function σ such as \(\Vert f \Vert _{\sigma }=\sup_{x\in [0,\infty )}\frac{ \vert f(x) \vert }{\sigma (x)}\) and the constant \(\mathcal{M}_{f}\) depends only on f.

Theorem 3.2

For all \(f\in \mathfrak{Q}_{\sigma }^{m}(x)\) the operators \(L_{n,\alpha }^{*}( \cdot\, ; \cdot )\) defined by (2.2) satisfy

$$ \lim_{n\to \infty } \bigl\Vert L_{n,\alpha }^{*}(f;x)-f \bigr\Vert _{ \sigma }=0. $$


Take \(f(t) \in \mathfrak{Q}_{\sigma }^{m}(x)\) with \(x\in [0,\infty )\) and \(f(t)=e_{\nu }\) for \(\nu =0,1,2\). Then from the well-known Korovkin theorem \(L_{n,\alpha }^{*}(e_{\nu };x)\rightarrow x^{\nu }\), satisfying the properties of uniformly behaving as \(n \to \infty \). Since for \(\nu =0\), from Lemma 2.2 \(L_{n,\alpha }^{*}(e_{0};x)=1\), thus we have

$$ \bigl\Vert L_{n,\alpha }^{*} (e_{0};x ) -1 \bigr\Vert _{\sigma } =0. $$

For \(\nu =1\), we have

$$\begin{aligned} \bigl\Vert L_{n,\alpha }^{*} (e_{1};x ) -x \bigr\Vert _{\sigma } &= \sup_{x \in [0,\infty )}\frac{ \vert L _{n,\alpha }^{*}(e_{1};x)-x \vert }{1+x^{2}} \\ &= \biggl(\frac{n+2(\alpha -1)}{n-1}-1 \biggr)\sup_{x \in [0,\infty )} \frac{x}{1+x ^{2}}+\frac{1}{(n-1)}\sup_{x \in [0,\infty )} \frac{1}{1+x^{2}}. \end{aligned}$$

As \(n \to \infty \),

$$ \bigl\Vert L_{n,\alpha }^{*} (e_{1};x ) -x \bigr\Vert _{\sigma } =0. $$

In a similar way for \(\nu =2\),

$$\begin{aligned} & \bigl\Vert L_{n,\alpha }^{*} (e_{2};x ) -x^{2} \bigr\Vert _{\sigma } \\ &\quad = \sup_{y \in [0,\infty )}\frac{ \vert L_{n,\alpha }^{*}(e_{2};x)-x ^{2} \vert }{1+x^{2}} \\ &\quad = \biggl(\frac{n^{2}+n(4\alpha -3)}{(n-2)(n-1)}-1 \biggr) \sup_{x \in [0,\infty )} \frac{x^{2}}{1+x^{2}} \\ &\qquad {} + \biggl(\frac{4n+10\alpha -10}{(n-2)(n-1)} \biggr)\sup_{x \in [0, \infty )} \frac{x}{1+x^{2}}+ \frac{2}{(n-2)(n-1)}\sup_{x \in [0, \infty )} \frac{1}{1+x^{2}}, \\ & \bigl\Vert L_{n,\alpha }^{*} (e_{2};x ) -x^{2} \bigr\Vert _{\sigma } =0 \quad \text{when } n \to \infty. \end{aligned}$$

This completes the proof. □

4 Pointwise approximation properties by \(L_{n,\alpha }^{*}\)

Here, we study the order of approximation of a function f with the aid of positive linear operators \(L_{n,\alpha }^{*}(f;x)\) defined by (2.2) in terms of the classical modulus of continuity, the second-order modulus of continuity, Peetres K-functional and the Lipschitz class. A well-known property is the modulus of continuity of order one and of order two defined as follows. For \(\delta >0\) and \(f\in C[a,b]\) the classical modulus of continuity of order one is given by

$$ \omega (f;\delta )=\sup_{x_{1},x_{2}\in [a,b], |x_{1}-x_{2}|\leq \delta } \bigl\vert f(x_{1})-f(x _{2}) \bigr\vert , $$

and of order two it is given by

$$ \omega _{2}\bigl(f;\delta ^{\frac{1}{2}}\bigr)=\sup _{0< h< \delta ^{\frac{1}{2}}} \sup_{x\in \mathbb{R}^{+}} \bigl\vert f(x)-2f(x+h)+f(x+2h) \bigr\vert . $$

Let \(C_{B}[0,\infty )\) denote the space of all bounded and continuous functions on \([0,\infty )\) and

$$ C_{B}^{2}[0,\infty )=\bigl\{ \psi \in C_{B}[0, \infty ):\psi ^{\prime }, \psi ^{\prime \prime }\in C_{B}[0,\infty ) \bigr\} , $$

with the norm

$$ \Vert \psi \Vert _{C_{B}^{2}[0,\infty )}= \Vert \psi \Vert _{C_{B}[0,\infty )}+ \bigl\Vert \psi ^{\prime } \bigr\Vert _{C_{B}[0,\infty )}+ \bigl\Vert \psi ^{\prime \prime } \bigr\Vert _{C_{B}[0,\infty )}, $$


$$ \Vert \psi \Vert _{C_{B}[0,\infty )}=\sup_{x\in [0,\infty )} \bigl\vert \psi (x) \bigr\vert . $$

Lemma 4.1


Let \(\{P_{n}\}_{n\geq 1}\) be the sequence for the positive integer n with \(P_{n}(1;x)=1\). Then for every \(\psi \in C_{B}^{2}[0,\infty )\)

$$ \bigl\vert P_{n}(\psi ;x)-\psi (x) \bigr\vert \leq \bigl\Vert g' \bigr\Vert \sqrt{P_{n}\bigl((s-x)^{2};x \bigr)}+ \frac{1}{2} \bigl\Vert \psi '' \bigr\Vert P_{n}\bigl((s-x)^{2};x\bigr). $$

Lemma 4.2


For all \(f\in C[a,b]\) and \(h\in (0,\frac{b-a}{2} ) \), we have the following inequalities:

$$\begin{aligned} (\mathrm{i})&\quad \Vert f_{h}-f \Vert \leq \frac{3}{4} \omega _{2}(f,h), \\ (\mathrm{ii})&\quad \bigl\Vert f_{h}'' \bigr\Vert \leq \frac{3}{2h^{2}}\omega _{2}(f,h), \end{aligned}$$

where \(f_{h}\) denotes the second-order Steklov function.

Theorem 4.3

For all \(f\in C_{B}[0,\infty )\) and \(x\in [0,a]\), \(a>0\) we have

$$ \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq 2\omega \bigl(f; \sqrt{\varTheta _{n}(x)} \bigr), $$

where \(\varTheta _{n}(x)=L_{n,\alpha }^{*}(\psi _{x}^{2};x)\) and \(L_{n,\alpha }^{*}(\psi _{x}^{2};x)\) is defined by Lemma 2.3.


In view of the classical modulus of continuity, we have

$$\begin{aligned} \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq & \sum _{k=0}^{\infty }\mathcal{S} _{n,k}^{(\alpha )}(x) \int _{0}^{\infty }\mathcal{Q}_{n,k}(t) \bigl\vert f(t)-f(x) \bigr\vert \,dt \\ \leq & \Biggl\{ 1+\frac{1}{\delta }\sum_{k=0}^{\infty } \mathcal{S}_{n,k} ^{(\alpha )}(x) \int _{0}^{\infty }\mathcal{Q}_{n,k}(t) \vert t-x \vert \,dt \Biggr\} \omega (f;\delta ). \end{aligned}$$

In the light of the Cauchy–Schwartz inequality, we get

$$\begin{aligned} \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq & \Biggl\{ 1+\frac{1}{\delta } \Biggl(\sum_{k=0}^{\infty } \mathcal{S}_{n,k}^{(\alpha )}(x) \int _{0}^{\infty } \mathcal{Q}_{n,k}(t) (t-x)^{2}\,dt \Biggr)^{\frac{1}{2}} \Biggr\} \omega (f;\delta ) \\ =& \biggl\{ 1+\frac{1}{\delta } \sqrt{L_{n,\alpha }^{*} \bigl(\psi _{x}^{2};x\bigr)} \biggr\} \omega (f;\delta ). \end{aligned}$$

Choosing \(\delta = (\varTheta _{n}(x) )^{\frac{1}{2}}=\sqrt{ L_{n,\alpha }^{*}(\psi _{x}^{2};x)}\), we arrive at the desired result. □

Theorem 4.4

For every \(f\in C[0,a]\), \(a>0\) the operators \(L_{n,\alpha }^{*}( \cdot\, ; \cdot )\) defined by (2.2) satisfy

$$ \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq \frac{2}{a} \Vert f \Vert \delta ^{2}+ \frac{3}{4} \bigl(a+2+h^{2}\bigr)\omega _{2}(f;\delta ), $$

where \(\delta = (\varTheta _{n}(x) )^{\frac{1}{2}}\) is defined by Theorem 4.3 and \(\omega _{2}(f;\delta )\) is by (4.1) equipped with the norm \(\Vert f \Vert =\max_{x\in [a,b]}|f(x)|\).


Consider \(f_{h}\) is the Steklov function define in Lemma 4.2. Using Lemma 2.2, we obtain

$$\begin{aligned} \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq & \bigl\vert L_{n,\alpha }^{*}(f-f_{h};x) \bigr\vert + \bigl\vert f _{h}-f(x) \bigr\vert + \bigl\vert L_{n,\alpha }^{*}(f_{h};x)-f_{h}(x) \bigr\vert \\ \leq & 2 \Vert f_{h}-f \Vert + \bigl\vert L_{n,\alpha }^{*}(f_{h};x)-f_{h}(x) \bigr\vert . \end{aligned}$$

In view of the fact that \(f_{h}\in C^{2}[0,a]\) and using Lemma 4.1, we obtain

$$ \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq \bigl\Vert f_{h}' \bigr\Vert \sqrt {L_{n,\alpha }^{*}\bigl((e _{1}-x)^{2};x \bigr)}+\frac{1}{2} \bigl\Vert f''_{h} \bigr\Vert L_{n,\alpha }^{*}\bigl((e_{1}-x)^{2};x \bigr). $$

From the Landau inequality and Lemma 4.2, we have

$$\begin{aligned} \Vert f_{h} \Vert \leq &\frac{2}{a} \Vert f_{h} \Vert +\frac{a}{2} \bigl\Vert f_{h}'' \bigr\Vert \\ \leq &\frac{2}{a} \Vert f_{h} \Vert +\frac{3a}{4} \frac{1}{h^{2}}\omega _{2}(f;h). \end{aligned}$$

On choosing \(\delta = (\varTheta _{n}(x) )^{\frac{1}{4}}\), one has

$$ \bigl\vert L_{n,\alpha }^{*}(f_{h};x)-f_{h}(x) \bigr\vert \leq \frac{2}{a} \Vert f \Vert h^{2}+ \frac{3a}{4}\omega _{2}(f;h)+\frac{3}{4}h^{2} \omega _{2}(f;h). $$

Combining (4.6), (4.5) and Lemma 4.2, we obtain the required result. □

Theorem 4.5

Let \(L_{n,\alpha }^{*}( \cdot\, ; \cdot )\) be the operators defined by (2.2). Then, for every \(f\in C_{B}^{2}[0,\infty )\),

$$ \lim_{n\rightarrow \infty }(n-1) \bigl(L_{n,\alpha }^{*}(f;x)-f(x) \bigr)=\bigl(1+2 \alpha x-x^{2}\bigr)f'(x)+2 \bigl(x+x^{2}\bigr)f''(x), $$

uniformly for \(0\leq x\leq a\), \(a>0\).


Let \(x_{0}\in [0,\infty )\) be a fixed number; all \(x\in [0,\infty )\). Then using Taylor’s series, we have

$$ f(x)-f(x_{0})=(x-x_{0})f'(x_{0})+ \frac{1}{2}(x-x_{0})^{2}f''(x_{0})+ \varphi (x,x_{0}) (x-x_{0})^{2}, $$

where \(\varphi (x,x_{0})\in C_{B}[0,\infty )\) and \(\lim_{x\rightarrow x_{0}}\varphi (x,x_{0})=0\).

By applying the operators \(L_{n,\alpha }^{*}\) on (4.7), we deduce

$$\begin{aligned} L_{n,\alpha }^{*}(f;x_{0})-f(x_{0}) =&f'(x_{0})L_{n,\alpha }^{*}(e _{1}-x_{0};x_{0})+\frac{1}{2}L_{n,\alpha }^{*} \bigl((x-x_{0})^{2};x_{0}\bigr)f''(x _{0}) \\ &{}+L_{n,\alpha }^{*}\bigl(\varphi (x,x_{0}) (x-x_{0})^{2}\bigr). \end{aligned}$$

In view of the Cauchy–Schwartz inequality for the last term of Eq. (4.8), we get

$$ (n-1)L_{n,\alpha }^{*}\bigl(\varphi (x,x_{0}) (t-x_{0})^{2}\bigr)\leq (n-1)^{2}\sqrt{L _{n,\alpha }^{*} \bigl((e_{1}-x_{0})^{2}\bigr)L_{n,\alpha }^{*} \bigl(\varphi ^{2}(x,x _{0})\bigr)}. $$

We have

$$\begin{aligned}& \lim_{n\rightarrow \infty }(n-1) \bigl(L_{n,\alpha }^{*}(e_{0}-x _{0};x) \bigr) = \bigl(1+2\alpha x-x^{2} \bigr)f'(x), \\& \lim_{n\rightarrow \infty }(n-1) \bigl(L_{n,\alpha }^{*}\bigl((e _{0}-x_{0})^{2};x\bigr) \bigr) = 2 \bigl(x+x^{2}\bigr)f''(x), \\& \lim_{n\rightarrow \infty } \bigl(L_{n,\alpha }^{*} \bigl((e_{0}-x _{0})^{4};x\bigr) \bigr) = 0. \end{aligned}$$

This completes the proof. □

Now here we estimate the rate of convergence in terms of the usual Lipschitz class \(\operatorname{Lip}_{M}(\nu )\). Let \(f\in C[0,a )\), \(a>0\) and M be a positive constant, and, for any \(\nu \in (0,1]\), the Lipschitz class \(\operatorname{Lip}_{M}(\nu )\) is as follows:

$$ \operatorname{Lip}_{M}(\nu )= \bigl\{ f: \bigl\vert f(\varsigma _{1})-f(\varsigma _{2}) \bigr\vert \leq M \vert \varsigma _{1}-\varsigma _{2} \vert ^{\nu }\ \bigl( \varsigma _{1}, \varsigma _{2}\in [ 0,\infty)\bigr) \bigr\} . $$

Theorem 4.6

Let \(f\in \operatorname{Lip}_{M}(\nu )\) with \(M>0\) and \(0<\nu \leq 1\). Then the operators \(L_{n,\alpha }^{*}( \cdot\, ; \cdot )\) satisfy

$$ \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq M \bigl( \varTheta _{n}(x) \bigr) ^{\frac{\nu }{2}}, $$

where \(n>2\) and \(\varTheta _{n}(x)\) defined by Theorem 4.3.


From the Hölder inequality and (4.10), we conclude

$$\begin{aligned} \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq & \bigl\vert L_{n,\alpha }^{*}\bigl(f(t)-f(x);x\bigr) \bigr\vert \\ \leq &L_{n,\alpha }^{*} \bigl( \bigl\vert f(t)-f(x) \bigr\vert ;x \bigr) \\ \leq & ML_{n,\alpha }^{*} \bigl( \vert t-x \vert ^{\nu };x \bigr) . \end{aligned}$$


$$\begin{aligned}& \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \\& \quad \leq M \sum_{k=0}^{\infty } \mathcal{S}_{n,k}^{(\alpha )}(x) \int _{0}^{\infty }\mathcal{Q}_{n,k}(t) \vert t-x \vert ^{\nu }\,dt \\& \quad \leq M \sum_{k=0}^{\infty } \bigl( \mathcal{S}_{n,k}^{( \alpha )}(x) \bigr)^{\frac{2-\nu }{2}} \\& \qquad {} \times \bigl(\mathcal{S}_{n,k}^{(\alpha )}(x) \bigr)^{\frac{ \nu }{2}} \int _{0}^{\infty }\mathcal{Q}_{n,k}(t) \vert t-x \vert ^{\nu }\,dt \\& \quad \leq M \Biggl(\sum_{k=0}^{\infty } \mathcal{S}_{n,k}^{(\alpha )}(x) \int _{0}^{\infty }\mathcal{Q}_{n,k}(t)\,dt \Biggr)^{\frac{2-\nu }{2}} \\& \qquad {} \times \Biggl(\sum_{k=0}^{\infty } \mathcal{S}_{n,k}^{(\alpha )}(x) \int _{0}^{\infty }\mathcal{Q}_{n,k}(t) \vert t-x \vert ^{2} \,dt \Biggr) ^{\frac{\nu }{2}} \\& \quad = M \bigl(L_{n,\alpha }^{*}\bigl(\psi _{x}^{2};x \bigr) \bigr)^{\frac{ \nu }{2}}. \end{aligned}$$

This completes the proof. □

Theorem 4.7

For all \(\psi \in C_{B}^{2}{}[ 0,\infty )\) and \(n>2\),

$$ \bigl\vert L_{n,\alpha }^{*}(\psi ;x)-\psi (x) \bigr\vert \leq \biggl(\Delta _{n}(x)+\frac{ \varTheta _{n}(x)}{2} \biggr) \Vert \psi \Vert _{C_{B}^{2}{}[ 0,\infty )}, $$

where \(\Delta _{n}(x)= (\frac{2\alpha -1}{n-1}x+\frac{1}{n-1} )\) and \(\varTheta _{n}(x)\) is defined by Theorem 4.3.


Let \(\psi \in C_{B}^{2}(\mathbb{R}^{+})\); for all \(\varphi \in (x,t)\) a Taylor series expansion is

$$ \psi (t)=\frac{(t-x)^{2}}{2}\psi ^{\prime \prime }(\varphi )+(t-x) \psi ^{\prime }(x)+\psi (x). $$

On applying \(L_{n,\alpha }^{*}\), using linearity,

$$ L_{n,\alpha }^{*}(\psi ;x)-\psi (x)=\psi ^{\prime }(x)L_{n,\alpha } ^{*} \bigl( (t-x);x \bigr) + \frac{\psi ^{\prime \prime }(\varphi )}{2}L_{n,\alpha }^{*} \bigl( (t-x)^{2};x \bigr) , $$

which implies that

$$\begin{aligned}& \bigl\vert L_{n,\alpha }^{*}(\psi ;x)-\psi (x) \bigr\vert \\& \quad \leq \biggl(\frac{2\alpha -1}{n-1}x+\frac{1}{n-1} \biggr) \bigl\Vert \psi ^{\prime } \bigr\Vert _{C_{B}{}[ 0,\infty )} \\& \qquad {}+ \biggl\{ \frac{2n+2(4\alpha -3)}{(n-2)(n-1)}x^{2}+\frac{2n+2(5 \alpha -3)}{(n-2)(n-1)}x+ \frac{2}{(n-2)(n-1)} \biggr\} \frac{ \Vert \psi ^{\prime \prime } \Vert _{C_{B}{}[ 0,\infty )}}{2}. \end{aligned}$$

From (4.3) we have \(\Vert \psi ^{\prime } \Vert _{C_{B}{}[ 0,\infty )}\leq \Vert \psi \Vert _{C_{B}^{2}{}[ 0,\infty )}\), \(\Vert \psi ^{\prime \prime } \Vert _{C_{B}{}[ 0,\infty )}\leq \Vert \psi \Vert _{C_{B}^{2}{}[ 0,\infty )}\).

$$\begin{aligned}& \bigl\vert L_{n,\alpha }^{*}(\psi ;x)-\psi (x) \bigr\vert \\& \quad \leq \biggl(\frac{2\alpha -1}{n-1}x+\frac{1}{n-1} \biggr) \Vert \psi \Vert _{C_{B}^{2}{}[ 0,\infty )} \\& \qquad {}+ {\biggl\{ } \frac{2n+2(4\alpha -3)}{(n-2)(n-1)}x^{2}+\frac{2n+2(5 \alpha -3)}{(n-2)(n-1)}x+ \frac{2}{(n-2)(n-1)} {\biggr\} } \frac{ \Vert \psi \Vert _{{}[ 0,\infty )}}{2}. \end{aligned}$$

This completes the proof. □

In 1968 [34] for investigating the interpolation between two Banach spaces Peetre introduced the K-functional by

$$ K_{2}(f;\delta )=\inf_{C_{B}^{2}{}[ 0,\infty )} \bigl\{ \bigl( \Vert f-\psi \Vert _{C_{B}{}[ 0,\infty )}+\delta \Vert \psi \Vert _{C_{B}^{2}{}[ 0,\infty )} \bigr) :\psi \in C_{B} ^{2}{}[ 0,\infty ) \bigr\} $$

and a positive constant \(\mathfrak{D}\) exists such that \(K_{2}(f; \delta )\leq \mathfrak{D} \omega _{2}(f;\delta ^{\frac{1}{2}})\) with \(\delta >0\) and \(\omega _{2}(f;\delta )\) is the second-order modulus of continuity.

Theorem 4.8

Suppose \(C_{B}{}[ 0,\infty )\) is the set of all bounded and continuous functions on \({}[ 0,\infty )\). Then for every \(f\in C_{B}{}[ 0,\infty )\)

$$ \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq 2 \mathfrak{D} \bigl\{ \omega _{2} \bigl( f;\sqrt{\mathfrak{K}_{n}(x)} \bigr) + \min \bigl( 1,\mathfrak{K}_{n}(x) \bigr) \Vert f \Vert _{C_{B}{}[ 0,\infty )}\bigr\} , $$

where \(\mathfrak{K}_{n}(x)=\frac{2\Delta _{n}(x)+\varTheta _{n}(x)}{4}\) is defined by Theorem 4.7.


In the light of results obtained by Theorem 4.7, we prove the desired theorem; hence

$$\begin{aligned} \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq& \bigl\vert L_{n,\alpha }^{*}(f- \psi ;x) \bigr\vert + \bigl\vert f(x)-\psi (x) \bigr\vert + \bigl\vert L_{n,\alpha }^{*}(\psi ;x)- \psi (x) \bigr\vert \\ \leq& 2 \Vert f-\psi \Vert _{C_{B}{}[ 0,\infty )}+ \biggl(\frac{ \varTheta _{n}(x)}{2}+ \Delta _{n}(x) \biggr) \Vert \psi \Vert _{C_{B}^{2}{}[ 0,\infty )} \\ =& 2 \biggl( \Vert f-\psi \Vert _{C_{B}{}[ 0,\infty )}+ \biggl(\frac{\varTheta _{n}(x)}{4}+ \frac{\Delta _{n}(x)}{2} \biggr) \Vert \psi \Vert _{C_{B}^{2}{}[ 0,\infty )} \biggr). \end{aligned}$$

If we take the infimum over all \(\psi \in C_{B}^{2}{}[ 0,\infty )\) and we use (4.11), we get

$$ \bigl\vert L_{n,\alpha }^{*}(f;x)-f(x) \bigr\vert \leq 2K_{2} \biggl( f; \biggl(\frac{ \varTheta _{n}(x)}{4}+\frac{\Delta _{n}(x)}{2} \biggr) \biggr). $$

Now from [35] we use the relation for an absolute constant \(\mathfrak{D}>0\)

$$ K_{2}(f;\delta )\leq \mathfrak{D}\bigl\{ \omega _{2}(f; \sqrt{\delta })+ \min (1,\delta ) \Vert f \Vert \bigr\} . $$

This completes the proof. □

5 Conclusion and observations

The manuscript parametric variant of Baskakov–Durrmeyer operators is a new extension of Baskakov Durrmeyer type operators. In the present investigation in our manuscript in order to get uniform convergence for the operators of the α-type extended version we study the order of approximation, the rate of convergence, the Korovkin-type, the weighted Korovkin-type approximation theorems, Peetres K-functional, Lipschitz functions and a set of direct theorems. It must be noted that we have more modeling flexibility when adding the parameter α to the Baskakov–Durrmeyer operators.


  1. Bernstein, S.N.: Démonstration du Théorème de Weierstrass fondée sur le calcul de probabilités. Commun. Soc. Math. Kharkow 13(2), 1–2 (1912–1913)

  2. Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Baskakov operators. J. Inequal. Appl. 2016, Article ID 98 (2016)

    Article  MathSciNet  Google Scholar 

  3. Acar, T., Agrawal, P.N., Kumar, A.S.: On a modification of \((p,q)\)-Szász–Mirakyan operators. Complex Anal. Oper. Theory 12(1), 155–167 (2018)

    Article  MathSciNet  Google Scholar 

  4. Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Bernstein operators. Iran. J. Sci. Technol., Trans. A, Sci. 42, 1459–1464 (2018)

    Article  MathSciNet  Google Scholar 

  5. Acar, T., Mursaleen, M., Mohiuddine, S.A.: Stancu type \((p,q)\)-Szász–Mirakyan–Baskakov operators. Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat. 67(1), 116–128 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Acar, T., Aral, A., Mohiuddine, S.A.: Approximation by bivariate \((p,q)\)-Bernstein–Kantorovich operators. Iran. J. Sci. Technol., Trans. A, Sci. 42, 655–662 (2018)

    Article  MathSciNet  Google Scholar 

  7. Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by \((p,q)\)-Baskakov–Durrmeyer–Stancu operators. Complex Anal. Oper. Theory 12, 1453–1468 (2018)

    Article  MathSciNet  Google Scholar 

  8. Acu, A.M., Muraru, C.V.: Approximation properties of bivariate extension of q-Bernstein–Schurer–Kantorovich operators. Results Math. 67(3–4), 265–279 (2015)

    Article  MathSciNet  Google Scholar 

  9. Acu, A.M.: Stancu–Schurer–Kantorovich operators based on q-integers. Appl. Math. Comput. 259, 896–907 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Bărbosu, D.: Some applications of Shisha–Mond theorem. Creative Math. Inform. 23(2), 141–146 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Agrawal, P.N., Kumar, D., Araci, S.: Linking of Bernstein–Chlodowsky and Szász–Appell–Kantorovich type operators. J. Nonlinear Sci. Appl. 10(6), 3288–3302 (2017)

    Article  MathSciNet  Google Scholar 

  12. Aral, A., Acar, T.: Weighted approximation by new Bernstein–Chlodowsky–Gadjiev operators. Filomat 27(2), 371–380 (2013)

    Article  MathSciNet  Google Scholar 

  13. Mursaleen, M., Ansari, K.J., Khan, A.: On \((p,q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015) & [MR3377604], Appl. Math. Comput. 278, 70–71 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Mursaleen, M., Nasiruzzaman, M., Nurgali, A.: Some approximation results on Bernstein–Schurer operators defined by \((p,q)\)-integers. J. Inequal. Appl. 2015, Article ID 249 (2015)

    Article  MathSciNet  Google Scholar 

  15. Mursaleen, M., Khan, F., Khan, A.: Approximation by Kantorovich type q-Bernstein–Stancu operators. Complex Anal. Oper. Theory 11(1), 85–107 (2017)

    Article  MathSciNet  Google Scholar 

  16. Khan, A., Sharma, V.: Statistical approximation by \((p,q)\)-analogue of Bernstein–Stancu operators. Azerb. J. Math. 8(2), 100–121 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Alotaibi, A., Nasiruzzaman, M., Mursaleen, M.: A Dunkl type generalization of Szász operators via post-quantum calculus. J. Inequal. Appl. 2018, Article ID 287 (2018)

    Article  Google Scholar 

  18. Srivastava, H.M., Jena, B.B., Paikray, S.K., Misra, U.K.: A certain class of weighted statistical convergence and associated Korovkin-type approximation theorems involving trigonometric functions. Math. Methods Appl. Sci. 41, 671–683 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Srivastava, H.M., Mursaleen, M., Alotaibi, A., Nasiruzzaman, M., Al-Abied, A.: Some approximation results involving the q-Szász–Mirakjan–Kantorovich type operators via Dunkl’s generalization. Math. Methods Appl. Sci. 40, 5437–5452 (2017)

    Article  MathSciNet  Google Scholar 

  20. Srivastava, H.M., Özger, F., Mohiuddine, S.A.: Construction of Stancu-type Bernstein operators based on Bézier bases with shape parameter λ. Symmetry 11, 316 (2019).

    Article  Google Scholar 

  21. Wafi, A., Rao, N.: Szász–Durrmeyer operators based on Dunkl analogue. Complex Anal. Oper. Theory (2018).

    Article  MATH  Google Scholar 

  22. Rao, N., Wafi, A., Acu, A.M.: q-Szász–Durrmeyer type operators based on Dunkl analogue. Complex Anal. Oper. Theory (2018).

    Article  Google Scholar 

  23. Kadak, U.: On weighted statistical convergence based on \((p,q)\)-integers and related approyimation theorems for functions of two variables. J. Math. Anal. Appl. 443(2), 752–764 (2016)

    Article  MathSciNet  Google Scholar 

  24. Kadak, U.: Weighted statistical convergence based on generalized difference operator involving \((p,q)\)-gamma function and its applications to approximation theorems. J. Math. Anal. Appl. 448(2), 1633–1650 (2017)

    Article  MathSciNet  Google Scholar 

  25. Milovanovic, G.V., Mursaleen, M., Nasiruzzaman, M.: Modified Stancu type Dunkl generalization of Szász–Kantorovich operators. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 112, 135–151 (2018)

    Article  MathSciNet  Google Scholar 

  26. Mohiuddine, S.A., Acar, T., Alotaibi, A.: Construction of a new family of Bernstein–Kantorovich operators. Math. Methods Appl. Sci. 40, 7749–7759 (2017)

    Article  MathSciNet  Google Scholar 

  27. Mohiuddine, S.A., Acar, T., Alotaibi, A.: Durrmeyer type \((p,q)\)-Baskakov operators preserving linear functions. J. Math. Inequal. 12, 961–973 (2018)

    Article  MathSciNet  Google Scholar 

  28. Mohiuddine, S.A., Acar, T., Alghamdi, M.A.: Genuine modified Bernstein–Durrmeyer operators. J. Inequal. Appl. 2018, Article ID 104 (2018)

    Article  MathSciNet  Google Scholar 

  29. Kadak, U., Mohiuddine, S.A.: Generalized statistically almost convergence based on the difference operator which includes the \((p,q)\)-gamma function and related approximation theorems. Results Math. 73, Article 9 (2018)

    Article  MathSciNet  Google Scholar 

  30. Edely, H., Mohiuddine, S.A., Noman, A.K.: Korovkin type approximation theorems obtained through generalized statistical convergence. Appl. Math. Lett. 23, 1382–1387 (2010)

    Article  MathSciNet  Google Scholar 

  31. Cai, Q., Lian, B., Zhou, G.: Approximation properties of λ-Bernstein operators. J. Inequal. Appl. 2018, Article ID 61 (2018).

    Article  MathSciNet  Google Scholar 

  32. Ali, A., Erbay, H.: Parametric generalization of Baskakov operaors. Math. Commun. 24, 119–131 (2019)

    MathSciNet  Google Scholar 

  33. Erencin, A.: Durrmeyer type modification of generalized Baskakov operators. Appl. Math. Comput. 218(3), 4384–4390 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Peetre, J.: A Theory of Interpolation of Normed Spaces. Noteas de Mathematica, vol. 39. Instituto de Mathemática Pura e Applicada, Conselho Nacional de Pesquidas, Rio de Janeiro (1968)

    MATH  Google Scholar 

  35. Ciupa, A.: A class of integral Favard–Szász type operators. Stud. Univ. Babeş–Bolyai, Math. 40(1), 39–47 (1995)

    MathSciNet  MATH  Google Scholar 

Download references


Not applicable.

Author information

Authors and Affiliations



All authors have read the manuscript and ensure that they approve of all its content as regards integrity and accuracy of their accountability.

Corresponding author

Correspondence to Md Nasiruzzaman.

Ethics declarations

Competing interests

All authors of this manuscript declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiruzzaman, M., Rao, N., Wazir, S. et al. Approximation on parametric extension of Baskakov–Durrmeyer operators on weighted spaces. J Inequal Appl 2019, 103 (2019).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: