Skip to main content

On positive solutions for some second-order three-point boundary value problems with convection term

Abstract

In this paper, a fixed point theorem in a cone and some inequalities of the associated Green’s function are applied to obtain the existence of positive solutions of second-order three-point boundary value problem with dependence on the first-order derivative

$$\begin{aligned}& x''(t) + f\bigl(t, x(t), x'(t)\bigr) =0, \quad 0< t< 1, \\& x(0) =0, \qquad x(1) =\mu x(\eta ), \end{aligned}$$

where \(f: [0, 1] \times [0, \infty ) \times R \rightarrow [0, \infty )\) is a continuous function, \(\mu >0\), \(\eta \in (0, 1)\), \(\mu \eta <1\). The interesting point is that the nonlinear term is dependent on the convection term.

Introduction

In recent years, there has been much attention focused on questions of solutions of two-point, three-point, multi-point, and integral boundary value problems for nonlinear ordinary differential equations and fractional differential equations. For example, two-point boundary value problems [3, 15, 29, 39], beam equation problems [5, 13, 16, 36], boundary value problems at resonance [2, 6, 42, 43], fractional boundary value problems [8, 24], impulsive problems [4, 38], multi-point boundary value problems [10, 14, 20, 25, 26, 32, 33, 43], integral boundary value problems [7, 9, 17, 21, 22, 28, 37], p-Laplace problems [11, 13, 24, 27, 30, 31], delay problems [23, 34, 35], solitons [12], singular problems [3], Schrödinger problem [40, 41], etc.

Krasnosel’skii’s fixed point theorem in a cone [18], the Leggett–Williams fixed point theorem [19], and five functional fixed point theorem [1] played an extremely important role in the research of the solvability of differential equation with boundary conditions.

However, most of the above works were done under the assumption that the first-order derivative is not involved explicitly in the nonlinear term [1,2,3,4,5,6,7,8,9,10,11,12,13, 16, 17, 20,21,22,23,24,25,26,27,28,29,30]. Krasnosel’skii’s fixed point theorem in a cone [18] cannot concretely solve problems whose nonlinear terms involve the first-order derivative. In this paper, via a generalization of Krasnosel’skii’s fixed point theorem in a cone [5] and some inequalities of the associated Green’s function for the associated problem, the existence of positive solutions for the second-order three-point boundary value problem is studied

$$\begin{aligned}& x''(t) + f\bigl(t, x(t), x'(t)\bigr) =0, \quad 0< t< 1, \end{aligned}$$
(1.1)
$$\begin{aligned}& x(0) =0, \qquad x(1) =\mu x(\eta ), \end{aligned}$$
(1.2)

where \(f: [0, 1] \times [0, \infty ) \times R \rightarrow [0, \infty )\) is a continuous function, \(\mu >0\), \(\eta \in (0, 1)\), \(\mu \eta <1\).

Readers may find that the concavity is crucial in giving some important estimates and in defining an appropriate cone, and the new fixed point theorem in a cone can be used to obtain positive solutions under more flexible conditions. Two examples are given to illustrate the main results.

Preliminaries and lemmas

In order to give the following lemma, let X be a Banach space and P be the cone in X. Assume that \(\alpha , \beta : X \rightarrow R ^{+}\) are two continuous nonnegative functionals that satisfy

$$ \alpha (\lambda x ) \leq \vert \lambda \vert \alpha (x), \qquad \beta (\lambda x ) \leq \vert \lambda \vert \beta (x) \quad \text{for } x \in X, \lambda \in [0, 1], $$
(2.1)

and

$$ M_{1} \max \bigl\{ \alpha (x), \beta (x) \bigr\} \leq \Vert x \Vert \leq M_{2} \max \bigl\{ \alpha (x), \beta (x) \bigr\} \quad \text{for } x \in X, $$
(2.2)

where \(M_{1}\), \(M_{2}\) are two positive constants.

Lemma 2.1

([5])

Let \(r_{2} > r_{1}>0\), \(L_{2} > L_{1}>0\) be constants and

$$ \varOmega _{i} = \bigl\{ x \in X \mid \alpha (x) < r_{i}, \beta (x) < L _{i} \bigr\} , \quad i=1, 2, $$

two open subsets in X such that \(\theta \in \varOmega _{1} \subset \overline{ \varOmega }_{1} \subset \varOmega _{2}\). In addition, let

$$\begin{aligned}& C_{i}= \bigl\{ x \in X \mid \alpha (x) = r_{i}, \beta (x) \leq L_{i} \bigr\} , \quad i=1, 2; \\& D_{i} = \bigl\{ x \in X \mid \alpha (x) \leq r_{i}, \beta (x) = L _{i} \bigr\} , \quad i=1, 2. \end{aligned}$$

Assume that \(T: P \rightarrow P\) is a completely continuous operator satisfying

\((S_{1})\) :

\(\alpha (Tx) \leq r_{1}\), \(x \in C_{1} \cap P\); \(\beta (Tx) \leq L_{1}\), \(x \in D_{1} \cap P \); \(\alpha (Tx) \geq r_{2}\), \(x \in C_{2} \cap P\); \(\beta (Tx) \geq L_{2}\), \(x \in D_{2} \cap P \);

or
\((S_{2})\) :

\(\alpha (Tx) \geq r_{1}\), \(x \in C_{1} \cap P\); \(\beta (Tx) \geq L_{1}\), \(x \in D_{1} \cap P \); \(\alpha (Tx) \leq r_{2}\), \(x \in C_{2} \cap P\); \(\beta (Tx) \leq L_{2}\), \(x \in D_{2} \cap P \);

then T has at least one fixed point in \((\overline{\varOmega }_{2} \setminus \varOmega _{1}) \cap P\).

Lemma 2.2

Let \(0 < \mu < \frac{1}{\eta }\), \(\eta \in (0, 1)\). The Green’s function of the following boundary value problem:

$$\begin{aligned}& -x''(t) =0, \quad 0 < t < 1, \\ \end{aligned}$$
(2.3)
$$\begin{aligned}& x(0) = 0, \qquad x(1) =\mu x(\eta ), \end{aligned}$$
(2.4)

is given by

$$ G(t, s) = \textstyle\begin{cases} s \in [0, \eta ]: & \textstyle\begin{cases} \frac{t}{1-\mu \eta }[(1-s)-\mu (\eta -s)] :& t \le s; \\ \frac{s}{1-\mu \eta }[(1-t)-\mu (\eta -t)] :& s \le t; \end{cases}\displaystyle \\ s \in [\eta , 1]: & \textstyle\begin{cases} \frac{1}{1-\mu \eta }t(1-s): & t \le s; \\ \frac{1}{1-\mu \eta }[s(1-t)+\mu \eta (t-s)] :& s \le t. \end{cases}\displaystyle \end{cases} $$
(2.5)

Moreover, for each \(0< s<1\),

$$ G(t, s) \geq \gamma \max_{0 \leq t \leq 1} G(t, s), \quad \eta \leq t \leq 1, $$
(2.6)

where \(\gamma = \min \{\mu \eta , \frac{\mu (1-\eta )}{(1-\mu \eta )}, \eta \}\).

Proof

The detailed formula of Green’s function \(G(t, s)\) was given in [14]. In the following proof, we focus on the existence of γ. It is clear that \(G(t, s) \ge 0\) for \(t\in [\eta , 1]\), \(s \in [0, 1]\). Consider the relation of μ and η, we divide the range of μ into two cases.

Case 1: \(0 <\mu \le 1\). With the definition of \(G(t, s)\), there are

$$ \min_{t \in [\eta , 1]}G(t, s)= \textstyle\begin{cases} \frac{s\mu (1-\eta )}{1-\mu \eta },& s \in [0, \eta ]; \\ \frac{\eta \mu (1-s)}{1-\mu \eta },& s \in [\eta , 1], \end{cases} $$

and

$$ \max_{t \in [0, 1]}G(t, s)= \textstyle\begin{cases} \frac{s}{1-\mu \eta }[(1-s)-\mu (\eta -s)],& s \in [0, \eta ]; \\ \frac{s(1-s)}{1-\mu \eta },& s \in [\eta , 1]. \end{cases} $$

Here we set \(\gamma =\min \{\mu \eta , \frac{\mu (1-\eta )}{1- \mu \eta } \}\), and then it satisfies

$$ G(t, s) \ge \gamma \max_{t \in [0, 1]}G(t, s) \quad \text{for } t \in [\eta , 1], s\in [0, 1]. $$

Case 2: \(1 < \mu <1/\eta \). With the definition of \(G(t, s)\), there are

$$ \min_{t \in [\eta , 1]}G(t, s)= \textstyle\begin{cases} \frac{s(1-\eta )}{1-\mu \eta },& s \in [0, \eta ]; \\ \frac{\eta (1-s)}{1-\mu \eta },& s \in [\eta , 1], \end{cases} $$

and

$$ \max_{t \in [0, 1]}G(t, s)= \textstyle\begin{cases} \frac{s\mu (1-\eta )}{1-\mu \eta },& s \in [0, \eta ]; \\ \frac{s(1-s)}{1-\mu \eta }\max \{s, \mu \eta \},& s \in [\eta , 1]. \end{cases} $$

Set \(\gamma =\min \{\eta , \frac{1}{\mu } \}=\eta \), then

$$ G(t, s) \ge \gamma \max_{t \in [0, 1]}G(t, s), \quad \text{for } t \in [\eta , 1], s\in [0, 1]. $$

The proof is complete. □

Existence results of positive solutions

In this section, by using Lemma 2.1 and Lemma 2.2, we obtain positive solutions of (1.1), (1.2).

If \(x=x(t)\) satisfies the operator equation

$$ x(t) = (Tx) (t) := \int _{0}^{1}G(t, s)f\bigl(s, x(s), x'(s)\bigr) \,ds, \quad 0\leq t \leq 1, $$

where \(G(t, s) \geq 0\) is Green’s function for boundary value problem (2.3), (2.4), then \(x=x(t)\) is the solution of problem (1.1), (1.2).

Let X be a Banach space in \(C^{1}[0, 1]\), with

$$ \Vert x \Vert =\max \Bigl\{ \max_{0 \leq t \leq 1} \bigl\vert x(t) \bigr\vert , \max_{0 \leq t \leq 1} \bigl\vert x'(t) \bigr\vert \Bigr\} . $$

Define a cone P by

$$ P= \Bigl\{ x \in X \bigm| x(t) \geq 0, \text{ and } \min_{\eta \leq t \leq 1}x(t) \geq \gamma \max_{0 \leq t \leq 1} \bigl\vert x(t) \bigr\vert \Bigr\} , $$

and functionals

$$ \alpha (x) = \max_{0 \leq t \leq 1} \bigl\vert x(t) \bigr\vert , \qquad \beta (x) = \max_{0 \leq t \leq 1} \bigl\vert x'(t) \bigr\vert \quad \text{for } x \in X. $$

By (2.1), (2.2), \(\alpha , \beta : X \rightarrow R^{+}\) are two continuous nonnegative functionals such that \(\Vert x \Vert = \max \{ \alpha (x), \beta (x)\}\) and

$$ P= \Bigl\{ x \in X \bigm| x(t) \geq 0, \text{ and } \min_{\eta \leq t \leq 1}x(t) \geq \gamma \alpha (x) \Bigr\} . $$

Denote

$$\begin{aligned} &M = \max_{0 \leq t \leq 1} \int _{0}^{1}G(t, s) \,ds, \qquad N= \max _{0 \leq t \leq 1} \int _{\eta }^{1}G(t,s) \,ds, \\ &A= \int _{\eta }^{1}(1-s)\,ds + \int _{0}^{\eta }(1-s-\mu \eta +\mu s)\,ds, \\ &\overline{A} = \int _{\eta }^{1-h}(1-s)\,ds+ \int _{h}^{\eta }(1-s- \mu \eta +\mu s)\,ds, \\ &B=\frac{1}{1-\mu \eta }\max \biggl\{ \int _{\eta }^{1} (1-s)\,ds + \int _{0}^{\eta }(1-s-\mu \eta +\mu s)\,ds , \\ & \hphantom{B=} \int _{\eta }^{1} \vert \mu \eta -s \vert \,ds + \int _{0}^{\eta }s \vert \mu -1 \vert \,ds \biggr\} . \end{aligned}$$

\(T: P \rightarrow P\) is completely continuous, and the following is a simple proof of that. In fact, if \(x \in P\), there is

$$\begin{aligned} (Tx) (t) &= \int _{0}^{1}G(t, s)f\bigl(s, x(s), x'(s)\bigr)\,ds \\ & \leq \int _{0}^{1}\max_{0 \leq t \leq 1}G(t, s) \cdot f\bigl(s, x(s), x'(s)\bigr)\,ds, \end{aligned}$$

so that

$$ \alpha (Tx) =\max_{0 \leq t \leq 1}(Tx) (t) \leq \int _{0}^{1} \max_{0 \leq t \leq 1}G(t, s) \cdot f\bigl(s, x(s), x'(s)\bigr)\,ds. $$

Combining this with (2.6), we get

$$\begin{aligned} \min_{\eta \leq t \leq 1}(Tx) (t) &=\min_{\eta \leq t \leq 1} \int _{0}^{1}G(t, s)f\bigl(s, x(s), x'(s)\bigr)\,ds \\ &\geq \gamma \int _{0}^{1}\max_{0 \leq t \leq 1}G(t, s) \cdot f\bigl(s, x(s), x'(s)\bigr)\,ds \\ & \geq \gamma \cdot \alpha (Tx). \end{aligned}$$

Moreover, from the positivity of \(G(t, s)\), there is \((Tx)(t) \geq 0\), \(0 \leq t \leq 1\), for \(x \in P\). So we can get \(T: P \rightarrow P\). Further, standard arguments yield that T is completely continuous.

Theorem 3.1

Suppose that there are four constants \(r_{2} > r_{1}>0\), \(L_{2} > L_{1}>0\) such that \(\max \{\frac{r_{1}}{M}, \frac{L_{1}}{A}\} \leq \min \{\frac{r _{2}}{M}, \frac{L_{2}}{B}\}\) and the following assumptions hold:

\((A_{1})\) :

\(f(t, u, v) \geq \max \{ \frac{r_{1}}{M}, \frac{L_{1}}{A} \} \) for \((t, u, v) \in [0, 1] \times [0, r_{1}] \times [-L _{1}, L_{1}] \);

\((A_{2})\) :

\(f(t, u, v) \leq \min \{ \frac{r_{2}}{M}, \frac{L_{2}}{B} \} \) for \((t, u, v) \in [0, 1] \times [0, r_{2}] \times [-L _{2}, L_{2}] \).

Then problem (1.1), (1.2) has at least one positive solution \(x(t)\) such that

$$ r_{1} \leq \max_{0 \leq t \leq 1}x(t) \leq r_{2} \quad \textit{or} \quad L_{1} \leq \max_{0 \leq t \leq 1} \bigl\vert x'(t) \bigr\vert \leq L_{2}. $$

Proof

Take two bounded open subsets in X

$$ \varOmega _{i} = \bigl\{ x \in X \mid \alpha (x) < r_{i}, \beta (x) < L _{i} \bigr\} , \quad i=1, 2. $$

In addition, let

$$\begin{aligned}& C_{i}= \bigl\{ x \in X \mid \alpha (x) = r_{i}, \beta (x) \leq L_{i} \bigr\} , \quad i=1, 2; \\& D_{i} = \bigl\{ x \in X \mid \alpha (x) \leq r_{i}, \beta (x) = L _{i} \bigr\} , \quad i=1, 2. \end{aligned}$$

For \(x \in C_{1} \cap P \), by \((A_{1})\), there is

$$\begin{aligned} \alpha (Tx) &= \max_{t \in [0, 1]} \biggl\vert \int _{0}^{1}G(t, s) f\bigl(s, x(s), x'(s)\bigr)\,ds \biggr\vert \\ &\geq \frac{r_{1}}{M} \cdot \max_{t \in [0, 1]} \biggl\vert \int _{0}^{1}G(t, s) \,ds \biggr\vert =r_{1}. \end{aligned}$$

Taking into account the continuity and properties of T, we have

$$\begin{aligned}& \begin{aligned} (Tx)'(t) &=- \int _{0}^{t} f\bigl(s, x(s), x'(s) \bigr)\,ds +\frac{1}{1-\mu \eta } \int _{0}^{1} (1-s)f\bigl(s, x(s), x'(s)\bigr)\,ds \\ &\quad {}- \frac{\mu }{1-\mu \eta } \int _{0}^{\eta }(\eta -s)f\bigl(s, x(s), x'(s)\bigr)\,ds , \end{aligned} \\& (Tx)''(t)= -f\bigl(t, x(t), x'(t)\bigr) \leq 0, \quad 0 \leq t \leq 1. \end{aligned}$$

Thus, \((Tx)(t)\) is concave on \([0, 1]\) and

$$ \max_{t \in [0, 1]} \bigl\vert (Tx)'(t) \bigr\vert = \max \bigl\{ \bigl\vert (Tx)'(0) \bigr\vert , \bigl\vert (Tx)'(1) \bigr\vert \bigr\} . $$

For \(x \in D_{1} \cap P \), combine \((A_{1})\) and \(f \geq 0\), there is

$$\begin{aligned} \beta (Tx) &= \max_{t \in [0, 1]} \bigl\vert (Tx)'(t) \bigr\vert \\ &=\max \bigl\{ \bigl\vert (Tx)'(0) \bigr\vert , \bigl\vert (Tx)'(1) \bigr\vert \bigr\} \\ & \geq \bigl\vert (Tx)'(0) \bigr\vert \\ &= \frac{1}{1-\mu \eta } \biggl[ \int _{\eta }^{1}(1-s)f\bigl(s, x(s), x'(s) \bigr)\,ds \\ & \quad + \int _{0}^{\eta }(1-s-\mu \eta +\mu s)f\bigl(s, x(s), x'(s)\bigr)\,ds \biggr] \\ &\geq \frac{L_{1}}{A} \cdot \biggl[ \int _{\eta }^{1}(1-s)\,ds + \int _{0} ^{\eta }(1-s-\mu \eta +\mu s)\,ds \biggr] \\ & =\frac{L_{1}}{A} \cdot A =L_{1}. \end{aligned}$$

For \(x \in C_{2} \cap P \), by \((A_{2})\), there is

$$\begin{aligned} \alpha (Tx) &= \max_{t \in [0, 1]} \biggl\vert \int _{0}^{1}G(t, s) f\bigl(s, x(s), x'(s)\bigr)\,ds \biggr\vert \\ & \leq \max_{t \in [0, 1]} \int _{0}^{1}G(t, s) \cdot \frac{r_{2}}{M}\,ds \\ &= \frac{r_{2}}{M} \cdot \max_{t \in [0, 1]} \int _{0}^{1}G(t, s) \,ds= r_{2}. \end{aligned}$$

For \(x \in D_{2} \cap P \), by \((A_{2})\), there is

$$\begin{aligned} \beta (Tx) &= \max_{t \in [0, 1]} \bigl\vert (Tx)'(t) \bigr\vert \\ &=\max \bigl\{ \bigl\vert (Tx)'(0) \bigr\vert , \bigl\vert (Tx)'(1) \bigr\vert \bigr\} \\ &\leq \frac{1}{1-\mu \eta } \max \biggl\{ \int _{\eta }^{1} (1-s)f\bigl(s, x(s), x'(s) \bigr)\,ds \\ & \quad {}+ \int _{0}^{\eta }(1-s-\mu \eta +\mu s) f\bigl(s, x(s), x'(s)\bigr)\,ds, \\ & \quad \int _{\eta }^{1} \vert \mu \eta -s \vert f\bigl(s, x(s), x'(s)\bigr)\,ds + \int _{0} ^{\eta }s \vert \mu -1 \vert f\bigl(s, x(s), x'(s)\bigr)\,ds \biggr\} \\ &\leq \frac{L_{2}}{B}\cdot B=L_{2}. \end{aligned}$$

Now, from Lemma 2.1 we can get that there is \(x \in (\overline{\varOmega }_{2} \setminus \varOmega _{1}) \cap P \) such that \(x =Tx\). The above proof satisfies the condition of Lemma 2.1, so problem (1.1), (1.2) has at least one positive solution \(x(t)\) such that

$$ r_{1} \leq \alpha (x) \leq r_{2} \quad \text{or} \quad L_{1} \leq \beta (x) \leq L_{2}, $$

i.e.,

$$ r_{1} \leq \max_{0 \leq t \leq 1}x(t) \leq r_{2} \quad \text{or} \quad L_{1} \leq \max_{0 \leq t \leq 1} \bigl\vert x'(t) \bigr\vert \leq L_{2}. $$

The proof is complete. □

Theorem 3.2

Suppose that there are five constants \(0< r_{1} < r_{2}\), \(0< L_{1}< L _{2}\), \(0 \le h \le \min \{\eta , 1-\eta \}\) such that \(\max \{\frac{r _{1}}{N}, \frac{L_{1}}{\overline{A}}\} \leq \min \{\frac{r_{2}}{M}, \frac{L _{2}}{B}\}\) and the following assumptions hold:

\((A_{3})\) :

\(f(t, u, v) \geq \frac{r_{1}}{N} \) for \((t, u, v) \in [\eta , 1] \times [\gamma r_{1}, r_{1}] \times [-L_{1}, L_{1}] \);

\((A_{4})\) :

\(f(t, u, v) \geq \frac{L_{1}}{\overline{A}} \) for \((t, u, v) \in [h, 1-h] \times [0, r_{1}] \times [-L_{1}, L _{1}] \);

\((A_{5})\) :

\(f(t, u, v) \leq \min \{ \frac{r_{2}}{M}, \frac{L_{2}}{B} \} \) for \((t, u, v) \in [0, 1] \times [0, r_{2}] \times [-L _{2}, L_{2}] \).

Then problem (1.1), (1.2) has at least one positive solution \(x(t)\) such that

$$ r_{1} \leq \max_{0 \leq t \leq 1}x(t) \leq r_{2} \quad \textit{or} \quad L_{1} \leq \max_{0 \leq t \leq 1} \bigl\vert x'(t) \bigr\vert \leq L_{2}. $$

Proof

We just need to notice the difference between the following proof and the proof of Theorem 3.1.

For \(x \in C_{1} \cap P \), by the definition of P, there is

$$ x(t)\geq \gamma \alpha (x) = \gamma r_{1}, \quad \text{for } t \in [ \eta , 1]. $$

By \((A_{3})\), there is

$$\begin{aligned} \alpha (Tx) &= \max_{t \in [0, 1]} \biggl\vert \int _{0}^{1}G(t, s) f\bigl(s, x(s), x'(s)\bigr)\,ds \biggr\vert \\ &\geq \max_{t \in [0, 1]} \biggl\vert \int _{\eta }^{1} G(t, s) f\bigl(s, x(s), x'(s)\bigr)\,ds \biggr\vert \\ &\geq \max_{t \in [0, 1]} \biggl\vert \int _{\eta }^{1} G(t, s) \cdot \frac{r _{1}}{N} \,ds \biggr\vert \\ &= \frac{r_{1}}{N} \cdot \max_{t \in [0, 1]} \biggl\vert \int _{\eta } ^{1} G(t, s) \,ds \biggr\vert =r_{1}. \end{aligned}$$

For \(x \in D_{1} \cap P \), by \((A_{4})\), there is

$$\begin{aligned} \beta (Tx) &= \max_{t \in [0, 1]} \bigl\vert (Tx)'(t) \bigr\vert \\ &=\max \bigl\{ \bigl\vert (Tx)'(0) \bigr\vert , \bigl\vert (Tx)'(1) \bigr\vert \bigr\} \\ & \geq \bigl\vert (Tx)'(0) \bigr\vert \\ &= \frac{1}{1-\mu \eta } \biggl[ \int _{\eta }^{1}(1-s)f\bigl(s, x(s), x'(s) \bigr)\,ds \\ & \quad {} + \int _{0}^{\eta }(1-s-\mu \eta +\mu s)f\bigl(s, x(s), x'(s)\bigr)\,ds \biggr] \\ &\ge \frac{1}{1-\mu \eta } \biggl[ \int _{\eta }^{1-h}(1-s)f\bigl(s, x(s), x'(s) \bigr)\,ds \\ & \quad {} + \int _{h}^{\eta }(1-s-\mu \eta +\mu s)f\bigl(s, x(s), x'(s)\bigr)\,ds \biggr] \\ &\geq \frac{L_{1}}{\overline{A}} \cdot \biggl[ \int _{\eta }^{1-h}(1-s)\,ds+ \int _{h}^{\eta }(1-s-\mu \eta +\mu s)\,ds \biggr] \\ & =\frac{L_{1}}{\overline{A}} \cdot \overline{A} =L_{1}. \end{aligned}$$

The rest of the proof is similar to that of Theorem 3.1 and is omitted. □

Remark 3.1

The conditions of our results are weaker than those of [14].

Examples

We present some examples to illustrate the main results.

Example 4.1

Consider the boundary value problem

$$\begin{aligned}& x''(t) + f\bigl(t, x(t), x'(t)\bigr) =0, \quad 0< t< 1, \end{aligned}$$
(4.1)
$$\begin{aligned}& x(0) =0, \qquad x(1) =x \biggl(\frac{1}{2} \biggr), \end{aligned}$$
(4.2)

where

$$\begin{aligned} f(t,u,v)=\frac{u^{2}(\sin t)^{2}}{16}+\frac{v \cos t}{32}+ \frac{65}{64}. \end{aligned}$$

Direct computation shows that

$$ M=\frac{7}{8}, \qquad N=2, \qquad A=\frac{3}{8}, \qquad B= \frac{3}{4}. $$

Choose

$$ r_{1}=\frac{1}{2}, \qquad r_{2}=1, \qquad L_{1}=\frac{1}{4}, \qquad L_{2}=1, $$

then \(\max \{\frac{r_{1}}{M}, \frac{L_{1}}{A}\}=\frac{2}{3} \leq \min \{\frac{r_{2}}{M}, \frac{L_{2}}{B}\}=\frac{8}{7}\), and

$$\begin{aligned}& f(t,u,v) \geq \frac{169}{128}\geq \max \biggl\{ \frac{r_{1}}{M}, \frac{L _{1}}{A} \biggr\} =\frac{2}{3}, \quad (t,u,v)\in [0,1]\times \biggl[0,\frac{1}{2} \biggr]\times \biggl[\frac{-1}{4}, \frac{1}{4} \biggr], \\& f(t,u,v) \leq \frac{71}{64}\leq \min \biggl\{ \frac{r_{2}}{M}, \frac{L _{2}}{B} \biggr\} =\frac{8}{7}, \quad (t,u,v)\in [0,1]\times [0,1] \times [-1,1]. \end{aligned}$$

That is to say, all the assumptions of Theorem 3.1 are satisfied, then problem (4.1), (4.2) has at least one positive solution x such that

$$ \frac{1}{2} \leq \max_{0 \leq t \leq 1}x(t) \leq 1, \quad \text{or} \quad \frac{1}{4} \leq \max_{0 \leq t \leq 1} \bigl\vert x'(t) \bigr\vert \leq 1. $$

Example 4.2

Consider the boundary value problem

$$\begin{aligned}& x''(t) + f\bigl(t, x(t), x'(t)\bigr) =0, \quad 0< t< 1, \end{aligned}$$
(4.3)
$$\begin{aligned}& x(0) =0, \qquad x(1) = x \biggl(\frac{1}{3} \biggr), \end{aligned}$$
(4.4)

where

$$\begin{aligned} f(t,u,v)= \biggl(\frac{t}{5}+2 \biggr) \biggl(\frac{1}{u+1}- \frac{v^{2}}{6} \biggr). \end{aligned}$$

Direct computation shows

$$ M=\frac{8}{9}, \qquad N=\frac{1}{2}, \qquad \bar{A}= \frac{4}{9}, \qquad B=\frac{2}{3}, \qquad \gamma =\frac{1}{3}. $$

Choose

$$ r_{1}=\frac{1}{2}, \qquad r_{2}=2, \qquad L_{1}=\frac{1}{2}, \qquad L_{2}=2, \qquad h= \frac{1}{3}, $$

then \(\max \{\frac{r_{1}}{M}, \frac{L_{1}}{A}\}=\frac{9}{8} \leq \min \{\frac{r_{2}}{M}, \frac{L_{2}}{B}\}=\frac{9}{4}\), and

$$\begin{aligned}& f(t,u,v) \geq \frac{31}{24} \approx 1.29 \geq \frac{r_{1}}{N}=1, \quad (t,u,v)\in \biggl[\frac{1}{3},1 \biggr]\times \biggl[\frac{1}{6}, \frac{1}{2} \biggr]\times \biggl[-\frac{1}{2},\frac{1}{2} \biggr], \\& f(t,u,v)\geq 1.29 \geq \frac{L_{1}}{A} = \frac{9}{8}\approx 1.125, \quad (t,u,v)\in \biggl[\frac{1}{3},\frac{2}{3} \biggr]\times \biggl[0, \frac{1}{2} \biggr]\times \biggl[-\frac{1}{2}, \frac{1}{2} \biggr], \\& f(t,u,v) \leq 2.2\leq \min \biggl\{ \frac{r_{2}}{M}, \frac{L_{2}}{B} \biggr\} =2.25, \quad (t,u,v)\in [0,1]\times [0,2]\times [-2,2], \end{aligned}$$

i.e., all the assumptions of Theorem 3.2 are satisfied, then problem (4.3), (4.4) has at least one positive solution x such that

$$ \frac{1}{2} \leq \max_{0 \leq t \leq 1}x(t) \leq 2, \quad \text{or} \quad \frac{1}{2} \leq \max_{0 \leq t \leq 1} \bigl\vert x'(t) \bigr\vert \leq 2. $$

Conclusion

By the use of a fixed point theorem, some existence results for a class of second-order differential equations with three-point boundary value conditions are obtained. The interesting point is that the nonlinear term is dependent on the convection term.

References

  1. 1.

    Avery, R.: A generalization of the Leggett–Williams fixed point theorem. Math. Sci. Res. Hot-Line 2, 9–14 (1998)

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Bai, Z.: Solvability for a class of fractional m-point boundary value problem at resonance. Comput. Math. Appl. 62, 1292–1302 (2011)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bai, Z., Chen, Y., Lian, H., Sun, S.: On the existence of blow up solutions for a class of fractional differential equations. Fract. Calc. Appl. Anal. 17(4), 1175–1187 (2014)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bai, Z., Dong, X., Yin, C.: Existence results for impulsive nonlinear fractional differential equation with mixed boundary conditions. Bound. Value Probl. 2016, 63 (2016)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bai, Z., Ge, W.: Existence of positive solutions to fourth-order quasilinear boundary value problems. Acta Math. Sin. 22, 1825–1830 (2006)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bai, Z., Zhang, Y.: Solvability of fractional three-point boundary value problems with nonlinear growth. Appl. Math. Comput. 218(5), 1719–1725 (2011)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Cabada, A., Wang, G.: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. Abstr. Appl. Anal. 2012, 403 (2012)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Cui, Y.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Cui, Y., Ma, W., Wang, X., Su, X.: Uniqueness theorem of differential system with coupled integral boundary conditions. Electron. J. Qual. Theory Differ. Equ. 2018, 9, 1–10 (2018)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Cui, Y., Sun, J.: Positive solutions for second-order three-point boundary value problems in Banach spaces. Acta Math. Sin. 4, 743–751 (2011)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Cui, Y., Sun, J.: A generalization of Mahadevan’s version of the Krein–Rutman theorem and applications to p-Laplacian boundary value problems. Abstr. Appl. Anal. 2012, 1 (2012)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Dong, H., Guo, B., Yin, B.: Generalized fractional supertrace identity for Hamiltonian structure of NLS-MKdV hierarchy with self-consistent sources. Anal. Math. Phys. 6, 199–209 (2016)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Feng, M., Li, P., Sun, S.: Symmetric positive solutions for fourth-order n-dimensional m-Laplace system. Bound. Value Probl. 2018, 63 (2018)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Guo, Y., Ge, W.: Positive solutions for three-point boundary value problems with dependence on the first order derivative. J. Math. Anal. Appl. 290, 291–301 (2004)

    MathSciNet  Article  Google Scholar 

  15. 15.

    He, L., Dong, X., Bai, Z., Chen, B.: Solvability of some two-point fractional boundary value problems under barrier strip conditions. J. Funct. Spaces 2017, Article ID 1465623 (2017)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Ji, D., Bai, Z., Ge, W.: The existence of countably many positive solutions for singular multipoint boundary value problems. Nonlinear Anal., Theory Methods Appl. 72, 955–964 (2010)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Jia, M., Wang, P.: Multiple positive solutions for integro-differential equations with integral boundary conditions and sign changing nonlinearities. Electron. J. Differ. Equ. 2012, 31 (2012)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Krasnosel’skii, M.: Positive Solutions of Operator Equations. Noordhoff, Gronignen (1964)

    Google Scholar 

  19. 19.

    Leggett, R., Williams, L.: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 28, 673–688 (1979)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Li, H.: Existence of nontrivial solutions for superlinear three-point boundary value problems. Acta Math. Appl. Sin. Engl. Ser. 33, 1043–1052 (2017)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Li, H., Sun, F.: Existence of solutions for integral boundary value problems of second-order ordinary differential equations. Bound. Value Probl. 2012, 1 (2012)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Li, H., Sun, J.: Positive solutions of superlinear semipositone nonlinear boundary value problems. Comput. Math. Appl. 61, 2806–2815 (2011)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Li, H., Zhu, Y., Liu, J., Wang, Y.: Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols. Appl. Math. Comput. 326, 1–15 (2018)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Liu, X., Jia, M.: The positive solutions for integral boundary value problem of fractional p-Laplacian equation with mixed derivatives. Mediterr. J. Math. 14, 94 (2017)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Ma, R.: Positive solutions of nonlinear three-point boundary value problem. Electron. J. Differ. Equ. 1999, 34, 1–8 (1999)

    MathSciNet  MATH  Google Scholar 

  26. 26.

    Ntouyas, S.K., Pourhadi, E.: Positive solutions of nonlinear fractional three-point boundary-value problem. Matematiche 73(1), 139–154 (2018)

    MathSciNet  MATH  Google Scholar 

  27. 27.

    Sheng, K., Zhang, W., Bai, Z.: Positive solutions to fractional boundary value problems with p-Laplacian on time scales. Bound. Value Probl. 2018, 70 (2018)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Song, Q., Bai, Z.: Positive solutions of fractional differential equations involving the Riemann–Stieltjes integral boundary condition. Adv. Differ. Equ. 2018, 183 (2018)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Song, Q., Dong, X., Bai, Z., Chen, B.: Existence for fractional Dirichlet boundary value problem under barrier strip conditions. J. Nonlinear Sci. Appl. 10, 3592–3598 (2017)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Tian, Y., Sun, S., Bai, Z.: Positive solutions of fractional differential equations with p-Laplacian. J. Funct. Spaces 2017, Article ID 3187492 (2017)

    MathSciNet  MATH  Google Scholar 

  31. 31.

    Tian, Y., Wei, Y., Sun, S.: Multiplicity for fractional differential equations with p-Laplacian. Bound. Value Probl. 2018, 127 (2018)

    MathSciNet  Article  Google Scholar 

  32. 32.

    Wang, G., Ntouyas, S.K., Zhang, L.: Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument. Adv. Differ. Equ. 2011, 2 (2011)

    MathSciNet  Article  Google Scholar 

  33. 33.

    Wang, G., Zhang, L., Ntouyas, S.K.: Multiplicity of positive solutions for fractional order three-point boundary value problems. Commun. Appl. Nonlinear Anal. 20, 41–53 (2013)

    MathSciNet  MATH  Google Scholar 

  34. 34.

    Wang, Z.: A numerical method for delayed fractional-order differential equations. J. Appl. Math. 2013, Article ID 256071 (2013)

    MathSciNet  MATH  Google Scholar 

  35. 35.

    Wang, Z., Huang, X., Shi, G.: Analysis of nonlinear dynamics and chaos in a fractional order financial system with time delay. Comput. Math. Appl. 62, 1531–1539 (2011)

    MathSciNet  Article  Google Scholar 

  36. 36.

    Wei, Y., Song, Q., Bai, Z.: Existence and iterative method for some fourth order nonlinear boundary value problems. Appl. Math. Lett. 87, 101–107 (2019)

    MathSciNet  Article  Google Scholar 

  37. 37.

    Zhang, J., Zhang, G., Li, H.: Positive solutions of second-order problem with dependence on derivative in nonlinearity under Stieltjes integral boundary condition. Electron. J. Qual. Theory Differ. Equ. 2018, 4, 1–13 (2018)

    MathSciNet  Article  Google Scholar 

  38. 38.

    Zhang, T., Meng, X., Song, Y., Zhang, T.: A stage-structured predator–prey SI model with disease in the prey and impulsive effects. Math. Model. Anal. 18, 505–528 (2013)

    MathSciNet  Article  Google Scholar 

  39. 39.

    Zhang, W., Bai, Z., Sun, S.: Extremal solutions for some periodic fractional differential equations. Adv. Differ. Equ. 2016, 179 (2016)

    MathSciNet  Article  Google Scholar 

  40. 40.

    Zhang, X., Liu, L., Wu, Y., Cui, Y.: The existence and nonexistence of entire large solutions for a quasilinear Schrödinger elliptic system by dual approach. J. Math. Anal. Appl. 464, 1089–1106 (2018)

    MathSciNet  Article  Google Scholar 

  41. 41.

    Zhang, X., Wu, Y., Cui, Y.: Existence and nonexistence of blow-up solutions for a Schrödinger equation involving a nonlinear operator. Appl. Math. Lett. 82, 85–91 (2018)

    MathSciNet  Article  Google Scholar 

  42. 42.

    Zhang, Y.: Existence results for a coupled system of nonlinear fractional multi-point boundary value problems at resonance. J. Inequal. Appl. 2018, 198 (2018)

    MathSciNet  Article  Google Scholar 

  43. 43.

    Zou, Y., Liu, L., Cui, Y.: The existence of solutions for four-point coupled boundary value problems of fractional differential equations at resonance. Abstr. Appl. Anal. 2014, 1 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Availability of data and materials

Data sharing not applicable to this article as no data sets were generated or analysed during the current study.

Funding

This work is supported by NSFC(11571207), SDNSF(ZR2018MA011), the Taishan Scholar Project.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhanbing Bai.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

All authors agree to publication of this paper in JIAP.

Additional information

Abbreviations

Not applicable.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Bai, Z. & Sun, S. On positive solutions for some second-order three-point boundary value problems with convection term. J Inequal Appl 2019, 72 (2019). https://doi.org/10.1186/s13660-019-2029-3

Download citation

MSC

  • 34B15
  • 34A08

Keywords

  • Three-point boundary value problem
  • Fixed point theorem
  • Positive solution