- Research
- Open Access
- Published:
Lower bound of four-dimensional Hausdorff matrices
Journal of Inequalities and Applications volume 2019, Article number: 82 (2019)
Abstract
Let \(\mathsf{H}=(h_{nmjk})\) be a non-negative four-dimensional matrix. Denote by \(L_{p}(\mathsf{H})\) the supremum of those ℓ satisfying the following inequality:
where \(x=(x_{j,k}) \in \mathcal{L}_{p}\) with \(x_{j,k}\ge 0\). In this paper a Hardy type formula is established for \(L_{p}(\mathsf{H}_{ \mu \times \lambda }^{t})\), where \(0< p\le 1\) and \(\mathsf{H}_{\mu \times \lambda }\) is a four-dimensional Hausdorff matrix. A similar result is also obtained for the case in which \(\mathsf{H}_{\mu \times \lambda }\) is replaced by \(\mathsf{H}_{\mu \times \lambda }^{t}\). As a consequence, we apply the results to some special four-dimensional Hausdorff matrices such as Cesàro, Euler, Hölder and Gamma matrices. Our results contain some generalizations of Copson’s discrete inequality.
1 Introduction
The space \(\mathcal{L}_{p}\) of absolutely p-summable double sequences over the complex field
was introduced by Başar and Sever [1] for \(1< p< \infty \). It is a complete sequence space with the \(\|\cdot \|_{{\mathcal{L} _{p}}}\)-norm
and for \(0< p<1\) the space \({\mathcal{L}_{p}}\) is a complete p-normed (cf. Yeşilkayagil and Başar [13, 14]) space with the p-norm
A four-dimensional infinite matrix \(\mathsf{H}=(h_{nmjk})\) defines a matrix mapping from the double sequence space X into the double sequence space Y if, for every sequence \(x=(x_{n,m})\in X\), the sequence \(\mathsf{H}x=\{(\mathsf{H}x)_{n,m}\}\) is in Y, where
For \(p\in \mathbb{R} \backslash \{0\}\), the number \(L_{p}(\mathsf{H})\) is defined as the supremum of those ℓ, which obey the following inequality:
where \(x\ge 0\), \(x\in \mathcal{L}_{p}\).
For further details on the normed spaces of double sequences, four-dimensional matrices and the boundedness problems of matrix operators in normed (p-normed) sequence spaces, we refer the readers to the textbook [4] and the recent papers [7,8,9, 11].
In this paper, we are going to prove that
and
where \(p^{*}\) is the conjugate exponent of p and \(\mathsf{H}_{ \mu \times \lambda }\) is the four-dimensional Hausdorff matrix. Here the transpose of H is denoted by \(\mathsf{H}^{t}=(h_{nmjk}^{t})\), where \(h_{nmjk}^{t}:=h_{jknm}\). As a consequence, we apply the results to some special four-dimensional Hausdorff matrices such as Cesàro, Euler Hölder and Gamma matrices.
2 Lower bounds for four-dimensional Hausdorff matrices
In this section we consider the four-dimensional Hausdorff matrix and its transpose as operators mapping the double sequence space \(\mathcal{L}_{p}\) where \(0< p\le 1\) to itself. Then we focus on the evaluation of \(L_{p}(\mathsf{H}_{\mu \times \lambda }^{\mathsf{t}})\) and \(L_{p}(\mathsf{H}_{\mu \times \lambda })\), where dμ and dλ are two Borel probability measures and \(\mathsf{H}_{ \mu \times \lambda }=(h_{nmjk})\) is the four-dimensional Hausdorff matrix [5], defined by
for \((n\ge j,m\ge k)\), and \(h_{nmjk}=0\) for all \(j>n\) or \(k>m\). Clearly, we have
where
and
Here, we’ve listed some famous classes of four-dimensional Hausdorff matrices:
-
1.
The choices \(d\mu (\alpha ) = \eta (1 - \alpha )^{\eta - 1}\,d\alpha \) and \(d\lambda (\beta ) = \gamma (1 - \beta )^{\gamma - 1}\,d\beta \) give the four-dimensional Cesàro matrix \(\mathsf{C}( \eta , \gamma )\) of orders η and γ; see [6].
-
2.
The choices \(d\mu (\alpha ) = \vert {\log \alpha } \vert ^{\eta - 1} /\varGamma (\eta )\,d\alpha \) and \(d\lambda (\beta ) = \vert {\log \beta } \vert ^{\gamma - 1} /\varGamma (\gamma )\,d\beta \) give the four-dimensional Hölder matrix \(\mathsf{H}(\eta , \gamma )\) of orders η and γ.
-
3.
The choices \(d\mu (\alpha ) = \eta \alpha ^{\eta - 1}\,d\alpha \) and \(d\lambda (\beta ) = \gamma \beta ^{\gamma - 1}\,d\beta \) give the four-dimensional Gamma matrix \(\boldsymbol{\varGamma }( {\eta ,\gamma } )\) of orders η and γ.
The four-dimensional Cesàro, Hölder and Gamma matrices have non-negative entries whenever \(\eta >0\) and \(\gamma >0\).
We are going to exhibit a Hardy type formula for \(L_{p}( \mathsf{H}_{\mu \times \lambda }^{\mathsf{t}})\) and \(L_{p}( \mathsf{H}_{\mu \times \lambda })\), where \(0< p\le 1\). Then we apply our results to the four-dimensional Cesàro, Hölder and Gamma matrices. First, we state and prove the following generalization of Proposition 7.4 in [2], which plays an essential role in the rest of the paper.
Lemma 2.1
Let \(0< p<1\), and suppose that H is a non-negative four-dimensional matrix. If
and
then (1.1) holds with
Proof
The proof will be a modification of that given by Bennett. By Hölder’s inequality, we have
Therefore
which is equivalent to the inequality stated in the lemma. □
For \(r,s\geq 0\), let \(\mathsf{E}(r,s) =(e_{nmjk}^{r,s})\) denote the four-dimensional Euler matrix, defined by
for all \(n,m,j,k\in \mathbb{N}\cup \{0\}\). Clearly, this matrix is the four-dimensional Hausdorff matrix with \(d\mu (\alpha ) =\mbox{point}\) evaluation at \(\alpha =r\) and \(d\lambda (\beta ) =\mbox{point}\) evaluation at \(\beta =s\) and has non-negative entries whenever \(0\le r\le 1\) and \(0\le s\le 1\). For this matrix we have the following lemma, which extends [12, Lemma 3.2].
Lemma 2.2
Let \(0< p\le 1\), \(\frac{1}{p}+\frac{1}{p^{*}}=1\) and \(\mathsf{E}(r,s)\) be the four-dimensional Euler matrix of order r, s where \(0\le r,s \le 1\). Then
Proof
We have
and
Thus, for \(0 < p < 1\), applying Lemma 2.1 when \(\lambda =\frac{1}{rs}\) and \(\gamma =1\), we infer that \(L_{p} (\mathsf{E}^{t}(r,s) ) \geq (rs )^{-1/p^{*}} \). For \(p = 1\), it follows from the Fubini’s theorem that
which gives the desired inequality. This completes the proof. □
Now, we come to the evaluation of \(L_{p}( \mathsf{H}_{\mu \times \lambda }^{\mathsf{t}})\).
Theorem 2.3
Let \(0< p\le 1\), \(\frac{1}{p}+\frac{1}{p^{*}}=1\) and \(\mathsf{H}_{\mu \times \lambda }\) be the four-dimensional Hausdorff matrix. Then
Proof
Let \(x=(x_{n,m})\) be a non-negative double sequence in \(\mathcal{L} _{p}\). Since
applying Minkowski’s inequality and Lemma 2.2, we have
This is equivalent to the inequality stated in the theorem. □
Remark 2.4
By choosing \(d\mu (\alpha )=d\alpha \) and \(d\lambda (\beta )=d\beta \), we have
Therefore, the inequality in Theorem 2.3 reduces to the following generalization of Copson’s inequality to double series:
in which the constant \(p^{2}\) is the best possible [10]. Accordingly, the value
in Theorem 2.3 is the best possible, which is equal to the lower bound of the four-dimensional Hausdorff matrix as operator mapping \({\mathcal{L}_{p}}\) to itself, i.e.,
Let \(\mathsf{E}(\eta ,\gamma )\), \(\mathsf{C}(\eta , \gamma )\), \(\mathsf{H}(\eta , \gamma )\) and \(\boldsymbol{\varGamma }( {\eta , \gamma } )\) be the four-dimensional Euler, Cesàro, Hölder and Gamma matrices of order η and γ, respectively. Applying Theorem 2.3 together with Remark 2.4 to these matrices, we have the following corollary.
Corollary 2.5
Let \(0< p\le 1\) and \(\frac{1}{p}+\frac{1}{p^{*}}=1\). Then for \(\eta >0\) and \(\gamma >0\), we have
-
1.
\(L_{p} (\mathsf{E}^{\mathsf{t}}(\eta ,\gamma ) )= (\eta \gamma )^{-1/p^{*}}\), \(\eta \le 1\), \(\gamma \le 1\);
-
2.
\(L_{p} (\mathsf{C}^{\mathsf{t}}(\eta , \gamma ) )=\frac{ {\varGamma ( {\eta + 1} ){\varGamma ^{2}} ( {\frac{1}{p}} ) \varGamma ( {\gamma + 1} )}}{{\varGamma ( {\eta + \frac{1}{p}} )\varGamma ( {\gamma + \frac{1}{p}} )}}\);
-
3.
\(L_{p} (\mathsf{H}^{\mathsf{t}}(\eta , \gamma ) )=\frac{1}{ {\varGamma ( \eta )\varGamma ( \gamma )}}\int _{0} ^{1} {\int _{0}^{1} {{{ ( {\alpha \beta } )}^{1/{p^{*}}}}| \log \alpha {|^{\eta - 1}}|\log \beta {|^{\gamma - 1}}\,d\alpha \times d\beta } } \);
-
4.
\(L_{p} (\boldsymbol{\varGamma }^{\mathsf{t}} ( {\eta ,\gamma } ) )=\frac{{{p^{2}}\eta \gamma }}{{ ( {p\eta - p + 1} ) ( {p\gamma - p + 1} )}}\), \(\eta > \frac{1}{ {{p^{*}}}}\), \(\gamma > \frac{1}{{{p^{*}}}} \).
In the rest of our paper, we consider the four-dimensional Hausdorff matrices as operators mapping \({\mathcal{L}_{p}}\) to itself and establish a Hardy type formula as a lower estimate for \({L_{p}} ( \mathsf{H}_{\mu \times \lambda } )\). First we state the following lemma as an extension of [3, Lemma 2.2] to the four-dimensional case. Its proof can be easily adapted from that of Lemma 2.2.
Lemma 2.6
Let \(0< p\le 1\), \(\frac{1}{p}+\frac{1}{p^{*}}=1\) and \(\mathsf{E}(r,s)\) be the four-dimensional Euler matrix of order r, s where \(0\le r,s \le 1\). Then \(L_{p} (\mathsf{E}(r,s) )\geq (rs ) ^{-1/p} \).
For \(x\geq 0\), \({ \mathsf{H}_{\mu \times \lambda } }x = \int _{0}^{1} {\int _{0}^{1} {{\mathsf{E}(\alpha ,\beta )x}\,d\mu (\alpha ) \times d \lambda (\beta ) } }\). Hence Lemma 2.6 enables us to estimate the value of \({L_{p}} ( \mathsf{H}_{\mu \times \lambda } )\). The details are given below.
Theorem 2.7
Let \(0< p\le 1\), and \(\mathsf{H}_{\mu \times \lambda }\) be the four-dimensional Hausdorff matrix. Then
Proof
The proof can be easily adapted from that of Theorem 2.3, and so is omitted. □
Applying Theorem 2.7 to the four-dimensional Cesàro, Hölder and Gamma matrices, we have the following corollary.
Corollary 2.8
Let \(0< p\le 1\). Then for \(\eta >0\) and \(\gamma >0\), we have
-
1.
\(L_{p} (\mathsf{C}(\eta , \gamma ) )=\infty \);
-
2.
\(L_{p} (\mathsf{H}(\eta , \gamma ) )=\infty \);
-
3.
\(L_{p} (\boldsymbol{\varGamma }( {\eta ,\gamma } ) )= \infty\) (\({\eta \leqslant \frac{1}{p},\gamma \leqslant \frac{1}{p}}\));
-
4.
\(L_{p} (\boldsymbol{\varGamma }( {\eta ,\gamma } ) )\geq \frac{{\eta \gamma }}{{ ( {\eta - \frac{1}{p}} ) ( {\gamma - \frac{1}{p}} )}}\) (\({\eta > \frac{1}{p},\gamma > \frac{1}{p}} \)).
3 Conclusions
In this paper, we consider the four-dimensional Hausdorff matrix and its transpose as operators on the double sequence space \(\mathcal{L}_{p}\) and establish a Hardy type formula for their lower bounds. Then we apply the results to some special classes of four dimensional Hausdorff matrices such as Cesàro, Euler, Hölder and Gamma matrices. Our results contain some generalizations of Copson’s discrete inequality.
References
Başar, F., Sever, Y.: The space \(\mathcal{L}_{p}\) of double sequences. Math. J. Okayama Univ. 51, 149–157 (2009)
Bennett, G.: Factorizing the classical inequalities. Mem. Am. Math. Soc. 120(576), 1–130 (1996)
Chen, C.-P., Wang, K.-Z.: Lower bounds of Copson type for Hausdorff matrices II. Linear Algebra Appl. 422, 563–573 (2007)
Mursaleen, M., Mohiuddine, S.A.: Convergence Methods for Double Sequences and Applications. Springer, Berlin (2014)
Rhoades, B.E.: Some classes of doubly infinite matrices. Indian J. Pure Appl. Math. 23(6), 419–427 (2003)
Savaş, E., Rhoades, B.E.: An inclusion theorem for double Cesàro matrices over the space of absolutely k-convergent double series. Appl. Math. Lett. 22, 1462–1466 (2009)
Talebi, G.: Lower bounds for generalized Hausdorff matrices and lower triangular matrices on the block weighted sequence space \(\ell _{p}(w, F)\). Linear Multilinear Algebra 62(1), 126–138 (2014)
Talebi, G.: Operator norms of four-dimensional Hausdorff matrices on the double Euler sequence spaces. Linear Multilinear Algebra 65(11), 2257–2267 (2017)
Talebi, G.: On the Taylor sequence spaces and upper boundedness of Hausdorff matrices and Nörlund matrices. Indag. Math. 28(3), 1–8 (2017)
Talebi, G.: Operator norms and lower bounds of four-dimensional matrices. Indag. Math. 28(6), 1134–1143 (2017)
Talebi, G.: Complementary results on the boundedness problem of factorizable four-dimensional matrices. Bull. Malays. Math. Sci. Soc. (2018). https://doi.org/10.1007/s40840-018-00703-7
Talebi, G., Dehghan, M.A.: The below boundedness of matrix operators on the special Lorentz sequence spaces. Linear Algebra Appl. 439, 2411–2421 (2013)
Yeşilkayagil, M., Başar, F.: Domain of Riesz mean in the space \({\mathcal{L}_{s}}\). Filomat 31(4), 925–940 (2017)
Yeşilkayagil, M., Başar, F.: Domain of Euler mean in the space of absolutely p-summable double sequences with \(0< p<1\). Anal. Theory Appl. 34(3), 241–252 (2018)
Acknowledgements
The author would like to thank professor Graham Jameson (University of Lancaster) for his many valuable comments.
Availability of data and materials
Not applicable.
Funding
The research for this manuscript is not funded by anybody else.
Author information
Authors and Affiliations
Contributions
The author approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The author declares that he has no competing interests.
Additional information
The paper is dedicated to the Lady Zeinab Al-Kubra who is the epitome of dignity, just as Hossain Ibn Ali (a.s.) was the epitome of dignity in Karbala on the day of Ashura.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Talebi, G. Lower bound of four-dimensional Hausdorff matrices. J Inequal Appl 2019, 82 (2019). https://doi.org/10.1186/s13660-019-2028-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-019-2028-4
MSC
- 47A30
- 40G05
Keywords
- Four-dimensional Hausdorff matrix