Skip to main content

Improvements of bounds for the Sándor–Yang means

Abstract

In the article, we provide new bounds for two Sándor–Yang means in terms of the arithmetic and contraharmonic means. Our results are the improvements of the previously known results.

Introduction

Let \(p\in\mathbb{R}\) and \(x,y > 0\) with \(x \ne y\). Then the arithmetic mean \(A(x, y)\), quadratic mean \(Q(x, y)\), contraharmonic mean \(C(x, y)\), Neuman–Sándor mean \(NS(x, y)\) [1], Seiffert mean \(T(x, y)\) [2,3,4,5], pth power mean \(M_{p}(x, y)\) [6,7,8,9,10,11,12,13], and Schwab–Borchardt mean \(SB(x, y)\) [14, 15] are defined by

$$\begin{aligned} &A(x,y)=\frac{x+y}{2},\qquad Q(x,y)=\sqrt{\frac{x^{2}+y^{2}}{2}},\qquad C(x, y)= \frac {x^{2}+y^{2}}{x+y}, \end{aligned}$$
(1.1)
$$\begin{aligned} &NS(x,y)=\frac{x-y}{2\sinh^{-1} (\frac{x-y}{x+y} )},\qquad T(x, y)=\frac{x-y}{2\arctan (\frac{x-y}{x+y} )}, \\ &M_{p}(x, y)= \textstyle\begin{cases} (\frac{x^{p}+y^{p}}{2} )^{1/p}, & p\neq0,\\ \sqrt{xy}, & p=0, \end{cases}\displaystyle \end{aligned}$$
(1.2)

and

$$ SB(x,y)= \textstyle\begin{cases} \frac{\sqrt{y^{2}-x^{2}}}{\arccos{(x/y)}}, & x< y,\\ \frac{\sqrt{x^{2}-y^{2}}}{\cosh^{-1}{(x/y)}}, & x>y, \end{cases} $$

respectively, where \(\sinh^{-1}(t)=\log(t+\sqrt{t^{2}+1})\) and \(\cosh ^{-1}(t)=\log(t+\sqrt{t^{2}-1})\) are the inverse hyperbolic sine and cosine functions.

Let \(U(x,y)\) and \(V(x,y)\) be the symmetric bivariate means. Then Yang [16] introduced the Sándor–Yang mean

$$ R_{UV}(x, y)=:V(x,y)e^{\frac{U(x, y)}{SB[U(x,y), V(x,y)]}-1}, $$

and provided the explicit formulas for \(R_{AQ}(x,y)\) and \(R_{QA}(x, y)\) as follows:

$$\begin{aligned} &R_{AQ}(x,y)=Q(x,y)e^{A(x,y)/T(x,y)-1}, \end{aligned}$$
(1.3)
$$\begin{aligned} &R_{QA}(x,y)=A(x,y)e^{Q(x,y)/NS(x,y)-1}. \end{aligned}$$
(1.4)

Recently, the bounds and properties for certain bivariate means and related special functions have attracted the attention of many researchers [17,18,19,20,21,22,23,24,25,26,27,28].

Zhao, Qian, and Song [29] proved that the double inequalities

$$\begin{aligned} &M_{\alpha}(a,b)< R_{QA}(a,b)< M_{\beta}(a,b), \\ &M_{\lambda}(a,b)< R_{AQ}(a,b)< M_{\mu}(a,b) \end{aligned}$$

hold for all \(a, b>0\) with \(a\neq b\) if and only if \(\alpha\leq\log 2/[1+\log2-\log(1+\sqrt{2})]=1.5517\ldots\) , \(\beta\geq5/3\), \(\lambda\leq4\log2/(4+2\log2-\pi)=1.2351\ldots\) , and \(\mu\geq4/3\).

Xu [30], and Xu, Chu, and Qian [31] proved that the two-sided inequalities

$$\begin{aligned} &C^{1/6}(x, y)A^{5/6}(x,y)< R_{AQ}(x,y)< \frac{1}{6}C(x,y)+\frac{5}{6}A(x,y), \end{aligned}$$
(1.5)
$$\begin{aligned} &C^{1/3}(x, y)A^{2/3}(x,y)< R_{QA}(x,y)< \frac{1}{3}C(x,y)+\frac{2}{3}A(x,y) \end{aligned}$$
(1.6)

are valid for all \(x, y>0\) with \(x\neq y\).

The main purpose of this paper is to improve the bounds for \(R_{AQ}(x,y)\) and \(R_{QA}(x,y)\) given by (1.5) and (1.6).

Lemmas

In order to prove our main results, we need four lemmas which we present in this section.

Lemma 2.1

(see [32, Theorem 1.25])

Let \(a, b\in\mathbb{R}\) with \(a< b\), \(f, g: [a, b]\rightarrow\mathbb {R}\) be continuous on \([a, b]\) and differentiable on \((a, b)\), and \(g^{\prime}(x)\neq0\) on \((a, b)\). If \(f^{\prime}(x)/g^{\prime}(x)\) is increasing (decreasing) on \((a, b)\), then so are the functions

$$ \frac{f(x)-f(a)}{g(x)-g(a)},\qquad \frac{f(x)-f(b)}{g(x)-g(b)}. $$

If \(f^{\prime}(x)/g^{\prime}(x)\) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2

(see [33, Lemma 1.1])

Suppose that the power series \(f(x)=\sum_{n=0}^{\infty}a_{n}x^{n}\) and \(g(x)=\sum_{n=0}^{\infty}b_{n}x^{n} \) have the radius of convergence \(r>0\), and \(b_{n}>0\) for all \(n=0, 1, 2, \ldots\) . If there exists \(n_{0}\geq1\) such that the non-constant sequence \(\{a_{n}/b_{n}\} _{n=0}^{\infty}\) is increasing (decreasing) for \(0\leq n\leq n_{0}\) and decreasing (increasing) for \(n\geq n_{0}\), then there exists \(x_{0}\in(0,r)\) such that the function \(f(x)/g(x)\) is strictly increasing (decreasing) on \((0,x_{0})\) and decreasing (increasing) on \((x_{0},r)\).

Lemma 2.3

The function

$$ f(t)=\frac{\frac{2}{3}\log[\sec(t)]+\frac{t}{\tan(t)}-1}{\log [\frac{\sec^{2}(t)+5}{6} ]-\frac{\log[\sec(t)]}{3}} $$
(2.1)

is strictly decreasing from \((0, \pi/4)\) onto \((3\pi+4\log 2-12)/[2(6\log7-7\log2-6\log3)], 12/25)\).

Proof

Let

$$\begin{aligned} &f_{1}(t)=\frac{2}{3}\log\bigl[\sec(t)\bigr]+ \frac{t}{\tan(t)}-1, \\ &f_{2}(t)=\log \biggl[\frac{\sec^{2}(t)+5}{6} \biggr]-\frac{\log[\sec(t)]}{3}, \\ &f_{3}(t)=2\tan(t)+\sin(t)\cos(t)-3t,\qquad f_{4}(t)= \frac{5\sin ^{5}(t)}{\cos(t)[1+5\cos^{2}(t)]}. \end{aligned}$$

Then it is not difficult to verify that

$$\begin{aligned} &f_{1}\bigl(0^{+}\bigr)=f_{2} \bigl(0^{+}\bigr)=f_{3}\bigl(0^{+} \bigr)=f_{4}\bigl(0^{+}\bigr)=0, \end{aligned}$$
(2.2)
$$\begin{aligned} &f(t)=\frac{f_{1}(t)}{f_{2}(t)},\qquad \frac{f^{\prime}_{1}(t)}{f^{\prime }_{2}(t)}=\frac{f_{3}(t)}{f_{4}(t)}, \end{aligned}$$
(2.3)
$$\begin{aligned} &\frac{f^{\prime}_{3}(t)}{f^{\prime}_{4}(t)}=\frac{2 [1+5\cos ^{2}(t) ]^{2}}{5 [10\cos^{4}(t)+19\cos^{2}(t)+1 ]}, \end{aligned}$$
(2.4)
$$\begin{aligned} &\biggl[\frac{f^{\prime}_{3}(t)}{f^{\prime}_{4}(t)} \biggr]^{\prime} =-\frac{2\sin(2t)[1+5\cos^{2}(t)][75\cos^{2}(t)-9]}{5 [10\cos ^{4}(t)+19\cos^{2}(t)+1 ]^{2}}< 0 \end{aligned}$$
(2.5)

for \(t\in(0, \pi/4)\).

Therefore, the function \(f(t)\) is strictly decreasing on \((0, \pi/4)\) follows easily from Lemma 2.1, (2.2), (2.3), and (2.5).

It follows from (2.1)–(2.4) that

$$ f\bigl(0^{+}\bigr)=\lim_{t\rightarrow0^{+}}\frac{f^{\prime}_{3}(t)}{f^{\prime }_{4}(t)}= \frac{12}{25} $$

and

$$ f \biggl(\frac{\pi}{4} \biggr)=\lim_{t\rightarrow\pi/4} \frac{\frac {2}{3}\log[\sec(t)]+\frac{t}{\tan(t)}-1}{\log [\frac{\sec ^{2}(t)+5}{6} ]-\frac{\log[\sec(t)]}{3}} =\frac{3\pi+4\log2-12}{2(6\log7-7\log2-6\log3)}=0.4258\ldots. $$

 □

Lemma 2.4

The function

$$ g(t)=\frac{t\coth(t)-\frac{2\log[\cosh(t)]}{3}-1}{\log [\frac {\cosh^{2}(t)+2}{3} ]-\frac{2\log[\cosh(t)]}{3}} $$
(2.6)

is strictly decreasing from \((0, \log(1+\sqrt{2}))\) onto \(([3\sqrt {2}\log(1+\sqrt{2})-\log2-3]/(5\log2-3\log3), 3/10)\).

Proof

Let

$$\begin{aligned} &g_{1}(t)=t\coth(t)-\frac{2\log[\cosh(t)]}{3}-1, \\ &g_{2}(t)=\log \biggl[\frac{\cosh^{2}(t)+2}{3} \biggr]-\frac{2\log [\cosh(t)]}{3}, \\ &g_{3}(t)= \bigl[3\sinh(t)+\sinh^{3}(t)-3t\cosh(t) \bigr] \bigl[\cosh^{2}(t)+2 \bigr], \\ &g_{4}(t)=4\sinh^{5}(t). \end{aligned}$$

Then we clearly see that

$$\begin{aligned} &g_{1}\bigl(0^{+}\bigr)=g_{2} \bigl(0^{+}\bigr)=g_{3}\bigl(0^{+} \bigr)=g_{4}\bigl(0^{+}\bigr)=0, \end{aligned}$$
(2.7)
$$\begin{aligned} &g(t)=\frac{g_{1}(t)}{g_{2}(t)}, \qquad\frac{g^{\prime}_{1}(t)}{g^{\prime }_{2}(t)}=\frac{g_{3}(t)}{g_{4}(t)}. \end{aligned}$$
(2.8)

Elaborate computations lead to

$$\begin{aligned} \frac{g^{\prime}_{3}(t)}{g^{\prime}_{4}(t)}&=\frac{5\sinh(4t)+50\sinh (2t)-84t-36t\cosh(2t)}{20[\sinh(4t)-2\sinh(2t)]} \\ &=\frac{5\sum_{n=0}^{\infty}\frac{(4t)^{2n+1}}{(2n+1)!}+50\sum_{n=0}^{\infty}\frac{(2t)^{2n+1}}{(2n+1)!}-84t-36t\sum_{n=0}^{\infty }\frac{(2t)^{2n}}{(2n)!}}{20\sum_{n=0}^{\infty}\frac {(4t)^{2n+1}}{(2n+1)!}-40\sum_{n=0}^{\infty}\frac {(2t)^{2n+1}}{(2n+1)!}}=:\frac{\sum_{n=0}^{\infty}a_{n}}{\sum_{n=0}^{\infty}b_{n}}, \end{aligned}$$
(2.9)

where

$$ a_{n}=\frac{ (5\times2^{2n+1}-9n-1 )2^{2n+5}}{(2n+3)!},\qquad b_{n}=\frac{10 (2^{2n+2}-1 )2^{2n+5}}{(2n+3)!}. $$
(2.10)

From (2.10) we clearly see that

$$\begin{aligned} &\frac{a_{1}}{b_{1}}-\frac{a_{0}}{b_{0}}=-\frac{1}{10}< 0, \end{aligned}$$
(2.11)
$$\begin{aligned} &\frac{a_{n+1}}{b_{n+1}}-\frac{a_{n}}{b_{n}}=\frac{9 [3(2n-1)2^{2n+1}+1 ]}{10 (2^{2n+2}-1 ) (2^{2n+4}-1 )}>0 \end{aligned}$$
(2.12)

for all \(n\geq1\), and

$$ b_{n}>0 $$
(2.13)

for all \(n\geq0\).

It follows from Lemma 2.2 and (2.9)–(2.13) that there exists \(t_{0}\in (0, \infty)\) such that the function \(g^{\prime}_{3}(t)/g^{\prime}_{4}(t)\) is strictly decreasing on \((0, t_{0})\) and strictly increasing on \((t_{0}, \infty)\).

Note that

$$\begin{aligned} &\biggl[\frac{g^{\prime}_{3}(t)}{g^{\prime}_{4}(t)} \biggr]^{\prime} =\frac{4\cosh(4t)+16\cosh(2t)-18t\sinh(2t)-21}{5[\sinh(4t)-2\sinh(2t)]} \\ &\phantom{\biggl[\frac{g^{\prime}_{3}(t)}{g^{\prime}_{4}(t)} \biggr]^{\prime} =}{}-\frac{[5\sinh(4t)+50\sinh(2t)-84t-36t\cosh(2t)][\cosh(4t)-\cosh (2t)]}{5[\sinh(4t)-2\sinh(2t)]^{2}}, \\ &\biggl[\frac{g^{\prime}_{3}(t)}{g^{\prime}_{4}(t)} \biggr]^{\prime }_{t=\log(1+\sqrt{2})} = \frac{(13{,}464\sqrt{2}+19{,}041)\log(1+\sqrt{2})-12{,}117\sqrt {2}-17{,}136}{5770+4080\sqrt{2}} \\ &\phantom{\biggl[\frac{g^{\prime}_{3}(t)}{g^{\prime}_{4}(t)} \biggr]^{\prime }_{t=\log(1+\sqrt{2})} }=-0.0613\ldots< 0. \end{aligned}$$
(2.14)

From (2.14) and piecewise monotonicity of the function \(g^{\prime }_{3}(t)/g^{\prime}_{4}(t)\), we clearly see that \(t_{0}>\log(1+\sqrt {2})\) and the function \(g^{\prime}_{3}(t)/g^{\prime}_{4}(t)\) is strictly decreasing on \((0, \log(1+\sqrt{2}))\). Then Lemma 2.1 together with (2.7) and (2.8) leads to the conclusion that \(g(t)\) is strictly decreasing on \((0, \log(1+\sqrt{2}))\).

It follows from (2.6)–(2.10) that

$$ g\bigl(0^{+}\bigr)=\frac{a_{0}}{b_{0}}=\frac{3}{10},\qquad g\bigl( \log(1+\sqrt{2})\bigr)=\frac {3\sqrt{2}\log(1+\sqrt{2})-\log2-3}{5\log2-3\log3}=0.2719\ldots. $$

 □

Main results

Theorem 3.1

The double inequality

$$\begin{aligned} &\biggl[\frac{1}{6}C(x,y)+\frac{5}{6}A(x,y) \biggr]^{\alpha_{1}} \bigl[C^{1/6}(x,y)A^{5/6}(x,y) \bigr]^{1-\alpha_{1}}\\ &\quad < R_{AQ}(x,y) \\ &\quad< \biggl[\frac{1}{6}C(x,y)+\frac{5}{6}A(x,y) \biggr]^{\beta_{1}} \bigl[C^{1/6}(x,y)A^{5/6}(x,y) \bigr]^{1-\beta_{1}} \end{aligned}$$

holds for all \(x, y>0\) with \(x\neq y\) if and only if \(\alpha_{1}\leq (3\pi+4\log2-12)/[2(6\log7-7\log2-6\log3)]=0.4258\ldots\) and \(\beta_{1}\geq12/25\).

Proof

Since \(A(x,y)\), \(R_{AQ}(x, y)\), and \(C(x,y)\) are symmetric and homogenous of degree one, without loss of generality, we assume that \(x> y> 0\). Let \(\nu=(x-y)/(x+y)\in(0, 1) \) and \(t=\arctan(\nu)\in(0, \pi/4)\). Then (1.1)–(1.3) lead to

$$\begin{aligned} &\frac{\log [R_{AQ}(x,y) ]-\log [C^{1/6}(x,y)A^{5/6}(x,y) ]}{\log [C(x,y)/6+5A(x, y)/6 ]-\log [C^{1/6}(x,y)A^{5/6}(x,y) ]} \\ &\quad=\frac{\log(\sqrt{1+\nu^{2}})+\arctan(\nu)/\nu-1-\log (\sqrt [6]{1+\nu^{2}} )}{\log [(1+\nu^{2})/6+5/6 ]-\log (\sqrt[6]{1+\nu^{2}} )} \\ &\quad=\frac{\frac{2}{3}\log[\sec(t)]+\frac{t}{\tan(t)}-1}{\log [\frac{\sec^{2}(t)+5}{6} ]-\frac{\log[\sec(t)]}{3}}. \end{aligned}$$
(3.1)

Therefore, Theorem 3.1 follows easily from Lemma 2.3 and (3.1). □

Theorem 3.2

The two-sided inequalities

$$\begin{aligned} &\biggl[\frac{1}{3}C(x,y)+\frac{2}{3}A(x,y) \biggr]^{\alpha_{2}} \bigl[C^{1/3}(x,y)A^{2/3}(x,y) \bigr]^{1-\alpha_{2}}\\ &\quad< R_{QA}(x,y) \\ &\quad< \biggl[\frac{1}{3}C(x,y)+\frac{2}{3}A(x,y) \biggr]^{\beta_{2}} \bigl[C^{1/3}(x,y)A^{2/3}(x,y) \bigr]^{1-\beta_{2}} \end{aligned}$$

are valid for all \(x, y>0\) with \(x\neq y\) if and only if \(\alpha _{2}\leq[3\sqrt{2}\log(1+\sqrt{2})-\log2-3]/(5\log2-3\log 3)=0.2719\ldots\) and \(\beta_{2}\geq3/10\).

Proof

Since \(A(x,y)\), \(R_{QA}(x,y)\), and \(C(x,y)\) are symmetric and homogenous of degree one, without loss generality, we assume that \(x> y>0\). Let \(v=(x-y)/(x+y)\in(0, 1)\) and \(t=\sinh^{-1}(v)\in(0, \log(1+\sqrt {2})\). Then from (1.1), (1.3), and (1.4) we clearly see that

$$\begin{aligned} &\frac{\log [R_{QA}(x,y) ]-\log [C^{1/3}(x,y)A^{2/3}(x,y) ]}{\log [C(x,y)/3+2A(x,y)/3 ]-\log [C^{1/3}(x,y)A^{2/3}(x,y) ]} \\ &\quad=\frac{ [\sqrt{1+v^{2}}\sinh^{-1}(v) ]/v-1-\log (\sqrt [3]{1+v^{2}} )}{\log [(1+v^{2})/3+2/3 ]-\log (\sqrt[3]{1+v^{2}} )} \\ &\quad=\frac{t\coth(t)-\frac{2\log[\cosh(t)]}{3}-1}{\log [\frac {\cosh^{2}(t)+2}{3} ]-\frac{2\log[\cosh(t)]}{3}}. \end{aligned}$$
(3.2)

Therefore, Theorem 3.2 follows easily from Lemma 2.4 and (3.2). □

From (1.3), (1.4), and Theorems 3.1 and 3.2 we get Corollary 3.3 immediately.

Corollary 3.3

Let

$$\begin{aligned} \lambda(\alpha; a, b)={}&6\alpha\log\bigl[C(a,b)+5A(a,b)\bigr] \\ &{}+(1-\alpha)\bigl[\log C(a,b)+5\log A(a,b)\bigr]-6\log Q(a,b)+6(1-\alpha\log6), \\ \mu(\alpha; a, b)={}&3\alpha\log\bigl[C(a,b)+2A(a,b)\bigr] \\ &{}+(1-\alpha)\log C(a,b)-(1+2\alpha)\log A(a,b)+3(1-\alpha\log3). \end{aligned}$$

Then the double inequalities

$$\begin{aligned} &\frac{6A(a,b)}{\lambda(\beta_{1}; a, b)}< T(a,b)< \frac {6A(a,b)}{\lambda(\alpha_{1}; a, b)}, \\ &\frac{3Q(a,b)}{\mu(\beta_{2}; a, b)}< NS(a,b)< \frac{3Q(a,b)}{\mu (\alpha_{2}; a, b)} \end{aligned}$$

hold for all \(a, b>0\) with \(a\neq b\) if and only if \(\alpha_{1}\leq (3\pi+4\log2-12)/[2(6\log7-7\log2-6\log3)]=0.4258\ldots\) , \(\beta_{1}\geq12/25\), \(\alpha_{2}\leq[3\sqrt{2}\log(1+\sqrt {2})-\log2-3]/(5\log2-3\log3)=0.2719\ldots\) , and \(\beta_{2}\geq3/10\).

Results and discussion

In the article, we present the best possible parameters \(\alpha_{1}\), \(\beta_{1}\), \(\alpha_{2}\), and \(\beta_{2}\) such that the double inequalities

$$\begin{aligned} &\biggl[\frac{1}{6}C(x,y)+\frac{5}{6}A(x,y) \biggr]^{\alpha_{1}} \bigl[C^{1/6}(x,y)A^{5/6}(x,y) \bigr]^{1-\alpha_{1}}\\ &\quad< R_{AQ}(x,y) \\ &\quad< \biggl[\frac{1}{6}C(x,y)+\frac{5}{6}A(x,y) \biggr]^{\beta_{1}} \bigl[C^{1/6}(x,y)A^{5/6}(x,y) \bigr]^{1-\beta_{1}}, \\ &\biggl[\frac{1}{3}C(x,y)+\frac{2}{3}A(x,y) \biggr]^{\alpha_{2}} \bigl[C^{1/3}(x,y)A^{2/3}(x,y) \bigr]^{1-\alpha_{2}}\\ &\quad< R_{QA}(x,y) \\ &\quad< \biggl[\frac{1}{3}C(x,y)+\frac{2}{3}A(x,y) \biggr]^{\beta_{2}} \bigl[C^{1/3}(x,y)A^{2/3}(x,y) \bigr]^{1-\beta_{2}} \end{aligned}$$

hold for all \(x, y>0\) with \(x\neq y\). Our results are the improvements of the inequalities given by (1.5) and (1.6).

Conclusion

We present sharp upper and lower bounds for the Sándor–Yang means \(R_{AQ}\) and \(R_{QA}\) in terms of the arithmetic and contraharmonic means and provide new bounds for the Seiffert mean T and Neuman–Sándor mean NS. Our approach may have further applications in the theory of bivariate means and special functions.

References

  1. 1.

    Neuman, E.: Sharp inequalities involving Neuman–Sándor and logarithmic means. J. Math. Inequal. 7(3), 413–419 (2013)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Chu, Y.-M., Zong, C., Wang, G.-D.: Optimal convex combination bounds of Seiffert and geometric means for arithmetic mean. J. Math. Inequal. 5(3), 429–434 (2011)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Chu, Y.-M., Hou, S.-W.: Sharp bounds for Seiffert mean in terms of contraharmonic mean. Abstr. Appl. Anal. 2012, Article ID 425175 (2012)

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Chu, Y.-M., Wang, M.-K., Wang, G.-D.: The optimal generalized logarithmic mean bounds for Seiffert mean. Acta Math. Sci. 32B(4), 1619–1626 (2012)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Chu, Y.-M., Wang, M.-K., Wang, Z.-K.: Best possible inequalities among harmonic, geometric, logarithmic and Seiffert means. Math. Inequal. Appl. 15(2), 415–422 (2012)

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Lin, T.P.: The power and the logarithmic mean. Am. Math. Mon. 81, 879–883 (1974)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Alzer, H., Qiu, S.-L.: Inequalities for means in two variables. Arch. Math. 80(2), 201–215 (2003)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Monotonicity rule for the quotient of two functions and its application. J. Inequal. Appl. 2017, Article ID 106 (2017)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Chu, Y.-M., Xia, W.-F.: Two optimal double inequalities between power mean and logarithmic mean. Comput. Math. Appl. 60(1), 83–89 (2010)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Chu, Y.-M., Qiu, Y.-F., Wang, M.-K.: Sharp power mean bounds for combination of Seiffert and geometric means. Abstr. Appl. Anal. 2010, Article ID 108920 (2010)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Chu, Y.-M., Wang, S.-S., Zong, C.: Optimal lower power mean bound for the convex combination of harmonic and logarithmic means. Abstr. Appl. Anal. 2011, Article ID 520648 (2011)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality for the Grötzsch ring function. Math. Inequal. Appl. 14(4), 833–837 (2011)

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661–1667 (2014)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Neuman, E., Sándor, J.: On the Schwab–Borchardt mean. Math. Pannon. 14(2), 253–266 (2003)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Neuman, E., Sándor, J.: On the Schwab–Borchardt mean II. Math. Pannon. 17(1), 49–59 (2006)

    MathSciNet  MATH  Google Scholar 

  16. 16.

    Yang, Z.-H.: Three families of two-parameter means constructed by trigonometric functions. J. Inequal. Appl. 2013, Article ID 541 (2013)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Zhao, T.-H., Wang, M.-K., Chu, Y.-M.: Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018, Article ID 251 (2018)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Chu, Y.-M., Wang, M.-K.: Optimal Lehmer mean bounds for the Toader mean. Results Math. 61(3–4), 223–229 (2012)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Qian, W.-M., Chu, Y.-M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017, Article ID 274 (2017)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Yang, Z.-H., Qian, W.-M., Chu, Y.-M.: On rational bounds for the gamma function. J. Inequal. Appl. 2017, Article ID 210 (2017)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Adil Khan, M., Chu, Y.-M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 15, 1414–1430 (2017)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Yang, Z.-H., Qian, W.-M., Chu, Y.-M.: Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math. Inequal. Appl. 21(4), 1185–1199 (2018)

    MathSciNet  MATH  Google Scholar 

  24. 24.

    Yang, Z.-H., Chu, Y.-M., Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl. Math. Comput. 348, 552–564 (2019)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Khurshid, Y., Adil Khan, M., Chu, Y.-M., Khan, Z.A., Liu, L.-S.: Hermite–Hadamard–Fejér inequalities for conformable fractional integrals via preinvex functions. J. Funct. Spaces 2019, Article ID 3146210 (2019)

    Google Scholar 

  26. 26.

    Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable integral inequalities of the Hermite–Hadamard type in terms of GG- and GA-convexities. J. Funct. Spaces 2019, Article ID 6926107 (2019)

    MathSciNet  Google Scholar 

  27. 27.

    Wang, J.-L., Qian, W.-M., He, Z.-Y., Chu, Y.-M.: On approximating the Toader mean by other bivariate means. J. Funct. Spaces 2019, Article ID 6082413 (2019)

    MathSciNet  Google Scholar 

  28. 28.

    Qiu, S.-L., Ma, X.-Y., Chu, Y.-M.: Sharp Landen transformation inequalities for hypergeometric functions, with applications. J. Math. Anal. Appl. 474(2), 1306–1337 (2019)

    Article  Google Scholar 

  29. 29.

    Zhao, T.-H., Qian, W.-M., Song, Y.-Q.: Optimal bounds for two Sándor-type means in terms of power means. J. Inequal. Appl. 2016, Article ID 64 (2016)

    Article  Google Scholar 

  30. 30.

    Xu, H.-Z.: Sharp bounds for Sándor–Yang means in terms of some bivariate means. J. East China Norm. Univ. Natur. Sci. Ed. 2017(4), 41–51 (2017)

    MATH  Google Scholar 

  31. 31.

    Xu, H.-Z., Chu, Y.-M., Qian, W.-M.: Sharp bounds for the Sándor–Yang means in terms of arithmetic and contra-harmonic means. J. Inequal. Appl. 2018, Article ID 127 (2018)

    Article  Google Scholar 

  32. 32.

    Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997)

    Google Scholar 

  33. 33.

    Simić, S., Vuorinen, M.: Landen inequalities for zero-balanced hypergeometric functions. Abstr. Appl. Anal. 2012, Article ID 932061 (2012)

    MathSciNet  Article  Google Scholar 

Download references

Funding

The research was supported by the Natural Science Foundation of China under Grants 61673169, 11301127, 11701176, 11626101, and 11601485, the Natural Science Foundation of Zhejiang Broadcast and TV University under Grant XKT-17Z04, and the Natural Science Foundation of Huzhou City under Grant 2018YZ07.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu-Ming Chu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qian, W., Xu, H. & Chu, Y. Improvements of bounds for the Sándor–Yang means. J Inequal Appl 2019, 73 (2019). https://doi.org/10.1186/s13660-019-2025-7

Download citation

MSC

  • 26E60

Keywords

  • Sándor–Yang mean
  • Arithmetic mean
  • Quadratic mean
  • Contra-harmonic mean
  • Neuman–Sándor mean
  • Seiffert mean
  • Power mean
  • Schwab–Borchardt mean