Skip to main content

Characterizing the R-duality of g-frames

Abstract

In this paper, we define the g-Riesz-dual of a given special operator-valued sequence with respect to g-orthonormal bases for a separable Hilbert space. We demonstrate that the g-R-dual keeps some synchronous frame properties with the operator-valued sequence given. We also display some Schauder basis-like properties of the g-R-dual in the light of the properties of the given sequence. In particular, the g-R-dual can be characterized by the use of another sequence, related to the given sequence. Finally, a special sequence is constructed to build the relationship between an operator-valued sequence and a g-Riesz sequence.

Introduction

Duality principles in Gabor theory play a fundamental role in analyzing the Gabor system. In [1], the authors described the concept of the Riesz-dual of a vector-valued sequence and illustrated the common frame properties for the give sequence and its R-dual. The conditions under which a Riesz sequence can be a R-dual of a given frame are investigated in [2]. In this paper, we are interested in the duality principles for g-frames. In [3], the g-R-dual was first defined, and some frame properties of g-R-dual were exhibited by the properties of the given operator-valued sequence. In this paper, our definition of g-R-dual in Sect. 2 is much weaker, and we characterize the g-R-dual with the analysis operator. The properties of the g-completeness, g-w-linearly independent, g-minimality of the g-R-dual is accounted in Sect. 3. In Sect. 4, we construct a sequence with a g-Riesz sequence and a given operator-valued sequence to consider the g-R-dual in a different way.

Throughout this paper, we use \(\mathbb{N}\) to denote the set of all natural numbers, and assume that \(\{H_{i}\}_{i\in\mathbb{N}}\) is a sequence of closed subspaces of a separable Hilbert space K, H is a separable Hilbert space. Denote by \(\{A_{i}\}_{i\in\mathbb{N}}\), or for short \(\{A_{i}\}\), a sequence of operators with \(A_{i}\in B(H,H_{i})\) for any \(i\in\mathbb{N}\). Suppose that \(B(H,H_{i})\) denotes the collection of all the bounded linear operators from H into \(H_{i}\), \(i\in\mathbb{N}\). Denote by \(\bigoplus_{i\in \mathbb{N}}{H_{i}}\) the orthogonal direct sum Hilbert space of \(\{ H_{i}\}_{i\in\mathbb{N}}\), \(\{g_{i}\}:=\{g_{i}\}_{i\in\mathbb{N}}\) for any \(\{g_{i}\}_{i\in\mathbb{N}}\in\bigoplus_{i\in\mathbb {N}}{H_{i}}\).

In [10], Sun raised the concept of a g-frame as follows. Let \(A_{i}\in B(H,H_{i})\), \(i\in\mathbb{N}\). If there exist two constants \(a, b\) such that

$$ a \Vert f \Vert ^{2}\leq\sum_{i\in\mathbb {N}} \Vert A_{i}f \Vert ^{2}\leq b \Vert f \Vert ^{2},\quad \forall f\in H, $$

we call \(\{A_{i}\}\) a g-frame for H. We call \(\{A_{i}\}\) a tight g-frame for H if \(a=b\). Specially, if \(a=b=1\), \(\{A_{i}\} \) is called a Parseval g-frame for H. If the inequalities above hold only for \(f\in \overline{\operatorname{span}} \{A^{*}_{i}H_{i}\} _{i\in\mathbb{N}}\), we call \(\{A_{i}\}\) a g-frame sequence for H. If only the right-hand inequality above holds, then we say that \(\{ A_{i}\}\) is a g-Bessel sequence for H. If \(\overline{\operatorname{span}} \{A^{*}_{i}H_{i}\}_{i\in\mathbb{N}}=H\), we say that \(\{A_{i}\}\) is g-complete in H. If \(\{A_{i}\}\) is g-complete and such that

$$ a \bigl\Vert \{g_{i}\} \bigr\Vert ^{2}\leq\sum _{i\in\mathbb {N}} \bigl\Vert A_{i}^{*}g_{i} \bigr\Vert ^{2}\leq b \bigl\Vert \{g_{i}\} \bigr\Vert ^{2},\quad \forall \{g_{i}\} \in\bigoplus _{i\in\mathbb{N}}{H_{i}}, $$

we call \(\{A_{i}\}\) a g-Riesz basis for H. If the g-completeness is not satisfied, it is called a g-Riesz sequence for H. As we know, if \(\{A_{i}\}\) is a g-frame for H, we define \(S_{A}f=\sum_{i\in\mathbb{N}}A^{*}_{i}A_{i}f\) for any \(f\in H\), then \(S_{A}\) is a well-defined, bounded, positive, invertible operator by [10]. We call \(S_{A}\) a frame operator of \(\{A_{i}\}\). Another basic fact is that \(\{\widetilde{A}_{i}\}_{i\in\mathbb{N}}=\{ A_{i}S_{A}^{-1}\}_{i\in\mathbb{N}}\) is a g-frame for H, we call it a canonical dual g-frame of \(\{A_{i}\}\). Extensively, by [8], if a g-frame \(\{B_{i}\}\) for H such that \(f=\sum_{i\in\mathbb {N}}B^{*}_{i}A_{i}f\) for every \(f\in H\), we say that it is a dual g-frame of \(\{A_{i}\}\). Recently, g-frames in Hilbert spaces have been studied intensively; for more details see [4,5,6,7,8,9,10] and the references therein.

In the following we introduce some definitions and lemmas connected with the g-bases in Hilbert space which will be needed in the paper.

Definition 1.1

([10])

If \(\{A_{i}\}\) satisfies

  1. (1)

    \(\{A_{i}\}\) is a g-orthonormal sequence for H, i.e., \(\langle A^{*}_{i}g_{i},A^{*}_{j}g_{j}\rangle=\delta _{ij}\langle g_{i},g_{j}\rangle\) for any \(i, j\in\mathbb{N}\), any \(g_{i}\in H_{i}, g_{j}\in H_{j}\).

  2. (2)

    \(\{A_{i}\}\) is g-complete in H.

We call \(\{A_{i}\}\) a g-orthonormal basis for H. Obviously, (2) is equivalent to that \(\{A_{i}\}\) is a Parseval g-frame for H by [5, Corollary 4.4], when (1) holds. Specially, if \(\{A_{i}\} \) only satisfies \(A_{i}A^{*}_{j}=0\) for any \(i, j\in\mathbb{N}\), \(i\neq j\), \(\{A_{i}\}\) is called a g-orthogonal sequence for H.

The g-orthonormal basis is a special case that itself is g-biorthonormal. The following result shows that for the g-Riesz basis there also exists a g-biorthonormal sequence.

Lemma 1.2

([10], Corollary 3.3)

Let \(\{A_{i}\}\) be a g-Riesz basis for H. Then \(\{A_{i}\}\) and \(\{ \widetilde{A}_{i}\}\) are g-biorthonormal, where \(\{\widetilde{A}_{i}\}\) is the canonical dual g-frame of \(\{A_{i}\}\).

In this paper, we only interested in the case when the g-orthonormal basis for H exists, which is equivalent to the following result.

Lemma 1.3

([5], Theorem 3.1)

Let H be a separable Hilbert space, \(\{H_{i}\}_{i\in\mathbb{N}}\) be a sequence of separable Hilbert spaces. Then there exists a sequence \(\{ \varGamma_{i}\}\), which is a g-orthonormal basis for H if and only if \(\operatorname{dim}H=\sum_{i\in\mathbb{N}}\operatorname{dim}H_{i}\).

The concept of g-bases in Hilbert space is a generalization of the Schauder basis. Let \(\{A_{i}\}\). If for any \(f\in H\), there is a unique sequence \(\{g_{i}\}_{i\in\mathbb{N}}\) with \(g_{i}\in H_{i}\) for any \(i\in\mathbb{N}\) such that \(f=\sum_{i\in\mathbb{N}}A_{i}^{*}g_{i}\), we call \(\{A_{i}\}\) a g-basis for H. If \(\{A_{i}\}\) is a g-basis for \(\overline{\operatorname{span}} \{A_{i}^{*}H_{i}\}_{i\in\mathbb {N}}\), \(\{A_{i}\}\) is called a g-basic sequence for H. Moreover, If \(\sum_{i\in\mathbb{N}}A^{*}_{i}g_{i}=0\) for \(\{g_{i}\} \in\bigoplus_{i\in\mathbb{N}}{H_{i}}\), then \(g_{i}=0\), we call \(\{A_{i}\}\) g-w-linearly independent. If \(A^{*}_{j}g_{j}\notin \overline{\operatorname{span}}_{i\neq j} \{A^{*}_{i}g_{i}\}_{i\in \mathbb{N}}\) for any \(\{g_{i}\}\in\bigoplus_{i\in\mathbb {N}}{H_{i}}\) such that \(g_{i}\in H_{i}\), \(g_{i}\neq0\), any \(i\in \mathbb{N}\), we call \(\{A_{i}\}\) g-minimal. For more details as regards g-bases see [4].

Duality for g-frame

Before giving the definition of g-R-dual, we introduce a lemma which is related to the g-Bessel sequence.

Lemma 2.1

The sequence \(\{A_{i}\}\) is a g-Bessel sequence for H if and only if \(\sum_{i\in\mathbb{N}}A^{*}_{i}g_{i}\) is convergent for any \(\{g_{i}\}\in\bigoplus_{i\in\mathbb{N}}{H_{i}}\), and is also equivalent to that \(\sum_{i\in\mathbb {N}} \Vert A_{i}f \Vert ^{2}<\infty\) for every \(f\in H\).

Proof

Suppose \(\sum_{i\in\mathbb{N}}A^{*}_{i}g_{i}\) is convergent for any \(\{g_{i}\}\in\bigoplus_{i\in\mathbb {N}}{H_{i}}\). For any \(n\in\mathbb{N}\), \(\{g_{i}\}\in \bigoplus_{i\in\mathbb{N}}{H_{i}}\), we define \(T_{n}: \bigoplus_{i\in\mathbb{N}}{H_{i}}\rightarrow H, T_{n}\{g_{i}\}=\sum_{i=1}^{n}A^{*}_{i}g_{i}\). Thus \(T_{n}\) is bounded evidently. Since \(\{T_{n}\}_{n\in\mathbb{N}}\) converges to T in the strong operator topology as \(n\rightarrow \infty\), where \(T\{g_{i}\}=\sum_{i\in\mathbb {N}}A^{*}_{i}g_{i}\) for every \(\{g_{i}\}\in\bigoplus_{i\in\mathbb{N}}{H_{i}}\). Then T is bounded by the uniform boundedness principle in Banach space. The rest follows directly. □

For a g-Bessel sequence \(\{A_{i}\}\), we can define the analysis operator as \(\theta_{A}: H\rightarrow \bigoplus_{i\in\mathbb{N}}{H_{i}}, \theta_{A}f=\{A_{i}f\}_{i\in\mathbb{N}}\text{ for any }f\in H\), which is well defined and bounded obviously by Lemma 2.1.

Definition 2.2

Let \(\{\varLambda_{i}\}\), \(\{\varGamma_{i}\}\) be two g-orthonormal bases for H. Suppose a sequence \(\{A_{i}\}\) such that \(\sum_{i\in \mathbb{N}} \Vert A_{i}\varLambda^{*}_{j}g_{j} \Vert ^{2}<\infty\) for any \(j\in \mathbb{N}\), any \(g_{j}\in H_{j}\). We define

$$ {\mathcal{A}}_{j}^{*}g_{j}=\sum _{i\in\mathbb {N}}\varGamma_{i}^{*}A_{i} \varLambda^{*}_{j}g_{j}, \quad\forall j\in\mathbb {N}, g_{j}\in H_{j}. $$

We call \(\{{\mathcal{A}}_{i}\}\) a g-R-dual sequence of \(\{A_{i}\}\).

Remark 2.3

By [4, Theorem 4.4], for any \(j\in\mathbb{N}\), \({\mathcal {A}}_{j}\) is well defined if and only if \(\{A_{i}\varLambda^{*}_{j}g_{j}\} _{i\in\mathbb{N}}\in\bigoplus_{i\in\mathbb{N}} {H_{i}}\) for any \(g_{j}\in H_{j}\), i.e., \(\{A_{i}Q_{j}f\}_{i\in\mathbb{N}}\in \bigoplus_{i\in\mathbb{N}}{H_{i}}\) for any \(f\in H\), i.e., \(\{ A_{i}\}\) is a g-Bessel sequence for \(\operatorname{ran}Q_{j}\) by Lemma 2.1, where \(Q_{j}\) is the orthogonal projection from H onto \(\overline{\operatorname{ran}} \varLambda_{j}^{*}\). Obviously, \(\{A_{i}\}\) may not be a g-Bessel sequence for H. The condition of our definition is weaker than that in [3, Definition 1.13]. Thus Definition 2.2 is equivalent to \({\mathcal{A}}_{j}=\sum_{i\in\mathbb {N}}\varLambda_{j}A_{i}^{*}\varGamma_{i}\) for any \(j\in\mathbb{N}\). By Definition 1.1, we get \(\varGamma_{k}{\mathcal {A}}^{*}_{j}=A_{k}\varLambda^{*}_{j}\) for every \(i, k\in\mathbb{N}\).

The following exhibits that the sequence \(\{A_{i}\}\) satisfying Definition 2.2 shares the common properties with its g-R-dual \(\{{\mathcal{A}}_{i}\}\). Similar results are referred to in [3, Theorem 2.2].

Theorem 2.4

Let \(\{A_{i}\}\) satisfy Definition 2.2, \(\{{\mathcal{A}}_{i}\}\) be its g-R-dual defined in Definition 2.2. Then \(\{A_{i}\}\) is a g-Bessel sequence for H if and only if \(\{{\mathcal{A}}_{i}\}\) is a g-Bessel sequence for H. Moreover, they have the same upper bound.

Proof

For every \(\{g_{i}\}\in\bigoplus_{i\in\mathbb{N}}{H_{i}}\), let \(f=\sum_{i\in\mathbb{N}}\varLambda^{*}_{i}g_{i}\), \(h=\sum_{i\in\mathbb {N}}\varGamma^{*}_{i}g_{i}\). Suppose \(\{A_{i}\}\) is a g-Bessel sequence for H and has an upper bound b. Since \(\theta_{\varLambda}, \theta_{\varGamma}: H\rightarrow \bigoplus_{i\in\mathbb{N}}{H_{i}}\) are unitary,

$$\begin{aligned} \biggl\Vert \sum_{j\in\mathbb{N}}{\mathcal {A}}^{*}_{j}g_{j} \biggr\Vert ^{2}&= \biggl\Vert \sum_{j\in\mathbb{N}}\theta _{\varGamma}^{*} \theta_{\varGamma}{\mathcal{A}}^{*}_{j}g_{j} \biggr\Vert ^{2}= \biggl\Vert \sum_{j\in\mathbb{N}} \sum_{i\in\mathbb{N}}\varGamma ^{*}_{i} \varGamma_{i}{\mathcal{A}}^{*}_{j}g_{j} \biggr\Vert ^{2} \\ &= \biggl\Vert \sum_{j\in\mathbb{N}}\sum _{i\in\mathbb {N}}\varGamma^{*}_{i}A_{i} \varLambda^{*}_{j}g_{j} \biggr\Vert ^{2}= \biggl\Vert \sum_{i\in\mathbb{N}} \varGamma^{*}_{i}A_{i}f \biggr\Vert ^{2} \\ &= \bigl\Vert \theta_{\varGamma}^{*}\theta_{A}f \bigr\Vert ^{2}= \Vert \theta_{A}f \Vert ^{2}\leq b \Vert f \Vert ^{2} \\ &=b \bigl\Vert \theta_{\varGamma}^{*}\{g_{i}\} \bigr\Vert ^{2}=b \bigl\Vert \{g_{i}\} \bigr\Vert ^{2}. \end{aligned}$$

By Lemma 2.1, \(\{{\mathcal{A}}_{i}\}\) is a g-Bessel sequence for H and has an upper bound b. The converse is similar. □

When \(\{A_{i}\}\) is a g-Bessel sequence, there exists a unitary equivalence between \(\{\varLambda_{i}S_{A}^{\frac{1}{2}}\}\) and the R-dual \(\{{\mathcal{A}}_{i}\}\).

Theorem 2.5

Let \(\{A_{i}\}\) be a g-Bessel sequence for H, \(\{{\mathcal{A}}_{i}\}\) be its g-R-dual defined in Definition 2.2. Then

  1. (1)

    \(\langle{\mathcal{A}}_{i}^{*}g_{i}, {\mathcal {A}}_{j}^{*}g_{k}\rangle=\langle S_{A}^{\frac{1}{2}}\varLambda _{j}^{*}g_{j}, S_{A}^{\frac{1}{2}}\varLambda_{i}^{*}g_{i}\rangle\) for any \(i, j\in\mathbb{N}\), any \(g_{i}\in H_{i}, g_{j}\in H_{j}\).

  2. (2)

    \(\Vert \sum_{i\in\mathbb{N}}{\mathcal {A}}_{i}^{*}g_{i} \Vert = \Vert \sum_{i\in\mathbb{N}}S_{A}^{\frac {1}{2}}\varLambda_{i}^{*}g_{i} \Vert \) for any \(\{g_{i}\}\in\bigoplus_{i\in\mathbb{N}} {H_{i}}\).

  3. (3)

    there exists an isometric operator T from \(\overline{\operatorname{ran}} S_{A}^{\frac{1}{2}}\theta_{\varLambda}^{*}\) onto \(\overline{\operatorname{ran}} \theta_{\mathcal{A}}^{*}\) such that \({\mathcal {A}}_{i}T=\varLambda_{i}S_{A}^{\frac{1}{2}}\) for any \(i\in \mathbb{N}\).

Proof

(1) Since \(\{A_{i}\}\) is a g-Bessel sequence for H, so is \(\{{\mathcal {A}}_{i}\}\) by Theorem 2.4. Then, for any \(i, j\in\mathbb {N}\), any \(g_{i}\in H_{i}, g_{j}\in H_{j}\), we have

$$\begin{aligned} \bigl\langle {\mathcal{A}}_{i}^{*}g_{i}, { \mathcal{A}}_{j}^{*}g_{k} \bigr\rangle &= \bigl\langle \theta_{\mathcal{A}}^{*}\{\delta_{ik}g_{i} \}_{k}, \theta _{\mathcal{A}}^{*}\{\delta_{jk}g_{j} \}_{k} \bigr\rangle \\ &= \bigl\langle \theta_{\varGamma}^{*}\theta_{A} \theta_{\varLambda}^{*}\{ \delta_{ik}g_{i} \}_{k}, \theta_{\varGamma}^{*}\theta_{A}\theta _{\varLambda}^{*}\{\delta_{jk}g_{j} \}_{k} \bigr\rangle \\ &= \bigl\langle S_{A}^{\frac{1}{2}}\varLambda_{i}^{*}g_{i}, S_{A}^{\frac {1}{2}}\varLambda_{j}^{*}g_{j} \bigr\rangle . \end{aligned}$$

(2) It is direct by (1).

(3) Define \(T^{*}:\operatorname{ran}\theta_{\mathcal{A}}^{*}\rightarrow \operatorname{ran}S_{A}^{\frac{1}{2}}\), \(T^{*}(\sum_{i\in\mathbb {N}}{\mathcal{A}}^{*}_{i}g_{i})=\sum_{i\in\mathbb{N}}S_{A}^{\frac {1}{2}}\varLambda_{i}^{*}g_{i}\) for any \(\{g_{i}\}\in\bigoplus_{i\in\mathbb{N}} {H_{i}}\). It is easy to verify \(T^{*}\) is well defined by (2). We can extend T to an isometric operator from \(\overline{\operatorname {ran}} S_{A}^{\frac{1}{2}}\theta_{\varLambda}^{*}\) onto \(\overline{\operatorname {ran}} \theta_{\mathcal{A}}^{*}\). We still denote the operator as T for convenience. □

In the following results we show the properties of g-R-dual in the case that \(\{A_{i}\}\) is a g-frame sequence by the corresponding analysis operators. The results are similar to the conclusions in [3, Corollary 2.6].

Theorem 2.6

Let \(\{A_{i}\}\) satisfy Definition 2.2, \(\{{\mathcal{A}}_{i}\}\) be its g-R-dual defined in Definition 2.2. Then \(\{A_{i}\}\) is a g-frame sequence for H if and only if \(\{{\mathcal{A}}_{i}\}\) is a g-frame sequence for H with the same frame bounds. Specially, in this case the following are equivalent:

  1. (1)

    \(\{A_{i}\}\) is a g-frame for H with the frame bounds \(a, b\).

  2. (2)

    \(\{{\mathcal{A}}_{i}\}\) is a g-Riesz sequence for H with the frame bounds \(a, b\).

  3. (3)

    There exists \(0< b_{1}<\infty\) such that \(\sum_{i\in\mathbb{N}} \Vert A_{i}Pf \Vert ^{2}\leq b_{1}\sum_{i\in \mathbb{N}} \Vert A_{i}f \Vert ^{2}\) for any \(f\in H\), where P is an arbitrary orthogonal projection on H.

  4. (4)

    There exists \(0< b_{1}<\infty\) such that \(\sum_{i\in\mathbb{N}} \Vert A_{i}P_{n}f \Vert ^{2}\leq b_{1}\sum_{i\in\mathbb{N}} \Vert A_{i}f \Vert ^{2}\) for any \(f\in H\), where \(P_{n}\) is the orthogonal projection from H onto \(\overline{\operatorname{span}} \{ \varLambda_{i}^{*}H_{i}\}_{i=1}^{n}\) for any \(n\in\mathbb{N}\).

Proof

The case of the g-Bessel upper bound we get easily by Theorem 2.4. We now show the case of the lower bound in a similar way as the proof of Theorem 2.4.

Because \(\{A_{i}\}\), \(\{{\mathcal{A}}_{i}\}\) are g-Bessel sequences, we easily have \(\theta_{A}=\theta_{\varGamma}\theta_{\mathcal {A}}^{*}\theta_{\varLambda}\). Then \(g\in\operatorname{ker}\theta_{A}\) if and only if \(g\in\operatorname{ker}\theta_{\mathcal{A}}^{*}\theta _{\varLambda}\), i.e., \(\theta_{\varLambda}g\in\operatorname{ker}\theta _{\mathcal{A}}^{*}\). Hence, \(g\in(\operatorname{ker}\theta_{A})^{\bot}\) if and only if \(\theta_{\varLambda}g\in(\operatorname{ker}\theta_{\mathcal {A}}^{*})^{\bot}\) since \(\theta_{\varLambda}\) is unitary.

Evidently, \(\{A_{i}\}\) is a g-frame sequence for H if and only if for any \(f\in\operatorname{ran}\theta^{*}_{A}\), one has \(a \Vert f \Vert ^{2}\leq\sum_{i\in\mathbb{N}} \Vert A_{i}f \Vert ^{2}= \Vert \theta _{A}f \Vert ^{2}\leq b \Vert f \Vert ^{2}\), i.e.,

$$ a \Vert \theta_{\varLambda}f \Vert ^{2}= \bigl\Vert \theta_{\mathcal {A}}^{*}\theta_{\varLambda}f \bigr\Vert ^{2}\leq b \Vert f \Vert ^{2}=b \Vert \theta_{\varLambda}f \Vert ^{2}, $$

which is equivalent to \(\{{\mathcal{A}}_{i}\}\) is a g-frame sequence for H.

The equivalence of (1) and (2) is obvious since \((\operatorname{ker}\theta _{A})^{\bot}=\{0\}\) if and only if \((\operatorname{ker}\theta_{\mathcal {A}}^{*})^{\bot}=\{0\}\) by the proof above.

(1) (3). Let \(\{A_{i}\}\) be a g-frame for H with the frame bounds \(a, b\). Take P as an arbitrary orthogonal projection on H. For any \(f=f_{1}+f_{2}\in H\), where \(f_{1}\in\operatorname{ran}P, f_{2}\in\operatorname{ker}P\), we have

$$ \sum_{i\in\mathbb{N}} \Vert A_{i}Pf \Vert ^{2}=\sum_{i\in\mathbb{N}} \Vert A_{i}f_{1} \Vert ^{2}\leq b \Vert f \Vert ^{2}\leq a^{-1}b\sum_{i\in\mathbb{N}} \Vert A_{i}f \Vert ^{2}. $$

(3) (4) is direct.

(4) (2). It is obvious by Theorem 3.3. □

The following result was given in [3, Theorem 4.1], we here give a simple illustration by the use of the analysis operators.

Lemma 2.7

Let \(\{A_{i}\}, \{B_{i}\}\) be two g-frames for H, \(\{{\mathcal{A}}_{i}\}\), \(\{{\mathcal{B}}_{i}\}\) be their g-R-dual sequences defined in Definition 2.2, respectively. Then \(\{A_{i}\}\) is a dual g-frame of \(\{B_{i}\}\) if and only if \(\langle{\mathcal{A}}^{*}_{i}g_{i}, {\mathcal{B}}^{*}_{j}g_{j}\rangle =\delta_{ij}\langle g_{i},g_{j}\rangle\) for any \(i, j\in\mathbb{N}\), any \(g_{i}\in H_{i}\), \(g_{j}\in H_{j}\).

Proof

By Definition 2.2, we get \(\theta_{\mathcal{A}}=\theta _{\varLambda}\theta^{*}_{A}\theta_{\varGamma}\), \(\theta_{\mathcal {B}}=\theta_{\varLambda}\theta^{*}_{B}\theta_{\varGamma}\). Then \(\theta_{\mathcal{A}}\theta_{\mathcal{B}}^{*}=\theta_{\varLambda }\theta^{*}_{A}\theta_{B}\theta_{\varLambda}^{*}\). Obviously, \(\theta^{*}_{A}\theta_{B}=I\) if and only if \(\theta _{\mathcal{A}}\theta_{\mathcal{B}}^{*}=I_{\bigoplus_{i\in \mathbb{N}}{H_{i}}}\), i.e., \(\langle{\mathcal{A}}^{*}_{i}g_{i}, {\mathcal{B}}^{*}_{j}g_{j}\rangle=\delta_{ij}\langle g_{i},g_{j}\rangle\) for any \(i, j\in\mathbb{N}\), any \(g_{i}\in H_{i}\), \(g_{j}\in H_{j}\). □

The following shows that the g-R-dual of the canonical dual g-frame is the “minimal” and has the “smallest distance” with \(\{A_{i}\}\) among the g-R-duals of all the alternate dual g-frames, which is a generalization of the result in [3, Theorem 4.5].

Theorem 2.8

Let \(\{A_{i}\}\) be a g-frame for H, \(\{\widetilde{A}_{i}\}\) be the canonical dual g-frame of \(\{A_{i}\}\), \(\{B_{i}\}\) be a dual g-frame of \(\{A_{i}\}\). \(\{{\mathcal{A}}_{i}\}\) and \(\{{\mathcal{B}}_{i}\}\) are the corresponding g-R-duals defined in Definition 2.2, respectively. Then the following are equivalent:

  1. (1)

    \(B_{i}=\widetilde{A}_{i}\) for every \(i\in\mathbb{N}\).

  2. (2)

    \(\Vert {\mathcal{B}}^{*}g_{i} \Vert \leq \Vert {\mathcal {C}}_{i}^{*}g_{i} \Vert \) for every \(i\in\mathbb{N}\), \(g_{i}\in H_{i}\), where \(\{C_{i}\}\) is an arbitrary dual g-frame of \(\{A_{i}\}\), \(\{ \mathcal{C}_{i}\}\) is the g-R-dual of \(\{C_{i}\}\).

  3. (3)

    \(\Vert {\mathcal{B}}_{i}^{*}g_{i}-{\mathcal {A}}_{i}^{*}g_{i} \Vert \leq \Vert {\mathcal{C}}_{i}^{*}g_{i}-{\mathcal {A}}_{i}^{*}g_{i} \Vert \) for every \(i\in\mathbb{N}\), \(g_{i}\in H_{i}\), where \(\{C_{i}\}\) is an arbitrary dual g-frame of \(\{A_{i}\}\), \(\{ \mathcal{C}_{i}\}\) is the g-R-dual of \(\{C_{i}\}\).

Proof

(1) (2). By [3, Theorem 4.4], we obtain \({\mathcal{B}}_{i}=\widetilde{{\mathcal{A}}}_{i}+\Delta_{i}\) for any \(i\in\mathbb{N}\), where \(\{\Delta_{i}\}\) is a g-Bessel sequence for H such that \(\operatorname{ran}\theta_{\Delta}^{*}\subset(\operatorname {ran}\theta_{\mathcal{A}}^{*})^{\bot}\). Then, for every \(\{g_{i}\}\in \bigoplus_{i\in\mathbb{N}} {H_{i}}\), we get

$$ \bigl\Vert \theta_{\mathcal{B}}^{*}\{g_{i}\} \bigr\Vert ^{2}= \bigl\Vert \theta _{\widetilde{{\mathcal{A}}}}^{*} \{g_{i}\}+\theta_{\Delta}^{*}\{g_{i}\} \bigr\Vert ^{2}\geq \bigl\Vert \theta_{\widetilde{{\mathcal{A}}}}^{*} \{g_{i}\} \bigr\Vert ^{2}. $$

Specially, if we take \(\{\delta_{ij}g_{i}\}_{j\in\mathbb{N}}\), then \(\Vert {\mathcal{B}}_{i}^{*}g_{i} \Vert \geq \Vert {\widetilde{{\mathcal {A}}}}_{i}^{*}g_{i} \Vert \). Hence, \(B_{i}=\widetilde{A}_{i}\) if and only if \(\Delta_{i}=0\) for any \(i\in\mathbb{N}\).

(2) (3). By Lemma 2.7, for any \(i\in \mathbb{N}\), we obtain

$$ \bigl\Vert {\mathcal{B}}_{i}^{*}g_{i}-{\mathcal {A}}_{i}^{*}g_{i} \bigr\Vert ^{2}= \bigl\Vert {\mathcal{B}}_{i}^{*}g_{i} \bigr\Vert ^{2}+ \bigl\Vert {\mathcal {A}}_{i}^{*}g_{i} \bigr\Vert ^{2}-2. $$

Similarly, \(\Vert {\widetilde{{\mathcal{A}}}}_{i}^{*}g_{i}-{\mathcal {A}}_{i}^{*}g_{i} \Vert = \Vert {\widetilde{{\mathcal {A}}}}_{i}^{*}g_{i} \Vert ^{2}+ \Vert {\mathcal{A}}_{i}^{*}g_{i} \Vert ^{2}-2\). Thus the equivalence is direct. □

Characterization of the Schauder basis-like properties of g-R-dual

Suppose \(\{A_{i}\}\) is a g-Bessel sequence for H, \(\{{\mathcal {A}}_{i}\}\) is its g-R-dual defined in Definition 2.2. We will characterize the Schauder basis-like properties (g-completeness, g-w-linearly independence, g-minimality) of \(\{{\mathcal{A}}_{i}\}\) in terms of \(\{A_{i}\}\).

Theorem 3.1

Let \(\{A_{i}\}\) be a g-Bessel sequence for H, \(\{{\mathcal{A}}_{i}\}\) be its g-R-dual defined in Definition 2.2. Then the following are equivalent:

  1. (1)

    \(\{A_{i}\}\) is g-complete.

  2. (2)

    \(\{{\mathcal{A}}_{i}\}\) is g-w-linearly independent.

  3. (3)

    If \(\lim_{n\rightarrow\infty} \Vert \theta _{A}x_{n} \Vert ^{2}=0\), then \(\{g_{i}\}=0\), where \(x_{n}=\sum_{i=1}^{n}\varLambda_{i}^{*}g_{i}\in H\) for any \(n\in\mathbb{N}\) and any \(\{g_{i}\}\in\bigoplus_{i\in\mathbb{N}} {H_{i}}\).

Proof

(1) (2). By Definition 2.2, \(\theta _{\mathcal{A}}^{*}=\theta_{\varGamma}^{*}\theta_{A}\theta_{\varLambda }^{*}\). For arbitrary \(\{g_{i}\}\in\bigoplus_{i\in\mathbb{N}} {H_{i}}\), we have \(\{g_{i}\}\in\operatorname{ker}\theta_{\mathcal {A}}^{*}\) if and only if \(\theta_{\varLambda}^{*}\{g_{i}\}\in\operatorname {ker}\theta_{A}\). Then \(\{A_{i}\}\) is g-complete if and only if \(\operatorname{ker}\theta_{\mathcal{A}}^{*}=\{0\}\), i.e., \(\{{\mathcal {A}}_{i}\}\) is g-w-linearly independent.

(2) (3). It is evident as \(\Vert \theta _{A}x_{n} \Vert ^{2}= \Vert \theta_{\mathcal{A}}^{*}\theta_{\varLambda}x_{n} \Vert ^{2}\). □

Now we have the next special result. By [4, Theorem 5.2], if \(\{A_{i}\}\) is a g-frame sequence for H, the existing condition of the g-biorthonormal sequence means the minimality of \(\{A_{i}\}\).

Theorem 3.2

Let \(\{A_{i}\}\) be a g-Bessel sequence for H, \(\{{\mathcal{A}}_{i}\}\) defined in Definition 2.2 be its g-R-dual. If there exists a sequence \(\{\Delta_{i}\}\) which is g-biorthonormal with \(\{{\mathcal {A}}_{i}\}\) such that \(\Delta_{i}^{*}\) is injective for any \(i\in \mathbb{N}\), then

  1. (1)

    there are constants \(0< c_{i}\leq1\) for arbitrary \(i\in\mathbb{N}\) such that \(\Vert c_{i}g_{i} \Vert \leq \Vert \sum_{j\in \mathbb{N}}{\mathcal{A}}_{j}^{*}g_{j} \Vert \) for any \(\{g_{i}\}\in\bigoplus_{i\in\mathbb{N}} {H_{i}}\);

  2. (2)

    there are constants \(0< a_{i}\) for arbitrary \(i\in \mathbb{N}\) such that

    $$ \bigl\Vert \{a_{i}g_{i}\}_{i\in\mathbb{N}} \bigr\Vert ^{2}\leq\sum_{j\in\mathbb{N}} \bigl\Vert A_{j}\theta_{\varLambda}^{*}\{g_{i}\} \bigr\Vert ^{2},\quad \forall \{g_{i}\}\in\bigoplus _{i\in\mathbb {N}} {H_{i}}. $$

Moreover, (1) and (2) are equivalent.

Proof

Take arbitrary \(h_{i}\in H_{i}\) and \(\Vert h_{i} \Vert =1\) and let \(c_{i}=\min\{ 1, \frac{1}{ \Vert \Delta_{i} \Vert }\}\) for every \(i\in\mathbb{N}\). Since \(\langle{\mathcal{A}}_{i}^{*}g_{i}, \Delta_{j}^{*}g_{j}\rangle =\delta_{ij}\langle g_{i}, g_{j}\rangle\) for any \(i, j\in\mathbb {N}\), \(g_{i}\in H_{i}\) \(g_{j}\in H_{j}\), we have

$$\begin{aligned} \biggl\Vert \sum_{j\in\mathbb{N}}{\mathcal{A}}_{j}^{*}g_{j} \biggr\Vert &=\sup_{ \Vert f \Vert =1,f\in H} \biggl\vert \biggl\langle \sum _{j\in\mathbb {N}}{\mathcal{A}}_{j}^{*}g_{j},f \biggr\rangle \biggr\vert \\ &\geq \biggl\vert \biggl\langle \sum_{j\in\mathbb{N}}{\mathcal {A}}_{j}^{*}g_{j},\frac{1}{ \Vert \Delta_{i}^{*}h_{i} \Vert }\Delta _{i}^{*}h_{i} \biggr\rangle \biggr\vert \\ &\geq \biggl\vert \biggl\langle \sum_{j\in\mathbb{N}}{\mathcal {A}}_{j}^{*}g_{j},\frac{1}{ \Vert \Delta_{i} \Vert } \Delta_{i}^{*}h_{i} \biggr\rangle \biggr\vert \\ &\geq\vert c_{i}\vert\biggl| \biggl\langle \sum _{j\in\mathbb{N}}{\mathcal {A}}_{j}^{*}g_{j}, \Delta_{i}^{*}h_{i} \biggr\rangle \biggr\vert = | c_{i}|\bigl| \langle g_{i},h_{i}\rangle \bigr|. \end{aligned}$$

By the arbitrariness of \(h_{i}\), we have \(|c_{i} \Vert g_{i} \Vert \leq \Vert \sum_{j\in\mathbb{N}}{\mathcal{A}}_{j}^{*}g_{j} \Vert \).

Take \(a_{i}=\frac{c_{i}}{2^{i}}\) for every \(i\in\mathbb{N}\). For any \(\{g_{i}\}\in\bigoplus_{i\in\mathbb{N}} {H_{i}}\), we obtain

$$\begin{aligned} \bigl\Vert \{a_{i}g_{i}\} \bigr\Vert ^{2}&= \sum_{i\in\mathbb{N}} \biggl\Vert \frac {c_{i}}{2^{i}}g_{i} \biggr\Vert ^{2}=\sum_{i\in\mathbb{N}} \frac {1}{2^{2i}} \Vert c_{i}g_{i} \Vert ^{2} \\ &\leq\sum_{i\in\mathbb{N}}\frac{1}{2^{2i}}\sup _{i\in\mathbb{N}} \Vert c_{i}g_{i} \Vert ^{2} \\ &\leq \biggl\Vert \sum_{j\in\mathbb{N}}{\mathcal {A}}_{j}^{*}g_{j} \biggr\Vert =\sum _{j\in\mathbb{N}} \bigl\Vert A_{j}\theta _{\varLambda}^{*} \{g_{i}\} \bigr\Vert ^{2}. \end{aligned}$$

The converse is evident since \(\Vert a_{i}g_{i} \Vert ^{2}\leq \Vert \{a_{i}g_{i}\} \Vert ^{2}\). □

In the following we illustrate that the g-R-dual \(\{{\mathcal{A}}_{i}\} \) is a g-basic sequence by the properties of \(\{A_{i}\}\), which also shows the conclusion of Theorem 2.6 from another perspective. It can be realized as a kind of g-completeness of \(\{{\mathcal{A}}_{i}\}\).

Theorem 3.3

Let \(\{A_{i}\}\) be a g-frame sequence for H, \(\{{\mathcal{A}}_{i}\}\) defined in Definition 2.2 be its g-R-dual. Let \(P_{n}\) be the orthogonal projection from H onto \(N_{n}:=\overline{\operatorname{span}} \{ \varLambda^{*}_{i}H_{i}\}_{i=1}^{n}\) for any \(n\in\mathbb{N}\). Then the following are equivalent:

  1. (1)

    \(\{{\mathcal{A}_{i}}\}\) a g-basic sequence for H.

  2. (2)

    There exists a constant \(0< b<\infty\) such that \(\sum_{i\in\mathbb{N}} \Vert A_{i}P_{n}f \Vert ^{2}\leq b\sum_{i\in\mathbb{N}} \Vert A_{i}f \Vert ^{2}\) for any \(n\in\mathbb{N}\), any \(f\in H\).

  3. (3)

    There exists a constant \(0< b<\infty\) such that \(S_{AP_{n}}\leq bS_{A}\) for any \(n\in\mathbb{N}\), where \(S_{AP_{n}}\) is the frame operator of the g-Bessel sequence \(\{A_{i}P_{n}\}_{i\in \mathbb{N}}\).

In this case, we have

$$ \operatorname{ran}\theta^{*}_{A}=\overline{ \operatorname{span}} \biggl\{ \varLambda_{i}^{*}g_{i}: \sum_{i\in\mathbb{N}} \bigl\Vert A_{i}\varLambda _{i}^{*}g_{i} \bigr\Vert ^{2}\neq0, \forall i\in\mathbb{N}, g_{i}\in H_{i} \biggr\} . $$

Proof

Let \({\mathbb{I}}=\{j\in{\mathbb{N}}:{\mathcal{A}}_{j}^{*}=\theta _{\varGamma}^{*}\theta_{A}\varLambda^{*}_{j}\neq0\}\). Without loss of generality, we can suppose \({\mathcal{A}}_{i}\neq0\) for any \(i\in \mathbb{N}\).

(1) (2). By [4, Theorem 3.3], \(\{{\mathcal {A}_{i}}\}\) is a g-basic sequence for H if and only if there exists a constant \(0< b<\infty\) such that, for arbitrary \(n\leq m\), any \(\{ g_{i}\}\in\bigoplus_{i\in\mathbb{N}} {H_{i}}\), one has

$$ \Biggl\Vert \sum_{i=1}^{n} {\mathcal {A}}_{i}^{*}g_{i} \Biggr\Vert ^{2}\leq b \Biggl\Vert \sum_{i=1}^{m}{\mathcal {A}}_{i}^{*}g_{i} \Biggr\Vert ^{2}=b \sum_{i\in\mathbb{N}} \Vert A_{i}x \Vert ^{2}, $$

where \(x=\sum_{i=1}^{m}\varLambda_{i}^{*}g_{i}\). Since \(P_{n}\varLambda _{i}^{*}=0\) for every \(i\in\mathbb{N}\) such that \(n< i\leq m\), \(\sum_{i=1}^{n}\varLambda_{i}^{*}g_{i}=P_{n}x\). Similarly, we have \(\Vert \sum_{i=1}^{n} {\mathcal{A}}_{i}^{*}g_{i} \Vert ^{2}=\sum_{i\in\mathbb {N}} \Vert A_{i}P_{n}x \Vert ^{2}\).

(2) (3). (2) is equivalent to \(\langle S_{AP_{n}}f, f\rangle=\langle\theta_{A}P_{n} f, \theta _{A}P_{n} f\rangle\leq b\langle Sf,f\rangle\) for any \(f\in H\), which is obvious.

By [4, Lemma 2.16], \(\{{\mathcal{A}}_{i}\}\) is a g-Riesz sequence for H. Then \({\mathcal{A}}_{i}\neq0\) for any \(i\in\mathbb {N}\). By Definition 2.2, we have \({\mathcal{A}}_{i}^{*}=\theta ^{*}_{\varGamma}\theta_{A}\varLambda^{*}_{i}\). Then \(\theta_{A}\varLambda ^{*}_{i}\neq0\), i.e., \(\sum_{i\in\mathbb{N}} \Vert A_{i}\varLambda _{i}^{*}g_{i} \Vert ^{2}\neq0\) for any \(i\in\mathbb{N}\), \(g_{i}\in H_{i}\). Hence,

$$ \overline{\operatorname{span}} \biggl\{ \varLambda_{i}^{*}g_{i}: \sum_{i\in\mathbb{N}} \bigl\Vert A_{i} \varLambda_{i}^{*}g_{i} \bigr\Vert ^{2} \neq0, \forall i\in{\mathbb{N}}, g_{i}\in H_{i} \biggr\} =H. $$

Therefore, we only need to show the g-completeness of \(\{A_{i}\}\) in H.

Suppose there exists \(f\in H\), \(f\neq0\) such that \(\langle A_{i}^{*}g_{i}, f\rangle=0\) for arbitrary \(i\in\mathbb{N}\), \(g_{i}\in H_{i}\). Obviously, there is a sequence \(\{f_{i}\}\in\bigoplus_{i\in\mathbb{N}} {H_{i}}\) such that \(f=\sum_{i\in\mathbb {N}}\varLambda_{i}^{*}f_{i}\). Assume \(k\in{\mathbb{N}}\) is the smallest positive integer such that \(f_{i}\neq0\). Then \(P_{k}f=\varLambda _{k}^{*}f_{k}\). We get

$$ 0\neq\sum_{i\in\mathbb{N}} \bigl\Vert A_{i} \varLambda _{k}^{*}f_{k} \bigr\Vert ^{2}=\sum_{i\in\mathbb {N}} \Vert A_{i}P_{k}f \Vert ^{2}\leq b\sum _{i\in\mathbb{N}} \Vert A_{i}f \Vert ^{2}=0, $$

which is a contradiction. □

Now we give some equivalent characterizations for a g-frame to be a g-Riesz basis.

Theorem 3.4

Let \(\{A_{i}\}\) be a g-frame for H. Then the following are equivalent:

  1. (1)

    \(\{A_{i}\}\) is a g-basis for H.

  2. (2)

    \(\{A_{i}\}\) is g-w-linearly independent.

  3. (3)

    \(\{A_{i}\}\) is a g-Riesz basis for H.

  4. (4)

    The g-R-dual \(\{{\mathcal{A}}_{i}\}\) defined in Definition 2.2 is a g-Riesz basis for H.

  5. (5)

    If \(\lim_{n\rightarrow\infty}\sum_{i\in\mathbb{N}} \Vert {\mathcal{A}}_{i}x_{n} \Vert ^{2}=0\), then \(\{ g_{i}\}=0\), where \(x_{n}=\sum_{i=1}^{n}\varGamma_{i}^{*}g_{i}\) for any \(n\in\mathbb{N}\), \(\{g_{i}\}\in\bigoplus_{i\in \mathbb{N}}{H_{i}}\).

  6. (6)

    \(\{A_{i}\}\) is exact (i.e., if it ceases to be a g-frame whenever any one of its elements is removed), and the canonical dual g-frame is biorthonormal with \(\{ A_{i}\}\).

Proof

The equivalence of (1), (2), (3) can be obtained by [4, Lemma 2.16]. By [9, Corollary 2.6], we get the equivalence of (3) and (6). Since \(\{A_{i}\}\) is a g-frame, we get \(\sum_{i\in\mathbb{N}} \Vert {\mathcal{A}}_{i}x_{n} \Vert ^{2}= \Vert \theta _{A}^{*}\theta_{\varGamma}x_{n} \Vert ^{2}\). Then (5) holds if and only if \(\theta_{A}^{*}\) is injective, i.e., (3) holds.

Similarly, by Definition 2.2, we have \(\theta_{\mathcal {A}}=\theta_{\varLambda}\theta_{A}^{*}\theta_{\varGamma}\). For any \(f\in H\), we obtain \(f\in\operatorname{ker}\theta_{\mathcal{A}}\) if and only if \(\theta_{\varGamma}f\in\operatorname{ker}\theta_{A}^{*}\). Thus we get the equivalence of (3), (4) by Theorem 2.6. □

G-R-dual and the g-orthogonal sequence

The characterization of g-R-dual

Let \(\{\varLambda_{i}\}\) be a g-orthonormal basis for H. In this section we mainly investigate the conditions under which a g-Riesz sequence \(\{{\mathcal{A}}_{i}\}\) is the g-R-dual of a g-frame \(\{A_{i}\} \). We denote \(\{\widetilde{{\mathcal{A}}}_{i}\}\) as the canonical dual g-frame of \(\{{\mathcal{A}}_{i}\}\), which is also a g-Riesz sequence. Define \(C_{i}=A_{i}\theta_{\varLambda}^{*}\theta_{\widetilde{\mathcal {A}}}\) for any \(i\in\mathbb{N}\). Then

$$ C^{*}_{i}g_{i}=\sum_{j\in\mathbb {N}} \widetilde{{\mathcal{A}}}_{j}^{*}\varLambda_{j}A_{i}^{*}g_{i}, \quad \forall g_{i}\in H_{i}. $$

Evidently, \(\{C_{i}\}\) is a g-Bessel sequence for H. Let \(M=\operatorname {ran}\theta_{\mathcal{A}}^{*}\). Thus \(\operatorname{ran}\theta _{C}^{*}\subset M\). By Lemma 1.2, we also get \({\mathcal{A}}_{j}C^{*}_{i}=\varLambda _{j}A_{i}^{*}\) for any \(i\in\mathbb{N}\).

Proposition 4.1

Let \(\{\varLambda_{i}\}\) be a g-orthonormal basis for H, \(\{{\mathcal {A}}_{i}\}\) be a g-Riesz basis for M, \(\{\widetilde{{\mathcal {A}}}_{i}\}\) be the canonical dual g-frame of \(\{{\mathcal{A}}_{i}\}\) in M, where M is a closed subspace of H. For any sequence \(\{ A_{i}\}\), we have the following:

  1. (1)

    There exists a sequence \(\{\varGamma'_{i}\}\) such that \(A_{i}=\varGamma'_{i}\theta_{\mathcal{A}}^{*}\theta_{\varLambda}\) for any \(i\in\mathbb{N}\), i.e., \(A^{*}_{i}g_{i}=\sum_{j\in \mathbb{N}}\varLambda_{j}^{*}{\mathcal{A}}_{j}{\varGamma'}_{i}^{*}g_{i}\) for any \(g_{i}\in H_{i}\).

  2. (2)

    The sequence \(\{\varGamma'_{i}\}\) satisfying \(A_{i}=\varGamma'_{i}\theta_{\mathcal{A}}^{*}\theta_{\varLambda}\) can be written as \(\varGamma'_{i}=C_{i}+D_{i}\) for every \(i\in\mathbb{N}\), where \(C_{i}=A_{i}\theta_{\varLambda}^{*}\theta_{\widetilde{\mathcal {A}}}\), \(D_{i}\in B(H,H_{i})\) and \(\operatorname{ran}D^{*}_{i}\subset M^{\bot}\).

  3. (3)

    If \(H=M\), the sequence \(\{\varGamma'_{i}\}\) satisfying \(A_{i}=\varGamma'_{i}\theta_{\mathcal{A}}^{*}\theta_{\varLambda }\) has the unique solution \(\varGamma'_{i}=C_{i}\) for any \(i\in\mathbb {N}\), where \(C_{i}=A_{i}\theta_{\varLambda}^{*}\theta_{\widetilde {\mathcal{A}}}\).

Proof

(1) Since \(A_{i}^{*}g_{i}=\sum_{j\in\mathbb{N}}\varLambda _{j}^{*}\varLambda_{j}A_{i}^{*}g_{i}\) for any \(i\in\mathbb{N}\), \(g_{i}\in H_{i}\) and \({\mathcal{A}}_{j}C^{*}_{i}=\varLambda _{j}A_{i}^{*}\), we have \(A_{i}^{*}g_{i}=\sum_{j\in\mathbb{N}}\varLambda _{j}^{*}{\mathcal{A}}_{j}C^{*}_{i}g_{i}\). We take \(\varGamma'_{i}=C_{i}\).

(2) For any \(i\in\mathbb{N}\), take arbitrary operator \(D_{i}\in B(M^{\bot}, H_{i})\). Obviously, \(\operatorname{ran}D^{*}_{i}\subset M^{\bot }\) is satisfied. Let \(\varGamma'_{i}=C_{i}+D_{i}\). Since \(M=\operatorname {ran}\theta_{\mathcal{A}}^{*}\), by (1), we have

$$ \varGamma'_{i}\theta_{\mathcal{A}}^{*} \theta_{\varLambda }=(C_{i}+D_{i})\theta_{\mathcal{A}}^{*} \theta_{\varLambda}=C_{i}\theta _{\mathcal{A}}^{*} \theta_{\varLambda}=A_{i}. $$

For the converse, suppose \(A_{i}=\varGamma'_{i}\theta_{\mathcal {A}}^{*}\theta_{\varLambda}\) for any \(i\in\mathbb{N}\). By (1), \(C_{i}\theta_{\mathcal{A}}^{*}\theta_{\varLambda}=A_{i}\). Let \(D_{i}=\varGamma'_{i}-C_{i}\). Hence, \(D_{i}\theta_{\mathcal {A}}^{*}\theta_{\varLambda}=0\). Since \(M=\operatorname{ran}\theta_{\mathcal{A}}^{*}\), \(M\subset\operatorname {ker}D_{i}\). Thus \(\operatorname{ran}D^{*}_{i}\subset M^{\bot}\).

(3) If \(H=M\), we have \(D_{i}=0\) for any \(i\in\mathbb{N}\) from (2). □

Proposition 4.1 did not have any assumption on \(\{A_{i}\}\) or use any relationship between \(\{A_{i}\}\) and \(\{{\mathcal{A}}_{i}\}\).

The next result exhibits that \(\{C_{i}\}\) and \(\{A_{i}\}\) have the common properties.

Proposition 4.2

Let \(\{\varLambda_{i}\}\) be a g-orthonormal basis for H, \(\{{\mathcal {A}}_{i}\}\) be a g-Riesz basis for M with the frame bounds c and d, \(\{\widetilde{{\mathcal{A}}}_{i}\}\) be the canonical dual g-frame of \(\{{\mathcal{A}}_{i}\}\) in M, where M is a closed subspace of H. For a sequence \(\{A_{i}\}\), define \(C_{i}=A_{i}\theta_{\varLambda }^{*}\theta_{\widetilde{\mathcal{A}}}\), for any \(i\in\mathbb{N}\), we have

  1. (1)

    If \(\{A_{i}\}\) is a g-Bessel sequence for H with the upper bound b, then \(\{C_{i}\}\) is a g-Bessel sequence for H with the upper bound \(bc^{-1}\). Moreover, for any \(\{g_{i}\}\in\bigoplus_{i\in\mathbb {N}}{H_{i}}\), we have

    $$ c \biggl\Vert \sum_{i\in\mathbb {N}}C^{*}_{i}g_{i} \biggr\Vert ^{2}\leq \biggl\Vert \sum_{i\in\mathbb {N}}A^{*}_{i}g_{i} \biggr\Vert ^{2}\leq d \biggl\Vert \sum _{i\in\mathbb {N}}C^{*}_{i}g_{i} \biggr\Vert ^{2}. $$

    Specially, \(\{A_{i}\}\) is g-w-linearly independent if and only if \(\{ C_{i}\}\) is g-w-linearly independent.

  2. (2)

    If \(\{A_{i}\}\) is a g-frame for H with the frame bounds \(a, b\), then \(\{C_{i}\}\) is a g-frame for M with the frame bounds \(ad^{-1}, bc^{-1}\).

  3. (3)

    If \(\{A_{i}\}\) is a g-Riesz basis for H with the frame bounds \(a, b\), then \(\{C_{i}\}\) is a g-Riesz basis for M with the frame bounds \(ad^{-1}, bc^{-1}\).

  4. (4)

    If \(\{C_{i}\}\) is a g-Bessel sequence for H with the upper bound \(b_{1}\), then \(\{A_{i}\}\) is a g-Bessel sequence for H with the upper bound \(b_{1}d\).

  5. (5)

    If \(\{C_{i}\}\) is a g-frame for M with the frame bounds \(a_{1}, b_{1}\), then \(\{A_{i}\}\) is a g-frame for H with the frame bounds \(a_{1}c, b_{1}d\).

  6. (6)

    If \(\{C_{i}\}\) is a g-Riesz basis for M with the frame bounds \(a_{1}, b_{1}\), then \(\{A_{i}\}\) is a g-Riesz basis for H with the frame bounds \(a_{1}c, a_{1}d\).

Proof

(1) Since \(C_{i}=A_{i}\theta_{\varLambda}^{*}\theta_{\widetilde{\mathcal {A}}}\) for any \(i\in\mathbb{N}\), for every \(f\in H\), we have

$$ \sum_{i\in\mathbb{N}} \Vert C_{i}f \Vert ^{2}=\sum_{i\in\mathbb{N}} \bigl\Vert A_{i}\theta_{\varLambda}^{*}\theta _{\widetilde{\mathcal{A}}}f \bigr\Vert ^{2}\leq bc^{-1} \Vert f \Vert ^{2}. $$

Moreover, because \(\theta_{C}^{*}=\theta_{\widetilde{\mathcal {A}}}^{*}\theta_{\varLambda}\theta_{A}^{*}\), for any \(\{g_{i}\}\in \bigoplus_{i\in\mathbb{N}}{H_{i}}\), we have

$$ \biggl\Vert \sum_{i\in\mathbb {N}}C_{i}^{*}g_{i} \biggr\Vert ^{2}= \biggl\Vert \sum_{i\in\mathbb{N}} \widetilde {{\mathcal{A}}}_{i}^{*}\theta_{\varLambda} \theta_{A}^{*}g_{i} \biggr\Vert ^{2} \leq c^{-1} \biggl\Vert \sum_{i\in\mathbb{N}}A_{i}^{*}g_{i} \biggr\Vert ^{2}. $$

As \(\theta_{A}^{*}=\theta_{\varLambda}^{*}\theta_{\mathcal{A}}\theta _{C}^{*}\), for every \(\{g_{i}\}\in\bigoplus_{i\in\mathbb {N}}{H_{i}}\), we get

$$ \biggl\Vert \sum_{i\in\mathbb {N}}A_{i}^{*}g_{i} \biggr\Vert ^{2}=\sum_{i\in\mathbb{N}} \bigl\Vert {\mathcal {A}}_{i}\theta_{C}^{*}g_{i} \bigr\Vert ^{2}\leq d \biggl\Vert \sum_{i\in\mathbb {N}}C_{i}^{*}g_{i} \biggr\Vert ^{2}. $$

Obviously, \(\{A_{i}\}\) is g-w-linearly independent if and only if \(\{ C_{i}\}\) is g-w-linearly independent from the above.

(2) The case of upper bound was obtained by (1). Similarly as (1), for every \(f\in M\), we get

$$ ad^{-1} \Vert f \Vert ^{2}\leq a \bigl\Vert \theta_{\varLambda}^{*}\theta _{\widetilde{\mathcal{A}}}f \bigr\Vert ^{2}\leq\sum_{i\in\mathbb {N}} \bigl\Vert A_{i}\theta_{\varLambda}^{*}\theta_{\widetilde{\mathcal {A}}}f \bigr\Vert ^{2}=\sum_{i\in\mathbb{N}} \Vert C_{i}f \Vert ^{2}. $$

(3) Suppose \(\{A_{i}\}\) is a g-Riesz basis for H. Since \(\{C_{i}\}\) is a g-frame for M by (2) and is g-w-linearly independent by (1), \(\{C_{i}\}\) is a g-Riesz basis for M by [4, Lemma 2.16]. The frame bounds can be obtained by (2).

The rest is similar to the above. □

From the above, \(\{C_{i}\}\), \(\{A_{i}\}\) have the same properties, but the bounds may not be common.

Corollary 4.3

Let \(\{\varLambda_{i}\}\) be a g-orthonormal basis for H, \(\{{\mathcal{A}}_{i}\}\) be a g-orthonormal basis for M, where M is a closed subspace of H. For a sequence \(\{A_{i}\}\), define \(C_{i}=A_{i}\theta_{\varLambda}^{*}\theta_{\widetilde{\mathcal{A}}}\) for any \(i\in\mathbb{N}\), we have:

  1. (1)

    \(\{C_{i}\}\) is a g-Bessel sequence for H if and only if \(\{A_{i}\}\) is a g-Bessel sequence for H with the same bound.

  2. (2)

    \(\{C_{i}\}\) is a g-frame for M if and only if \(\{ A_{i}\}\) is a g-frame for H with the same bounds.

  3. (3)

    \(\{C_{i}\}\) is a g-Riesz basis for M if and only if \(\{A_{i}\}\) is a g-Riesz basis for H with the same bounds.

Proof

Take \(c=d=1\) by the proof of Proposition 4.2, which can be obtained directly. □

Let \(\{{\mathcal{A}}_{i}\}\) be a g-Riesz basis for M, where M is a closed subspace of H. Let \({\mathscr{A}}_{i}={\mathcal {A}}_{i}S_{\mathcal{A}}^{-\frac{1}{2}}\) for any \(i\in\mathbb{N}\), where \(S_{\mathcal{A}}\) is the frame operator of \(\{{\mathcal{A}}_{i}\} \). Then \(\{{\mathscr{A}}_{i}\}\) is a g-orthonormal basis for M. Let \(\{\varLambda_{i}\}\) be a g-orthonormal basis for H and \(\varTheta=\theta _{\varLambda}^{*}\theta_{\mathscr{A}}\). Obviously, \(\varTheta: M\rightarrow H\) is unitary and \({\mathscr{A}}_{i}=\varLambda_{i}\varTheta\). Then we have the following result.

Proposition 4.4

Let \(\{\varLambda_{i}\}\) be a g-orthonormal basis for H, \(\{{\mathcal {A}}_{i}\}\) be a g-Riesz basis for M with the frame bounds \(c, d\), where M is a closed subspace of H, \(\{A_{i}\}\) be a g-frame for H with the frame bounds \(a, b\). Define \(C_{i}=A_{i}\theta_{\varLambda }^{*}\theta_{\widetilde{\mathcal{A}}}\) for every \(i\in\mathbb{N}\). Then the following are equivalent:

  1. (1)

    \(\{C_{i}\}\) is a Parseval g-frame for M.

  2. (2)

    \(S_{\mathcal{A}}=\varTheta^{*}S_{A}\varTheta\), where \(\varTheta=\theta_{\varLambda}^{*}\theta_{\widetilde{\mathcal {A}}}S_{\mathcal{A}}^{\frac{1}{2}}\).

Proof

By Proposition 4.2, \(\{C_{i}\}\) is a g-frame for M. Since \(\theta_{C}=\theta_{A}\theta_{\varLambda}^{*}\theta_{\widetilde {\mathcal{A}}}\) and \(\theta_{\widetilde{\mathcal{A}}}=\theta_{\varLambda }\varTheta S_{\mathcal{A}}^{-\frac{1}{2}}\), we have \(S_{C}=S_{\mathcal{A}}^{-\frac{1}{2}}\varTheta^{*}S_{A}\varTheta S_{\mathcal {A}}^{-\frac{1}{2}}\). Obviously, \(S_{C}=P\) if and only if \(S_{\mathcal{A}}=\varTheta ^{*}S_{A}\varTheta\), where P is the orthogonal projection from H onto M. □

If \(\{A_{i}\}\) is a tight g-frame for H with the bound a. Let \(\{ {\mathcal{A}}_{i}\}\) be a tight g-Riesz basis for M with frame bound a. Then \(S_{A}=aI\), \(S_{\mathcal{A}}=aP\). Thus Proposition 4.4(2) holds obviously. Then we get Corollary 4.6 directly.

Proposition 4.5

Let \(\{\varLambda_{i}\}\) be a g-orthonormal basis for H, \(\{{\mathcal {A}}_{i}\}\) be a g-Riesz basis for M, where M is a closed subspace of H. If \(\{A_{i}\}\) is a g-frame for H, define \(C_{i}=A_{i}\theta _{\varLambda}^{*}\theta_{\widetilde{\mathcal{A}}}\) for any \(i\in\mathbb {N}\). Then the following are equivalent:

  1. (1)

    If \(\{{\mathcal{A}}_{i}\}\) is the g-R-dual sequence of \(\{A_{i}\}\) with respect to two g-orthonormal bases \(\{\varLambda_{i}\} \), \(\{\varGamma_{i}\}\).

  2. (2)

    There exists a g-orthonormal basis \(\{\varGamma_{i}\} \) for H such that \(A_{i}=\varGamma_{i}\theta_{\mathcal{A}}^{*}\theta _{\varLambda}\) for every \(i\in\mathbb{N}\).

  3. (3)

    There exists a g-orthonormal basis \(\{\varGamma_{i}\} \) for H such that \(C_{i}=\varGamma_{i}P\) for every \(i\in\mathbb{N}\), where P is the orthogonal projection from H onto M.

  4. (4)

    \(\{C_{i}\}\) is a Parseval g-frame for M and \(\operatorname{dim}\operatorname{ker}\theta_{C}^{*}=\operatorname{dim}M^{\bot}\).

  5. (5)

    \(S_{\mathcal{A}}=\varTheta^{*}S_{A}\varTheta\) and \(\operatorname{dim}\operatorname{ker}\theta_{C}^{*}=\operatorname{dim}M^{\bot}\), where \(\varTheta=\theta_{\varLambda}^{*}\theta_{\widetilde{\mathcal {A}}}S_{\mathcal{A}}^{\frac{1}{2}}\).

Proof

(1) (2) By Definition 2.2, we have \({\mathcal {A}}_{i}^{*}=\theta_{\varGamma}^{*}\theta_{A}\varLambda_{i}^{*}\) for every \(i\in\mathbb{N}\). Hence, \(A_{i}=\varGamma_{i}\theta_{\mathcal {A}}^{*}\theta_{\varLambda}\).

(2) (1) It is obvious by Definition 2.2. The equivalence of (2) and (3) can be obtained by Proposition 4.1.

(3) (4) For any \(\{g_{i}\}\in\bigoplus_{i\in \mathbb{N}}{H_{i}}\), we have

$$ \theta_{C}^{*}\{g_{i}\}=\sum _{i\in\mathbb {N}}C_{i}^{*}g_{i}=\sum _{i\in\mathbb{N}}P\varGamma _{i}^{*}g_{i}=P \theta_{\varGamma}^{*}\{g_{i}\}. $$

Obviously, \(\{g_{i}\}\in\operatorname{ker}\theta_{C}^{*}\) if and only if \(\theta_{\varGamma}^{*}\{g_{i}\}\in M^{\bot}\). Then \(\operatorname {dim}\operatorname{ker}\theta_{C}^{*}=\operatorname{dim}M^{\bot}\) as \(\theta _{\varGamma}\) is unitary. Evidently, \(\{C_{i}\}\) is a Parseval g-frame for M.

(4) (3) Suppose \(\{C_{i}\}\) is a Parseval g-frame for M. Let \(K=M\oplus(\operatorname{ran}\theta_{C})^{\bot}\), \(T_{i}=C_{i}\oplus P_{i}Q^{\bot}\) for any \(i\in\mathbb{N}\), where \(Q, P_{i}\) are the orthogonal projection from \(\bigoplus_{i\in \mathbb{N}}{H_{i}}\) onto \(\operatorname{ran}\theta_{C}\), \(H_{i}\), respectively, for every \(i\in\mathbb{N}\). It is easy to get \(\{T_{i}\} \) is a g-orthonormal basis for K by [7, Theorem 4.1].

Since \(\operatorname{dim}\operatorname{ker}\theta_{C}^{*}=\operatorname{dim}M^{\bot }\), there exists a unitary operator \(V: M^{\bot}\rightarrow\operatorname {ker}\theta_{C}^{*}\). Let \(\varGamma_{i}=T_{i}(P\oplus V)=C_{i}\oplus P_{i}Q^{\bot}V\) for every \(i\in\mathbb{N}\). As \(P\oplus V: M\oplus M^{\bot}\rightarrow M\oplus(\operatorname{ran}\theta _{C})^{\bot}\) is unitary, where P is the orthogonal projection from H onto M, we see that \(\{\varGamma_{i}\}\) is a g-orthonormal basis for H by [6, Theorem 3.5]. Obviously, we have \(C_{i}=\varGamma_{i}P\). The equivalence of (4), (5) is direct by Proposition 4.4. □

By Proposition 4.5, we can also get the following corollary, which was showed in [3, Theorem 2.7].

Corollary 4.6

Let \(\{\varLambda_{i}\}\) be a g-orthonormal basis for H, \(\{{\mathcal{A}}_{i}\}\) be a tight g-Riesz basis for M with the frame bound a, where M is a closed subspace of H. If \(\{A_{i}\}\) is a tight g-frame with the frame bound a. Then there exists a g-orthonormal basis \(\{\varGamma_{i}\}\) for H such that \(\{{\mathcal{A}}_{i}\}\) is the g-R-dual of \(\{A_{i}\}\) with respect to two g-orthonormal bases \(\{\varLambda_{i}\}\), \(\{\varGamma_{i}\} \) if and only if \(\operatorname{dim}\operatorname{ker}\theta_{C}^{*}=\operatorname {dim}M^{\bot}\), where \(C_{i}=A_{i}\theta_{\varLambda}^{*}\theta _{\widetilde{\mathcal{A}}}\) for any \(i\in\mathbb{N}\).

Proof

By Proposition 4.2(3), \(\{C_{i}\}\) is a Parseval g-frame for M. It is obvious by Proposition 4.5. □

Corollary 4.7

Let \(\{\varLambda_{i}\}\) be a g-orthonormal basis for H, \(\{{\mathcal{A}}_{i}\}\) be a g-Riesz basis for M, \(\{\widetilde {{\mathcal{A}}}_{i}\}\) be the canonical dual g-frame of \(\{{\mathcal {A}}_{i}\}\) in M, where M is a closed subspace of H. If \(\{A_{i}\} \) is a g-frame for H. Define \(C_{i}=A_{i}\theta_{\varLambda}^{*}\theta _{\widetilde{\mathcal{A}}}\) for any \(i\in\mathbb{N}\). For any \(\{ g_{i}\}\in\bigoplus_{i\in\mathbb{N}}{H_{i}}\), let \(g=\theta_{\varLambda}^{*}\{g_{i}\}\in H\), \(h=\theta_{\mathcal{A}}^{*}\{ g_{i}\}\in M\). Then there exists a g-orthonormal basis \(\{\varGamma_{i}\} \) for H such that \(\{{\mathcal{A}}_{i}\}\) is the g-R-dual of \(\{ A_{i}\}\) with respect to two g-orthonormal bases \(\{\varLambda_{i}\}\), \(\{ \varGamma_{i}\}\) if and only if \(\sum_{i\in\mathbb {N}} \Vert A_{i}g \Vert ^{2}= \Vert h \Vert ^{2}\) and \(\operatorname{dim}\operatorname{ker}\theta _{C}^{*}=\operatorname{dim}M^{\bot}\).

Proof

Obviously, we have

$$ \sum_{i\in\mathbb{N}} \Vert A_{i}g \Vert ^{2}= \bigl\Vert \theta _{A}\theta_{\varLambda}^{*} \{g_{i}\} \bigr\Vert ^{2}= \bigl\Vert \theta_{\mathcal{A}}^{*}\{ g_{i}\} \bigr\Vert ^{2}= \Vert h \Vert ^{2}. $$

The result now follows from Proposition 4.5 directly. □

The construction of orthogonal sequence

Now we will construct a sequence \(\{\varGamma'_{i}\}\) such \(A_{i}=\sum_{j\in\mathbb{N}}\varGamma'_{i}\widetilde{{\mathcal{A}}}_{j}^{*}\varLambda _{j}\), which is characterized in Proposition 4.1.

Proposition 4.8

Let \(\{\varLambda_{i}\}\) be a g-orthonormal basis for H, \(\{{\mathcal {A}}_{i}\}\) be a g-Riesz basis for M, \(\{\widetilde{{\mathcal {A}}}_{i}\}\) be the canonical dual g-frame of \(\{{\mathcal{A}}_{i}\}\) in M, where M is a closed subspace of H. If \(\operatorname{dim}M^{\bot }=\sum_{i}\operatorname{dim}H_{i}=\infty\), we have:

  1. (1)

    For any sequence \(\{A_{i}\}\), there exists a g-w-linearly independent sequence \(\{\varGamma'_{i}\}\) such that \(A_{i}=\sum_{j\in\mathbb{N}}\varGamma'_{i}\widetilde{{\mathcal {A}}}_{j}^{*}\varLambda_{j}\) for every \(i\in\mathbb{N}\).

  2. (2)

    For any g-Bessel sequence \(\{A_{i}\}\), there exists a norm-bounded and g-w-linearly independent sequence \(\{\varGamma'_{i}\} \) such that \(A_{i}=\sum_{j\in\mathbb{N}}\varGamma'_{i}\widetilde {{\mathcal{A}}}_{j}^{*}\varLambda_{j}\) for every \(i\in\mathbb{N}\).

  3. (3)

    For any operator sequence \(\{A_{i}\}\), there exists a g-orthogonal sequence \(\{\varGamma'_{i}\}\) such that \(A_{i}=\sum_{j\in\mathbb{N}}\varGamma'_{i}\widetilde{{\mathcal {A}}}_{j}^{*}\varLambda_{j}\) for every \(i\in\mathbb{N}\).

Proof

(1) Since \(\operatorname{dim}M^{\bot}=\sum_{i\in\mathbb{N}}\operatorname {dim}H_{i}\), there exists a g-orthonormal basis \(\{E_{i}\}\) for \(M^{\bot}\) by [5, Theorem 3.1] with \(E_{i}\in B(M^{\bot}, H_{i})\) for any \(i\in\mathbb{N}\). Let \(W_{i}=\overline{\operatorname {ran}} {E_{i}^{*}}\) for any \(i\in\mathbb{N}\). Then \(M^{\bot}= \bigoplus_{i\in\mathbb{N}}W_{i}\) and \(E_{i}: W_{i}\rightarrow H_{i}\) is unitary. Let \(C_{i}=A_{i}\theta_{\varLambda}^{*}\theta _{\widetilde{\mathcal{A}}}\) for any \(i\in\mathbb{N}\). Then \({\mathcal {A}}_{i}E_{j}^{*}=0\) and \(C_{i}E_{j}^{*}=\sum_{k\in\mathbb {N}}A_{i}\varLambda_{k}^{*}\widetilde{{\mathcal{A}}}_{k}E_{j}^{*}=0\).

Since there exists an invertible operator \(D_{i}: W_{i}\rightarrow H_{i}\) for any \(i\in\mathbb{N}\), we see that \(D_{i}E_{i}^{*}+C_{i}E_{i}^{*}=D_{i}E_{i}^{*}\in B(H,H_{i})\) is invertible. Let \(\varGamma'_{i}=D_{i}+C_{i}\in B(H, H_{i})\). Obviously, \(\varGamma'_{i}\neq0\).

For any \(\{g_{i}\}\in\bigoplus_{i\in\mathbb{N}}H_{i}\), if \(\sum_{i\in\mathbb{N}}{\varGamma}_{i}^{'*}g_{i}=0\), then, for any \(j\in\mathbb{N}\), we have

$$ E_{j}\sum_{i\in\mathbb{N}}{\varGamma '}_{i}^{*}g_{i}=\sum _{i\in\mathbb {N}} \bigl(E_{j}C_{i}^{*}+E_{j}D_{i}^{*} \bigr)g_{i}=E_{j}D_{j}^{*}g_{j}=0. $$

Then \(g_{j}=0\).

(2) By the proof of (1), we can choose \(D_{i}\) such that \(\Vert D_{i} \Vert =1\) (if not, we choose \(D'_{i}= \frac{D_{i}}{ \Vert D_{i} \Vert }\)) for any \(i\in\mathbb{N}\). By Proposition 4.2, \(\{C_{i}\}\) is a g-Bessel sequence for M. Suppose the upper bound of \(\{C_{i}\}\) is b. Then \(\Vert C_{i} \Vert \leq b\). Hence, for every \(i\in\mathbb{N}\), \(g_{i}\in H_{i}\), we have

$$ \bigl\Vert {\varGamma '}_{i}^{*}g_{i} \bigr\Vert ^{2}= \bigl\Vert C^{*}_{i}g_{i} \bigr\Vert ^{2}+ \bigl\Vert D^{*}_{i}g_{i} \bigr\Vert ^{2}\leq \bigl(b^{2}+1 \bigr) \Vert g_{i} \Vert ^{2}. $$

(3) By Proposition 4.1, the sequence \(\{\varGamma'_{i}\}\) such that \(A_{i}=\sum_{j\in\mathbb{N}}\varGamma'_{i}\widetilde {{\mathcal{A}}}_{j}^{*}\varLambda_{j}=\varGamma'_{i}\theta_{\widetilde {{\mathcal{A}}}}^{*}\theta_{\varLambda}\) can be written as \(\varGamma '_{i}=C_{i}+D_{i}\), where \(C_{i}=A_{i}\theta_{\varLambda}^{*}\theta _{\widetilde{\mathcal{A}}}\), \(\overline{\operatorname{ran}} D^{*}_{i}\subset M^{\bot}\) for any \(i\in\mathbb{N}\). For every \(i, j\in\mathbb{N}, i\neq j\), \(g_{i}\in H_{i}\), \(g_{j}\in H_{j}\), we have

$$ \bigl\langle {\varGamma'}_{i}^{*}g_{i}, {\varGamma '_{j}}^{*}g_{j} \bigr\rangle =0 \quad\text{if and only if} \quad \bigl\langle C_{i}^{*}g_{i}, C^{*}_{j}g_{j} \bigr\rangle + \bigl\langle D_{i}^{*}g_{i}, D^{*}_{j}g_{j} \bigr\rangle =0. $$

We will use the following inductive procedure to construct \(\{D_{i}\}\) such that \(\overline{\operatorname{ran}} D^{*}_{i}\subset M^{\bot}\) and \(D_{j}D^{*}_{i}=-C_{j}C^{*}_{i}\) for every \(i,j\in\mathbb{N}\), \(i\neq j\). Let \(T_{ij}=-C_{i}C^{*}_{j}\in B(H_{j},H_{i})\). Then \(T_{ij}^{*}=T_{ji}\). Let \(I_{i}\) be the identity on \(H_{i}\).

(1) Let \(D_{1}^{*}=E_{1}^{*}\).

(2) Let \(D_{2}^{*}=E^{*}_{1}X_{1,2}^{*}+E_{2}^{*}\), where \(X_{1,2}^{*}=T_{12}\).

Obviously, \(D_{1}D_{2}^{*}=E_{1}E^{*}_{1}X_{1,2}^{*}+E_{1}E_{2}^{*}=T_{12}\). Then \(\varGamma'_{1}{\varGamma'_{2}}^{*}=0\).

3) For any \(k\in\mathbb{N}\), assuming that we have gotten operators \(D_{1}, D_{2}, \ldots, D_{k}\) in terms of \(X_{i,k}\in B(H_{i},H_{k})\) (\(i=1,\ldots, k-1\)) such that \(D_{k}^{*}=\sum_{i=1}^{k-1}E^{*}_{i}X_{i,k}^{*}+E_{k}^{*}\). Then, for \(k+1\), we define \(D_{k+1}\) by \(D_{k+1}^{*}=\sum_{i=1}^{k}E^{*}_{i}X_{i,k+1}^{*}+E_{k+1}^{*}\), where operators \(X_{i,k+1}\ (i=1,2,\ldots,k)\) are given by the following equation:

( I 1 X 12 I 2 X 1 k X 2 k I k ) ( X 1 , k + 1 X 2 , k + 1 X k , k + 1 ) = ( T 1 , k + 1 T 2 , k + 1 T k , k + 1 ) .

Obviously, we can obtain \(X_{i,k+1}\in B(H_{i},H_{k+1})\) (\(i=1,\ldots, k\)). Thus we have constructed the sequence \(\{D_{i}\}\) and obtained \(\{ \varGamma'_{i}\}\) by \(\varGamma'_{i}=C_{i}+D_{i}\) for any \(i\in\mathbb {N}\). Then \(\{\varGamma'_{i}\}\) such that \(\varGamma'_{i}{\varGamma '}_{j}^{*}=0\) for every \(i,j\in\mathbb{N}\) with \(i\neq j\).

Lastly, we show the sequence \(\{\varGamma_{i}'\}\) satisfies the desired condition: \(A_{i}=\sum_{j\in\mathbb{N}}\varGamma_{i}'\mathcal {A}_{j}^{*}\varLambda_{j}\) for all \(i\in\mathbb{N}\).

Since \((\operatorname{ker}D_{i})^{\bot}=\overline{\operatorname{ran}} D^{*}_{i}\subset M^{\bot}\) and \(\overline{\operatorname{ran}} \widetilde{{\mathcal {A}}}_{j}^{*}\subset M\) for any \(i, j\in\mathbb{N}\), we have

$$ \overline{\operatorname{ran}} \widetilde{{\mathcal {A}}}_{j}^{*} \subset M\subset\operatorname{ker}D_{i}. $$

Hence, \(D_{i}\widetilde{{\mathcal{A}}}_{j}^{*}=0\) for any \(i, j\in \mathbb{N}\). On the other hand, since \(C_{i}=A_{i}\theta_{\varLambda }^{*}\theta_{\widetilde{\mathcal{A}}}\) for any \(i\in\mathbb{J}\), we get \({\mathcal{A}}_{j}C^{*}_{i}=\varLambda_{j}A_{i}^{*}\). By \(A_{i}^{*}g_{i}=\sum_{j\in\mathbb{N}}\varLambda_{j}^{*}\varLambda _{j}A_{i}^{*}g_{i}\) for any \(g_{i}\in H_{i}\), any \(i\in\mathbb{N}\), we have \(A_{i}^{*}g_{i}=\sum_{j\in\mathbb{N}}\varLambda _{j}^{*}{\mathcal{A}}_{j}C^{*}_{i}g_{i}\). So \(\sum_{j\in \mathbb{N}}C_{i}\widetilde{{\mathcal{A}}}_{j}^{*}\varLambda_{j}=A_{i}\) for any \(i\in\mathbb{N}\). Then

$$ \sum_{j\in\mathbb{N}}\varGamma'_{i} \widetilde {{\mathcal{A}}}_{j}^{*}\varLambda_{j}= \sum_{j\in\mathbb {N}}(C_{i}+D_{i}) \widetilde{{\mathcal{A}}}_{j}^{*}\varLambda_{j}= \sum_{j\in\mathbb{N}}C_{i}\widetilde{{ \mathcal{A}}}_{j}^{*}\varLambda _{j}=A_{i}, \quad \forall i\in\mathbb{N}. $$

 □

References

  1. 1.

    Casazza, P., Kutyniok, G., Lammers, M.: Duality principles in frame theory. J. Fourier Anal. Appl. 10(4), 383–408 (2004)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Christensen, O., Kim, H., Kim, R.: On the duality principle by Casazza, Kutyniok, and Lammers. J. Fourier Anal. Appl. 17(4), 640–655 (2011)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Enayati, F., Asgari, M.: Duality properties for generalized frames. Banach J. Math. Anal. 11(4), 880–898 (2017)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Guo, X.: G-bases in Hilbert spaces. Abstr. Appl. Anal., 2012, Article ID 923729 (2012)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Guo, X.: G-orthonormal bases in Hilbert spaces. Sci. Sin., Math. 43(10), 1047–1058 (2013)

    Article  Google Scholar 

  6. 6.

    Guo, X.: Operator parameterizations of g-frames. Taiwan. J. Math. 18(1), 313–328 (2014)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Han, D., Li, P., Meng, B., Tang, W.: Operator valued frames and structured quantum channels. Sci. China Math. 54(11), 2361–2372 (2001)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Kaftal, V., Larson, D., Zhang, S.: Operator-valued frames. Trans. Am. Math. Soc. 361(12), 6349–6385 (2009)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Li, J., Zhu, Y.: Exact g-frames in Hilbert spaces. J. Math. Anal. Appl. 374(1), 201–209 (2011)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Sun, W.: G-frames and g-Riesz bases. J. Math. Anal. Appl. 322(1), 437–452 (2006)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the reviewers for their helpful comments and suggestions.

Availability of data and materials

Not applicable.

Funding

This work is supported by National Natural Science Foundation of China (Nos. 11671201 and 11771379).

Author information

Affiliations

Authors

Contributions

All authors equally contributed to each part of this work and read and approved the final manuscript.

Corresponding author

Correspondence to Liang Li.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, L., Li, P. Characterizing the R-duality of g-frames. J Inequal Appl 2019, 69 (2019). https://doi.org/10.1186/s13660-019-2022-x

Download citation

MSC

  • 46L10
  • 42C40
  • 42C15

Keywords

  • Frames
  • G-frames
  • G-R-duals
  • G-orthonormal bases
  • Dilations
  • G-duals
  • G-Riesz sequences