- Research
- Open Access
- Published:
Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters
Journal of Inequalities and Applications volume 2019, Article number: 57 (2019)
Abstract
In this paper, we study the Schur m-power convexity of the generalized geometric Bonferroni mean involving three parameters. Our result provides a unified generalization to the work that was done recently by Shi and Wu concerning the Schur convexity of generalized geometric Bonferroni mean.
1 Introduction and main results
In 1950, Bonferroni [1] proposed a type of symmetric means involving n variables \(x_{1},x_{2},\ldots ,x_{n}\) and two parameters \(p_{1}\), \(p_{2}\) as follows:
where \(\boldsymbol{x}=(x_{1},x_{2},\ldots ,x_{n})\), \(x_{i}\geq 0\), \(i=1,2, \dots ,n\), \(p_{1},p_{2} \geq 0\), and \(p_{1}+p_{2}\neq 0\).
More than half a century later, Beliakov et al. [2] gave a generalization of the Bonferroni mean by introducing three parameters \(p_{1}\), \(p_{2}\), \(p_{3}\):
where \(\boldsymbol{x}=(x_{1},x_{2},\ldots ,x_{n})\), \(x_{i}\geq 0\), \(i=1,2,\dots ,n\), \(p_{1},p_{2},p_{3} \geq 0\), and \(p_{1}+p_{2}+p _{3} \neq 0\).
In 2012, Xia et al. [3] explored the dual form of the Bonferroni mean \(B^{p_{1},p_{2}}(\boldsymbol{x})\) by changing the summation by the multiplication; the associated symmetric mean, the so-called geometric Bonferroni mean, is defined as
where \(\boldsymbol{x}=(x_{1},x_{2},\ldots ,x_{n})\), \(x_{i} > 0\), \(i=1,2, \dots ,n\), \(p_{1},p_{2} \geq 0\), and \(p_{1}+p_{2}\neq 0\).
Following the idea of Beliakov et al. [2], a generalized version of the geometric Bonferroni mean \(GB^{p_{1},p_{2}}(\boldsymbol{x})\) was given by Park and Kim in [4], which is called the generalized geometric Bonferroni mean:
where \(\boldsymbol{x}=(x_{1},x_{2},\ldots ,x_{n})\), \(x_{i}> 0, i=1,2, \dots ,n\), \(p_{1},p_{2},p_{3} \geq 0\), and \(p_{1}+p_{2}+p_{3} \neq 0\).
It is well known that the Bonferroni mean and geometric Bonferroni mean have important applications in multicriteria decision-making problems and have led to many meaningful results. See, for example, Xu and Yager [5], Xia, Xu and Zhu [3, 6], Tian et al. [7], Dutta et al. [8], Liang et al. [9], and Liu [10].
We often associate the properties of means with their Schur-convexity, since it is a powerful tool for studying the properties of various means. There are numerous inequalities related to means originating from the Schur convexity of means. In recent twenty years, the Schur convexities of functions relating to means have attracted the attention of many researchers. In particular, many remarkable inequalities can be found in the literature [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38] via the convexity and Schur convexity theory. In this paper, we are interested in a generalization of Schur convexity, which is called the Schur m-power convexity and contains as particular cases the Schur convexity, Schur geometrical convexity, and Schur harmonic convexity. There have been some papers written on this topic; for instance, Yang [39,40,41] discussed the Schur m-power convexity of Stolarsky means, Gini means, and Daróczy means, respectively. Wang and Yang [42, 43] studied the Schur m-power convexity of generalized Hamy symmetric function and some other symmetric functions. Wang, Fu, and Shi [44], Yin, Shi, and Qi [45], and Kumar and Nagaraja [46] investigated the Schur m-power convexity for some special mean of two variables. Perla and Padmanabhan [47] explored the Schur m-power convexity of Bonferroni harmonic mean.
Besides the above-mentioned works, it is worth noting that the following results given recently by Shi and Wu [48, 49] are closely related to the topic of the present paper.
In [48], Shi and Wu investigated the Schur m-power convexity of the geometric Bonferroni mean \(GB^{p_{1},p_{2}}(\boldsymbol{x})\) and obtained the following results.
Proposition 1
Let \(p_{1}\), \(p_{2}\) be positive real numbers, and let \(n \geq 3\).
-
(i)
If \(m\leq 0 \), then \(GB^{p_{1},p_{2}}(\boldsymbol{x})\) is Schur m-power convex on \(\mathbb{R}^{n}_{++}\);
-
(ii)
If \(m\geq 2 \) or \(m=1 \), then \(GB^{p_{1},p_{2}}(\boldsymbol{x})\) is Schur m-power concave on \(\mathbb{R}^{n}_{++}\).
In [49], Shi and Wu discussed the Schur convexity, Schur geometric convexity, and Schur harmonic convexity of the generalized geometric Bonferroni mean involving three parameters \(GB^{p_{1},p_{2},p_{3}}( \boldsymbol{x})\). They proved the following results.
Proposition 2
Let \(p_{1}\), \(p_{2}\), \(p_{3}\) be nonnegative real numbers with \(p_{1}+p_{2}+p _{3} \neq 0\), and let \(n \geq 3\). Then \(GB^{p_{1},p_{2},p_{3}}( \boldsymbol{x})\) is Schur concave, Schur geometric convex, and Schur harmonic convex on \(\mathbb{R}^{n}_{++}\).
Inspired by previous investigations, in this paper, we study the Schur m-power convexity of the geometric Bonferroni mean \(GB^{p_{1},p_{2},p _{3}}(\boldsymbol{x})\). The obtained result provides a unified generalization of Propositions 1 and 2. Our main result is stated in the following theorem.
Theorem 1
Let \(p_{1}\), \(p_{2}\), \(p_{3}\) be nonnegative real numbers with \(p_{1}+p_{2}+p _{3} \neq 0\), and let \(n\geq 3\).
-
(i)
If \(m\leq 0 \), then \(GB^{p_{1},p_{2},p_{3}}(\boldsymbol{x})\) is Schur m-power convex on \(\mathbb{R}^{n}_{++}\);
-
(ii)
If \(m\geq 2 \) or \(m=1 \), then \(GB^{p_{1},p_{2},p_{3}}( \boldsymbol{x})\) is Schur m-power concave on \(\mathbb{R}^{n}_{++}\).
2 Preliminaries
We begin by introducing some definitions and lemmas, which will be used in the proofs of the main results.
Throughout the paper, \(\mathbb{R}\) denotes the set of real numbers, \(\boldsymbol{x} = (x_{1}, x_{2},\ldots ,x_{n} )\) denotes n-dimensional real vectors; we also denote
Definition 1
(see [50])
Let \(\boldsymbol{x} = ( x_{1},x_{2},\ldots , x_{n })\) and \(\boldsymbol{y} = ( y_{1},y_{2},\ldots , y_{n }) \in \mathbb{R}^{n}\).
-
(i)
x is said to be majorized by y (in symbols, \(\boldsymbol{x} \prec \boldsymbol{y}\)) if \(\sum_{i = 1}^{k} x_{[i]} \le \sum_{i = 1}^{k} y_{[i]}\) for \(k = 1,2,\ldots ,n - 1\) and \(\sum_{i = 1}^{n} x_{i} = \sum_{i = 1} ^{n} y_{i}\), where \(x_{[1]}\ge x_{[2]}\ge \cdots \ge x_{[n]}\) and \(y_{[1]}\ge y_{[2]}\ge \cdots \ge y_{[n]}\) are rearrangements of x and y in descending order.
-
(ii)
Let \(\varOmega \subset \mathbb{R}^{n}\). A function ψ: \(\varOmega \to \mathbb{R}\) is said to be Schur convex on Ω if \(\boldsymbol{x} \prec \boldsymbol{y}\) on Ω implies \(\psi ( \boldsymbol{x} ) \le \psi ( \boldsymbol{y} ) \); ψ is said to be a Schur concave function on Ω if −ψ is a Schur convex function on Ω.
The following result is known in the literature [50] as Schur’s condition. By this criterion we can judge whether a vector-valued function is Schur convex or not.
Proposition 3
Let \(\varOmega \subset \mathbb{R} ^{n} \) be symmetric convex set having a nonempty interior \(\varOmega ^{0}\). Let a function \(\psi :\varOmega \to \mathbb{R} \) be continuous on Ω and differentiable in \(\varOmega ^{0}\). Then ψ is a Schur convex function (Schur concave function) if and only if ψ is symmetric on Ω and
for all \(\boldsymbol{x} \in \varOmega ^{0} \).
Schur m-power convex functions are a generalization of Schur convex functions and were introduced by Yang [39]. Similarly to the Schur’s condition mentioned before, Yang [39] gave a method of determining the Schur m-power convex functions as follows.
Proposition 4
Let \(\varOmega \subset \mathbb{R}_{++}^{n}\) be a symmetric set with nonempty interior \(\varOmega ^{\circ }\), and let \(\psi :\varOmega \to \mathbb{R} \) be continuous on Ω and differentiable in \(\varOmega ^{\circ }\). Then ψ is Schur m-power convex (Schur m-power concave) on Ω if and only if ψ is symmetric on Ω and
and
for all \(\boldsymbol{x} \in \varOmega ^{\circ }\).
Finally, we introduce two majorization relations in preparation for dealing with applications of Schur-convexities of functions in Sect. 4.
Lemma 1
(see [51])
If \(\boldsymbol{x}=( x_{1}, x_{2}, \ldots , x_{n} )\in \mathbb{R}^{n} _{++} \), \(\sum_{i=1}^{n}x_{i}=\varsigma >0\), and \(\epsilon \geq \varsigma \), then
Lemma 2
(see [51])
If \(\boldsymbol{x}=( x_{1}, x_{2}, \ldots , x_{n} )\in \mathbb{R}^{n} _{++} \), \(\sum_{i=1}^{n}x_{i}=\varsigma >0\), and \(\epsilon >0\), then
3 Proof of main results
Proof of Theorem 1
Recall the definition of the generalized geometric Bonferroni mean:
Taking the natural logarithm gives
where
Differentiating \(GB^{p_{1},p_{2},p_{3}}(\boldsymbol{x})\) with respect to \(x_{1}\) and \(x_{2}\), respectively, we have
It is easy to see that \(GB^{p_{1},p_{2},p_{3}}(\boldsymbol{x})\) is symmetric on \(\mathbb{R}^{n}_{++}\). Without loss of generality, we may assume that \(x_{1}\geq x_{2}\). Hence, for \(m\neq 0\) and \(n\geq 3 \), we have
and rearranging and collecting like terms, we get
For the case \(m=1\), the expression \(\Delta _{1}\) follows directly from the expression \(\Delta _{m}\) with \(m=1\), that is,
For the case \(m=0\), the expression \(\Delta _{0}\) can also be derived from \(\Delta _{m}\). In fact, in view of the definitions of \(\Delta _{0}\) and \(\Delta _{m}\), we can obtain \(\Delta _{0}\) by replacing \((x^{m}_{1} -x ^{m}_{2})/m\) with \((\log x_{1} - \log x_{2})\) in the expression of \(\Delta _{m}\) and then putting in \(m=0\), we deduce that
Now, we are in position to discuss the Schur m-power convexity of \(GB^{p_{1},p_{2},p_{3}}(\boldsymbol{x})\).
If \(m <0 \), then by the assumption \(x_{1}\geq x_{2}\), we have \(x^{m}_{1} -x^{m}_{2} \leq 0\), \(x^{-m}_{1} -x^{-m}_{2} \geq 0\), \(x ^{1-m}_{1} -x^{1-m}_{2} \geq 0\), and \(x^{2-m}_{1} -x^{2-m}_{2}\geq 0\). Thus \(\Delta _{m} \geq 0\). From Proposition 4 it follows that \(GB^{p_{1},p_{2},p_{3}}(\boldsymbol{x})\) is Schur m-power convex for \(\boldsymbol{x}\in \mathbb{R}^{n}_{++}\).
If \(m\geq 2 \), then by the assumption \(x_{1}\geq x_{2}\), we have \(x^{m}_{1} -x^{m}_{2} \geq 0\), \(x^{-m}_{1} -x^{-m}_{2} \leq 0\), \(x^{1-m}_{1} -x^{1-m}_{2} \leq 0\), and \(x^{2-m}_{1} -x^{2-m}_{2} \leq 0\). Thus \(\Delta _{m} \leq 0\). By Proposition 4 we conclude that \(GB^{p_{1},p_{2},p_{3}}(\boldsymbol{x})\) is Schur m-power concave for \(\boldsymbol{x}\in \mathbb{R}^{n}_{++}\).
If \(m=1\), then it is obvious that \(\Delta _{1}\leq 0\). Hence \(GB^{p_{1},p_{2},p_{3}}(\boldsymbol{x})\) is Schur m-power concave for \(\boldsymbol{x}\in \mathbb{R}^{n}_{++}\).
If \(m=0\), then it is easy to observe that \(\Delta _{0} \geq 0\). Thus \(GB^{p_{1},p_{2},p_{3}}(\boldsymbol{x})\) is Schur m-power convex for \(\boldsymbol{x}\in \mathbb{R}^{n}_{++}\).
The proof of Theorem 1 is completed. □
Remark 1
As a direct consequence of Theorem 1, the results of Proposition 1 follow from Theorem 1 with \(p_{3}=0\). Recalling the definitions of Schur concave functions, Schur geometric convex functions, Schur harmonic convex functions, and Schur m-power convex (concave) functions [39,40,41], the assertions of Proposition 2 can be deduced by taking \(m=1\), \(m=0\), and \(m=-1\), respectively, in Theorem 1.
4 Applications
In this section, we utilize the results of Theorem 1 to establish two new inequalities involving the generalized geometric Bonferroni mean.
Theorem 2
Let \(p_{1},p_{2},p_{3}\) be nonnegative real numbers with \(p_{1}+p_{2}+p _{3} \neq 0\), and let \(\boldsymbol{x}=( x_{1}, x_{2}, \ldots , x_{n} )\), \(\sum_{i=1}^{n}x_{i}=\varsigma >0\), \(\epsilon \geq \varsigma \), and \(n\geq 3\). Then for \(\boldsymbol{x}\in \mathbb{R}^{n}_{++}\), we have the inequality
Proof
Using Theorem 1 with \(m=1\), we observe that \(GB^{p_{1},p_{2},p_{3}}( \boldsymbol{x})\) is Schur concave on \(\mathbb{R}^{n}_{++}\). By Lemma 1 we have
Thus we deduce from Definition 1 that
that is,
which implies
Theorem 2 is proved. □
Theorem 3
Let \(p_{1},p_{2},p_{3}\) be nonnegative real numbers with \(p_{1}+p_{2}+p _{3} \neq 0\), and let \(\boldsymbol{x}=( x_{1}, x_{2}, \ldots , x_{n} )\), \(\sum_{i=1}^{n}x_{i}=\varsigma >0\), \(\epsilon > 0\), and \(n\geq 3\). Then for \(\boldsymbol{x}\in \mathbb{R}^{n}_{++}\), we have the inequality
Proof
By the relationship of majorization given in Lemma 2,
and the Schur concavity of \(GB^{p_{1},p_{2},p_{3}}(\boldsymbol{x})\) we obtain
that is,
and thus
This completes the proof of Theorem 3. □
5 Results and discussion
In the paper, we present the Schur m-power convexity properties for generalized geometric Bonferroni mean involving three parameters \(p_{1}\), \(p_{2}\), \(p_{3}\),
As applications, we establish two inequalities related to the generalized geometric Bonferroni mean.
References
Bonferroni, C.: Sulle medie multiple di potenze. Boll. Unione Mat. Ital. (3) 5, 267–270 (1950)
Beliakov, G., James, S., Mordelová, J., Rückschlossová, T., Yager, R.R.: Generalized Bonferroni mean operators in multi-criteria aggregation. Fuzzy Sets Syst. 161(17), 2227–2242 (2010)
Xia, M.-M., Xu, Z.-S., Zhu, B.: Generalized intuitionistic fuzzy Bonferroni means. Int. J. Intell. Control Syst. 27(1), 23–47 (2012)
Park, J.H., Kim, J.Y., Kwun, Y.C.: Intuitionistic fuzzy optimized weighted geometric Bonferroni means and their applications in group decision making. Fundam. Inform. 144(3–4), 363–381 (2016)
Xu, Z.-S., Yager, R.R.: Intuitionistic fuzzy Bonferroni means. IEEE Trans. Syst. Man Cybern. B 41(2), 568–578 (2011)
Xia, M.-M., Xu, Z.-S., Zhu, B.: Geometric Bonferroni means with their application in multi-criteria decision making. Knowl.-Based Syst. 40, 88–100 (2013)
Tian, Z.-P., Wang, J., Zhang, H.-Y., Chen, X.-H., Wang, J.Q.: Simplified neutrosophic linguistic normalized weighted Bonferroni mean operator and its application to multi-criteria decision-making problems. Filomat 30(12), 3339–3360 (2016)
Dutta, B., Chan, F.T.S., Guha, D., Niu, B., Ruan, J.H.: Aggregation of heterogeneously related information with extended geometric Bonferroni mean and its application in group decision making. Int. J. Intell. Control Syst. 33(3), 487–513 (2018)
Liang, D.-C., Darko, A.P., Xu, Z.-S., Quan, W.: The linear assignment method for multicriteria group decision making based on interval-valued Pythagorean fuzzy Bonferroni mean. Int. J. Intell. Control Syst. 33(11), 2101–2138 (2018)
Liu, P.: Two-dimensional uncertain linguistic generalized normalized weighted geometric Bonferroni mean and its application to multiple-attribute decision making. Sci. Iran. 25(1), 450–465 (2018)
Chu, Y.-M., Xia, W.-F., Zhao, T.-H.: Schur convexity for a class of symmetric functions. Sci. China Math. 53(2), 465–474 (2010)
Chu, Y.-M., Wang, G.-D., Zhang, X.-H.: Schur convexity and Hadamard’s inequality. Math. Inequal. Appl. 13(4), 725–731 (2010)
Zhao, T.-H., Zhou, B.-C., Wang, M.-K., Chu, Y.-M.: On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, Article ID 42 (2019)
Chu, Y.-M., Wang, G.-D., Zhang, X.-H.: The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 284(5–6), 653–663 (2011)
Chu, Y.-M., Xia, W.-F., Zhang, X.-H.: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 105, 412–421 (2012)
Chu, Y.-M., Wang, M.-K.: Optimal Lehmer mean bounds for the Toader mean. Results Math. 61(3–4), 223–229 (2012)
Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Monotonicity rule for the quotient of two functions and its application. J. Inequal. Appl. 2017, Article ID 106 (2017)
Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On rational bounds for the gamma function. J. Inequal. Appl. 2017, Article ID 210 (2017)
Qian, W.-M., Chu, Y.-M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017, Article ID 274 (2017)
Adil Khan, M., Chu, Y.-M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 15, 1414–1430 (2017)
Adil Khan, M., Begum, S., Khurshid, Y., Chu, Y.-M.: Ostrowski type inequalities involving conformable fractional integrals. J. Inequal. Appl. 2018, Article ID 70 (2018)
Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: Optimal bounds for the generalized Euler–Mascheroni constant. J. Inequal. Appl. 2018, Article ID 118 (2018)
Xu, H.-Z., Chu, Y.-M., Qian, W.-M.: Sharp bounds for the Sándor–Yang means in terms of arithmetic and contra-harmonic means. J. Inequal. Appl. 2018, Article ID 127 (2018)
Adil Khan, M., Chu, Y.-M., Kashuri, A., Liko, R., Ali, G.: Conformable fractional integrals versions of Hermite–Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, Article ID 6928130 (2018)
Song, Y.-Q., Adil Khan, M., Zaheer Ullah, S., Chu, Y.-M.: Integral inequalities involving strongly convex functions. J. Funct. Spaces 2018, Article ID 6595921 (2018)
Adil Khan, M., Iqbal, A., Suleman, M., Chu, Y.-M.: Hermite–Hadamard type inequalities for fractional integrals via Green’s function. J. Inequal. Appl. 2018, Article ID 161 (2018)
Adil Khan, M., Khurshid, Y., Du, T.-S., Chu, Y.-M.: Generalization of Hermite–Hadamard type inequalities via conformable fractional integrals. J. Funct. Spaces 2018, Article ID 5357463 (2018)
Huang, T.-R., Tan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete p-elliptic integrals. J. Inequal. Appl. 2018, Article ID 239 (2018)
Zhao, T.-H., Wang, M.-K., Zhang, W., Chu, Y.-M.: Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018, Article ID 251 (2018)
Yang, Z.-H., Qian, W.-M., Chu, Y.-M.: Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math. Inequal. Appl. 21(4), 1185–1199 (2018)
Yang, Z.-H., Chu, Y.-M., Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl. Math. Comput. 348, 552–564 (2019)
Khurshid, Y., Adil Khan, M., Chu, Y.-M., Khan, Z.A., Liu, L.-S.: Hermite–Hadamard–Fejér inequalities for conformable fractional integrals via preinvex functions. J. Funct. Spaces 2019, Article ID 3146210 (2019)
Khurshid, Y., Adil Khan, M., Chu, Y.-M.: Conformable integral inequalities of the Hermite–Hadamard type in terms of GG- and GA-convexities. J. Funct. Spaces 2019, Article ID 6926107 (2019)
Adil Khan, M., Wu, S.-H., Ullah, H., Chu, Y.-M.: Discrete majorization type inequalities for convex functions on rectangles. J. Inequal. Appl. 2019, Article ID 16 (2019)
Wang, J.-L., Qian, W.-M., He, Z.-Y., Chu, Y.-M.: On approximating the Toader mean by other bivariate means. J. Funct. Spaces 2019, Article ID 6082413 (2019)
Wang, M.-K., Chu, Y.-M., Zhang, W.: The precise estimates for the solution of Ramanujan’s generalized modular equation. Ramanujan J. https://doi.org/10.1007/s11139-018-0130-8
He, X.-H., Qian, W.-M., Xu, H.-Z., Chu, Y.-M.: Sharp power mean bounds for two Sándor–Yang means. Rev. R. Acad. Cienc. Exactas FÃs. Nat., Ser. A Mat. https://doi.org/10.1007/s13398-019-00643-2
Qiu, S.-L., Ma, X.-Y., Chu, Y.-M.: Sharp Landen transformation inequalities for hypergeometric functions, with applications. J. Math. Anal. Appl. 474(2), 1306–1337 (2019)
Yang, Z.-H.: Schur power convexity of Stolarsky means. Publ. Math. (Debr.) 80(1–2), 43–66 (2012)
Yang, Z.-H.: Schur power convexity of Gini means. Bull. Korean Math. Soc. 50(2), 485–498 (2013)
Yang, Z.-H.: Schur power convexity of the Daróczy means. Math. Inequal. Appl. 16(3), 751–762 (2013)
Wang, W., Yang, S.-G.: Schur m-power convexity of a class of multiplicatively convex functions and applications. Abstr. Appl. Anal. 2014, Article ID 258108 (2014)
Wang, W., Yang, S.-G.: Schur m-power convexity of generalized Hamy symmetric function. J. Math. Inequal. 8(3), 661–667 (2014)
Wang, D.-S., Fu, C.-R., Shi, H.-N.: Schur m-power convexity for a mean of two variables with three parameters. J. Nonlinear Sci. Appl. 9(5), 2298–2304 (2016)
Yin, H.-P., Shi, H.-N., Qi, F.: On Schur m-power convexity for ratios of some means. J. Math. Inequal. 9(1), 145–153 (2015)
Kumar, R.S., Nagaraja, K.M.: The convexities of invariant contra harmonic mean with respect to geometric mean. Int. J. Pure Appl. Math. 116(22), 407–412 (2017)
Perla, S.R., Padmanabhan, S.: Schur convexity of Bonferroni harmonic mean. J. Anal. https://doi.org/10.1007/s41478-018-0110-9
Shi, H.-N., Wu, S.-H.: Schur m-power convexity of geometric Bonferroni mean. Ital. J. Pure Appl. Math. 38, 769–776 (2017)
Shi, H.-N., Wu, S.-H.: Schur convexity of the generalized geometric Bonferroni mean and the relevant inequalities. J. Inequal. Appl. 2018, Article ID 8 (2018)
Marsshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: Theory of Majorization and Its Application. Springer, New York (2011)
Shi, H.-N.: Schur Convex Functions and Inequalities. Harbin Institute of Technology Press, Harbin (2017) (in Chinese)
Funding
This work was supported by the Natural Science Foundation of China (Grant No. 61673169) and the Natural Science Foundation of Fujian Province of China (Grant No. 2016J01023).
Author information
Authors and Affiliations
Contributions
Both authors contributed equally to the writing of this paper. Both authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Wu, SH., Chu, YM. Schur m-power convexity of generalized geometric Bonferroni mean involving three parameters. J Inequal Appl 2019, 57 (2019). https://doi.org/10.1186/s13660-019-2013-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-019-2013-y
MSC
- 26E60
- 26B25
- 26D20
Keywords
- Schur m-power convexity
- Schur convexity
- Generalized geometric Bonferroni mean
- Inequalities