- Research
- Open access
- Published:
Hardy-type inequalities within fractional derivatives without singular kernel
Journal of Inequalities and Applications volume 2018, Article number: 304 (2018)
Abstract
In this manuscript, we developed the Hardy-type inequality within the Caputo–Fabrizio fractional derivative. We presented some illustrative examples to confirm our work.
1 Introduction
In 1920, Hardy [1] showed that, for \(p_{1}>1\), \(g\in L^{p_{1}}(0,\infty)\) being a non-negative function, the following inequality holds:
As is well known, the inequality (1.1) is today called to as classical Hardy’s integral inequality in the literature. It has many applications in analysis and in the theory of differential equations (see, e.g., [2, 3] and [4]). This inequality has been generalized and developed by many mathematicians. Various mathematicians studied new Hardy-type inequality for different fractional derivatives and integrals; see [4,5,6,7,8,9] and the references therein.
In 1964, Levinson [10] showed that inequality (1.1) holds for parameters \(a_{1}\) and \(b_{1}\). That is, for \(0< a_{1}< b_{1}<\infty\) the following inequality is valid:
In 2010, Iqbal et al. [7] obtained new fractional inequalities within fractional derivatives and integrals of Riemann–Liouville type. In 2011, 2013 and 2014, they proved some new inequalities involving Riemann–Liouville fractional integrals, Caputo fractional derivative and other fractional derivatives; see [11,12,13,14].
In 2017, Iqbal et al. [15] presented the Hardy-type inequalities for Hilfer fractional derivative. Also, they obtained the Hardy-type inequality for generalized fractional integral within Mittag–Leffler function in its kernel utilizing convex and increasing functions. In the same year, Iqbal et al. [16] obtained Hardy-type inequalities for a generalized fractional integral operator within the Mittag–Leffler function in its kernel. Also, they set up a Hilfer fractional derivative utilizing convex and monotone convex function. In 2017, Nasibullin [17] proved new Hardy-type inequalities with fractional integrals and derivatives of Riemann–Liouville.
Recently, a new type of fractional derivative was introduced by Caputo and Fabrizio in [18]. The reason of introducing this new type of derivative was to search for fractional derivative with nonsingular kernel and without the Gamma function. Since then many researchers discussed this and applied this new fractional derivative to several real world phenomena and excellent results were reported [19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]. On the other side the discrete version of fractional derivative is one of the interesting topics nowadays [19, 36,37,38,39,40]. Some of the applications of the discrete fractional Caputo derivative can be found in [41, 42].
The organization of this paper is given below. In Sect. 1, we given introduction. In Sect. 2, basic definitions and theorems are introduced. Motivated by [12, 26, 36] several Hardy-type inequalities for the new left Riemann fractional derivative are established in Sect. 3. Several examples are given for our results in Sect. 4.
2 Basic definitions and theorems
In this section, we present the following definitions and theorems, which are useful in proofs of our results.
Definition 2.1
([43])
Let \(I_{1}\) be an interval, and let ψ be a function \(I_{1}\rightarrow\mathbb{R}\). ψ is called convex if
for all points x and t in \(I_{1}\) and all \(0\leq\beta\leq1\). ψ is strictly convex if (2.1) holds strictly whenever x and t are distinct points and \(0<\beta<1\).
Let \((\sum_{1},\varOmega_{1},\mu_{1} )\) and \((\sum_{2},\varOmega _{2},\mu_{2} )\) be measure spaces with positive σ-finite measures. Also, let \(U_{1}(g)\) be the class of functions \(h:\varOmega _{1}\rightarrow\mathbb{R} \) defined as
and let \(A_{k_{1}}\) be an integral operator defined as
such that \(k_{1}:\varOmega_{1} \times\varOmega_{2} \rightarrow\mathbb{R} \) denotes a non-negative measurable function, \(g:\varOmega_{2}\rightarrow\mathbb{R}\) represents a measurable function and
Theorem 2.1
([7])
Let v be a weight function on \(\varOmega _{1}\), and \(k_{1}:\varOmega_{1} \times\varOmega_{2}\rightarrow\mathbb{R}\) be a non-negative measurable function. Also, let \(K_{1}\) be defined on \(\varOmega_{1}\) by (2.2). Suppose that \(x\mapsto v(x)\frac {k_{1}(x,t)}{K_{1}(x)}\) is an integrable function on \(\varOmega_{1}\) for each fixed \(t\in\varOmega_{2}\). Define u on \(\varOmega_{2}\) as
If the function \(\psi:(0,\infty)\rightarrow\mathbb{R}\) denotes a convex and increasing function, then the inequality
holds for all measurable functions \(g:\varOmega_{2}\rightarrow\mathbb{R}\).
In Theorem 2.1, by replacing \(k_{1}(x,t)\) by \(k_{1}(x,t)g_{2}(t)\) and g by \(\frac{g_{1}}{g_{2}}\), where the functions \(g_{j}:\varOmega _{2}\rightarrow\mathbb{R}\) are measurable for \(j=1,2\), the following result is obtained (see [11]).
Theorem 2.2
Let \(g_{j}:\varOmega_{2}\rightarrow\mathbb{R} \) be measurable functions, \(h_{j}\in U_{1}(g_{j})\) \((j=1,2)\), with \(h_{2}(x)>0 \) for all \(x\in\varOmega _{1}\). Also, let v be a weight function on \(\varOmega_{1}\) and \(k_{1}:\varOmega_{1} \times\varOmega_{2}\rightarrow\mathbb{R}\) be a non-negative measurable function. Suppose that \(x\mapsto v(x)\frac {g_{2}(t)k_{1}(x,t)}{h_{2}(x)}\) is an integrable function on \(\varOmega_{1}\) for each fixed \(t\in\varOmega_{2}\). Define u on \(\varOmega_{2}\) by
If the function \(\psi:(0,\infty)\rightarrow\mathbb{R} \) denotes a convex and increasing function, then the following inequality holds:
Theorem 2.3
([7])
Let \((\sum_{1},\varOmega_{1},\mu_{1} )\) and \((\sum_{2},\varOmega_{2},\mu_{2} )\) be measure spaces with positive σ-finite measures. Also let v be a weight function on \(\varOmega_{1}\), let \(k_{1}:\varOmega_{1} \times\varOmega_{2}\rightarrow\mathbb{R}\) be a non-negative measurable function by (2.2), let \(K_{1}\) be defined on \(\varOmega_{1}\) and \(0< p_{1} \leq q_{1} <\infty\). If \(x\mapsto v(x)\frac {k_{1}(x,t)}{K_{1}(x)}\) is an integrable function on \(\varOmega_{1}\) for each fixed \(t\in\varOmega_{2}\), then u is written as
If the function ψ denotes a non-negative convex on the interval \(I_{1}\subseteq\mathbb{R} \), then the inequality
holds for all measurable functions \(g:\varOmega_{2}\rightarrow \mathbb{R} \) such that \(\operatorname{Im} g \subseteq I_{1}\).
Theorem 2.4
([7])
Let \(h_{j}\in U_{1}(g_{j})\) for \(j=1,2,3\), with \(h_{2}(x)>0\) for all \(x\in\varOmega_{1}\). Let v be a weight function on \(\varOmega_{1}\), and \(k_{1}:\varOmega_{1} \times\varOmega_{2}\rightarrow\mathbb{R}\) be a non-negative measurable function, then u is written as
If the function \(\psi:(0,\infty) \times(0,\infty)\rightarrow\mathbb {R}\) represents a convex and increasing function, then the following inequality holds:
3 Main results
Below, we show the definition of the new left Riemann fractional derivative, then we discuss Hardy-type inequalities for the new left Riemann fractional derivative.
According to [19], if \(g\in H^{1}(a_{1},b_{1})\), \(0< a_{1}< b_{1}\leq\infty\), \(\alpha\in(0,1)\), then the left new Riemann fractional derivative \({}^{\mathrm{CFR}} _{a_{1}}D^{\alpha}\) is defined by
with \(\lambda=\frac{-\alpha}{1-\alpha}\) and \(x\geq a_{1}\). Here \(M(\alpha )\) is a normalization constant depending on α.
Theorem 3.1
Let \(0< \alpha< 1\), \(p_{1}>1\) and \(q_{1}>1\). Also, let \({}^{\mathrm{CFR}} _{a_{1}}D^{\alpha}\) be defined by (3.1). If \(g' \in L^{q_{1}} (a_{1},b_{1})\), then the following inequality holds true:
where \(\frac{1}{p_{1}}+\frac{1}{q_{1}}=1\), \(\lambda=\frac{-\alpha }{1-\alpha}\) and \(C_{1}= (\frac{M(\alpha)}{1-\alpha} )^{q_{1}} (-\frac{1}{p_{1}\lambda} )^{q_{1}/p_{1}} (b_{1}-a_{1})\).
Proof
We have
By using Hölder’s inequality for \(\{p_{1},q_{1}\}\), we can write
Thus we get
Integrating both sides from \(a_{1}\) to \(b_{1}\), we obtain the following inequality:
Let \(C_{1}= (\frac{M(\alpha)}{1-\alpha} )^{q_{1}} (-\frac {1}{p_{1}\lambda} )^{\frac{q_{1}}{p_{1}}}(b-a)\). Then we obtain (3.2). □
Corollary 3.1
Let v be a weight function on \((a_{1},b_{1})\), \(0< \alpha< 1\) and \(\lambda=\frac{-\alpha}{1-\alpha}\). Also, let \({}^{\mathrm{CFR}} _{a_{1}}D^{\alpha}\) be defined by (3.1), let \(g\in H^{1}(a_{1},b_{1})\) and define u on \((a_{1},b_{1})\) by
If the function \(\psi:(0,\infty)\rightarrow\mathbb{R} \) represents a convex and increasing function, then the inequality
holds true.
Proof
By applying Theorem 2.1 with \(\varOmega _{1}=\varOmega_{2}=(a_{1},b_{1})\), \(d\mu_{1}(x)=dx\), \(d\mu_{2}(t)=dt\),
then we find \(K_{1}(x)=\frac{1-\exp (\lambda(x-a_{1}) )}{\lambda ^{2}}\). Also, if g is replaced by \(g'\) and h is taken as \({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g\), we obtain (3.3). □
Remark 3.1
In Corollary 3.1, let \(v(x)=1-\exp(\lambda (x-a_{1}))\) be a particular weight function on \((a_{1},b_{1})\). Then we obtain the following inequality:
If the function \(\psi:(0,\infty) \rightarrow\mathbb{R}\) is defined by \(\psi (x )=x^{q_{1}}\) for \(q_{1}>1\), then (3.4) reduces to the following inequality:
From \(x\in(a_{1},b_{1})\) and \(\lambda< 0\), then for the left-hand side of (3.5) holds the following inequality:
Also, the right-hand of (3.5) satisfies the following inequality:
So, by using (3.6) and (3.7) in (3.5) we obtain
That is, we can write
Taking the power \(\frac{1}{q_{1}}\) on both sides, we get
Next, we obtain a special case of Theorem 2.2 for the left new Riemann fractional derivative.
Corollary 3.2
Let v be a weight function on \((a_{1},b_{1})\), \(0< \alpha< 1\) and \(\lambda=\frac{-\alpha}{1-\alpha}\). Let \({}^{\mathrm{CFR}} _{a_{1}}D^{\alpha }\) be defined by (3.1) and define u on \((a_{1},b_{1})\) by
If the function \(\psi:(0,\infty)\rightarrow\mathbb{R}\) denotes a convex and increasing function, then the inequality
holds true for all \(g_{j} \in H^{1}(a_{1},b_{1})\) \((j=1,2)\).
Proof
Using Theorem 2.2 with \(\varOmega_{1}=\varOmega _{2}=(a_{1},b_{1})\), \(d\mu_{1}(x)=dx\), \(d\mu_{2}(t)=dt\) and we get
Also, if \(g_{j}\) is replaced by \(g_{j}^{\prime}\) and \(h_{j}\) is taken as \({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g_{j}\) for \(j=1,2\), then we obtain the inequality (3.8). □
Corollary 3.3
Let v be a weight function on \((a_{1},b_{1})\), \(0< p_{1}\leq q_{1}<\infty\), \(0< \alpha< 1\) and \(\lambda=\frac{-\alpha}{1-\alpha}\). Let \({}^{\mathrm{CFR}} _{a_{1}}D^{\alpha}\) be defined by (3.1) and define u on \((a_{1},b_{1})\) by
If the function ψ denotes a convex and non-negative increasing on an interval \(I_{1}\subseteq\mathbb{R} \), then the following inequality holds true:
for all measurable functions \(g':(a_{1},b_{1})\rightarrow\mathbb{R} \) such that \(\operatorname{Im} g'\subseteq I_{1}\).
Proof
By using Theorem 2.3 with \(\varOmega_{1}=\varOmega _{2}=(a_{1},b_{1})\), \(d\mu_{1}(x)=dx\), \(d\mu_{2}(t)=dt\),
then we find \(K_{1}(x)=\frac{1-\exp (\lambda(x-a_{1}) )}{\lambda ^{2}}\). Also, if g is replaced by \(g'\) and h is taken as \({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g\), we obtain (3.9). □
Corollary 3.4
Let v be a weight function on \((a_{1},b_{1})\), \(0< \alpha< 1\) and \(\lambda=\frac{-\alpha}{1-\alpha}\). Let \({}^{\mathrm{CFR}} _{a_{1}}D^{\alpha }\) be defined by (3.1), and \(g_{j} \in H^{1}(a_{1},b_{1})\) for \(j=1,2,3\), where \(g_{2}(x)>0\) for all \(x\in(a_{1},b_{1})\). If \(0< a_{1}< b_{1}<\infty\) and \(x\mapsto-\frac{v(x)g_{2} ^{\prime} (t)\exp (\lambda(x-t) ) }{\lambda ({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g_{2} )(x)}\) is integrable function over \((a_{1},b_{1})\), then \(u(t)\) is defined as
If the function \(\psi:(0,\infty)\times(0,\infty)\rightarrow\mathbb{R} \) denotes a convex and increasing function, then the following inequality holds true:
Proof
Using Theorem 2.4 with \(\varOmega_{1}=\varOmega _{2}=(a_{1},b_{1})\), \(d\mu_{1}(x)=dx\), \(d\mu_{2}(t)=dt\), we get
Also, \(K_{1}(x)=\frac{1-\exp (\lambda(x-a_{1}) )}{\lambda^{2}}\). Also, if \(g_{j}\) is replaced by \(g_{j}^{\prime}\) and \(h_{j}\) is taken as \({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g_{j}\) for \(j=1,2\), then we obtain the inequality (3.10). □
4 Examples
Below, we will show the application of our some of our main results with three examples.
Example 4.1
In Theorem 3.1, let \(g(x)=\sin x\) and \((a_{1},b_{1})=(0,\frac{\pi}{2})\). Then we obtain
By using Hölder’s inequality for \(\{p_{1},q_{1}\}\), we can write
Thus, we have
Integrating both sides from 0 to \(\frac{\pi}{2}\), we find
So, \(g(x)=\sin x\) satisfies the Hardy-type inequality.
Example 4.2
In Corollary 3.2, let \({}^{\mathrm{CFR}}_{a_{1}}D^{\alpha}\) be the new Riemann fractional derivative and \(v(x)=\exp(\lambda (x-a_{1}))(\lambda(x-a_{1})+1)\) be a particular weight function. Also, let \(\psi(x)=x^{s}\) be a convex function for \(s\geq1\), \(x>0\), and \(g_{j}(x)=\exp (\lambda(x-a_{1}) )\) be a function for \(j=1,2\). Then we find
So, we obtain
Therefore, from (3.8) in Corollary 3.2, we can write
After some calculation, we obtain
Example 4.3
In Corollary 3.3, let \({}^{\mathrm{CFR}}_{a_{1}}D^{\alpha}\) be the new Riemann fractional derivative and \(v(x)=(1-\exp(\lambda (x-a_{1})))^{\frac{q_{1}}{p_{1}}}\) be a particular weight function. Also, let \(\psi(x)=x^{s}\) be a convex function for \(s\geq1\), \(x>0\). Then we find
and from (3.9) we can write
The left-hand side of (4.1) satisfies the following inequality:
Also, the right-hand side of (4.1) satisfies the following inequality:
So, by using (4.2) and (4.3) in (4.1), we obtain
References
Hardy, G.H.: Note on some points in the integral calculus. LX. An inequality between integral. Messenger Math. 54, 150–156 (1925)
Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Dordrecht (1991)
Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht (1993)
Pečarić, J.E., Proschan, F., Tong, Y.L.: Convex Functions, Partial Orderings and Statistical Applications. Academic Press, Boston (1992)
Čižmešija, A., Krulić, K., Pečarić, J.: Some new refined Hardy-type inequalities with kernels. J. Math. Inequal. 4(4), 481–503 (2010)
Elezovič, N., Krulić, K., Pečarić, J.: Bounds for Hardy-type differences. Acta Math. Appl. Sin. Engl. Ser. 27(4), 671–684 (2011)
Iqbal, S., Krulić, K., Pečarić, J.: On an inequality of H.G. Hardy. J. Inequal. Appl. 2010, Article ID 264347 (2010)
Kaijser, S., Nikolova, L., Persson, L.E., Wedestig, A.: Hardy-type inequalities via convexity. Math. Inequal. Appl. 8(3), 403–417 (2005)
Krulić, K., Pečarić, J., Persson, L.E.: Some new Hardy-type inequalities with general kernels. Math. Inequal. Appl. 12, 473–485 (2009)
Levinson, N.: Generalizations of an inequality of Hardy. Duke Math. J. 31, 389–394 (1964)
Iqbal, S., Krulić, K., Pečarić, J.: On an inequality for convex functions with some applications on fractional derivatives and fractional integrals. J. Math. Inequal. 5(2), 219–230 (2011)
Iqbal, S., Krulić, K., Pečarić, J.: Weighted Hardy-type inequalities for monotone convex functions with some applications. Fract. Differ. Calc. 3(1), 31–53 (2013)
Iqbal, S., Krulić, K., Pečarić, J.: On refined Hardy-type inequalities with fractional integrals and fractional derivatives. Math. Slovaca 64(4), 879–892 (2014)
Iqbal, S., Krulić, K., Pečarić, J.: On a new class of Hardy-type inequalities with fractional integrals and fractional derivatives. Rad Hazu. Mathematičke Znanosti 18=519, 91–106 (2014)
Iqbal, S., Pečarić, J., Samraiz, M., Tomovski, Z.: Hardy-type inequalities for generalized fractional integral operators. Tbil. Math. J. 10(1), 75–90 (2017)
Iqbal, S., Pečarić, J., Samraiz, M., Tomovski, Z.: On some Hardy-type inequalities for fractional calculus operators. Banach J. Math. Anal. 11(2), 438–457 (2017)
Nasibullin, R.: Hardy-type inequalities for fractional integrals and derivatives of Riemann–Liouville. Lobachevskii J. Math. 38(4), 709–718 (2017)
Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)
Abdeljawad, T., Baleanu, D.: On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 80, 1–27 (2017)
Algahtani, O.J.J.: Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model author links open overlay panel. Chaos Solitons Fractals 89, 552–559 (2016)
Akman, T., Yıldız, B., Baleanu, D.: New discretization of Caputo–Fabrizio derivative. Comput. Appl. Math. 37, 3307–3333 (2018)
Al-Salti, N., Karimov, E., Sadarangani, K.: On a differential equation with Caputo–Fabrizio fractional derivative of order \(1 < \beta\leq2\) and application to Mass–Spring–Damper system. Prog. Fract. Differ. Appl. 2(4), 257–263 (2016)
Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos). World Scientific, Singapore (2012)
Baleanu, D., Agheli, B., Al Qurashi, M.M.: Fractional advection differential equation within Caputo and Caputo–Fabrizio derivatives. Adv. Mech. Eng. 8(12), 1–8 (2016)
Baleanu, D., Mousalou, A., Rezapour, S.: A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo–Fabrizio derivative. Adv. Differ. Equ. 2017, 51 (2017). https://doi.org/10.1186/s13662-017-1088-3
Goufo, E.F.D.: Application of the Caputo–Fabrizio fractional derivative without singular kernel to Korteweg–de Vries–Bergers equation. Math. Model. Anal. 21(2), 188–198 (2016)
Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
Khan, A., Abro, K.A., Tassaddiq, A., Khan, I.: Atangana–Baleanu and Caputo–Fabrizio analysis of fractional derivatives for heat and mass transfer of second grade fluids over a vertical plate: a comparative study. Entropy 19(279), 1–12 (2017)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. North Holland Mathematics Studies, vol. 204. Elsevier, New York (2006)
Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 87–92 (2015)
Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Danbury (2006)
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Samko, G., Kilbas, A.A., Marichev, S.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993)
Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)
Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Academic Press, San Diego (2016)
Abdeljawad, T., Atıcı, F.M.: On the definitions of nabla fractional operators. Abstr. Appl. Anal. 2012, Article ID 406757 (2012). https://doi.org/10.1155/2012/406757
Abdeljawad, T., Baleanu, D.: Fractional differences and integration by parts. J. Comput. Anal. Appl. 13(3), 574–582 (2011)
Atıcı, F.M., Eloe, P.W.: A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2(2), 165–176 (2007)
Atıcı, F.M., Eloe, P.W.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137, 981–989 (2009)
Atıcı, F.M., Şengül, S.: Modeling with fractional difference equations. J. Math. Anal. Appl. 369, 1–9 (2010)
Wu, G.C., Baleanu, D., Zeng, S.D., Deng, Z.G.: Discrete fractional diffusion equation. Nonlinear Dyn. 80, 281–286 (2015)
Wu, G.C., Baleanu, D., Zeng, S.D.: Several fractional differences and their applications to discrete maps. J. Appl. Nonlinear Dyn. 4, 339–348 (2015)
Niculescu, C., Persson, L.E.: Convex Functions and Their Applications, a Contemporary Approach. CMC Books in Mathematics. Springer, New York (2006)
Acknowledgements
The authors would like to thank the referees for their useful comments and remarks.
Funding
Not applicable.
Author information
Authors and Affiliations
Contributions
All authors contributed to each part of this work equally, and they all read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Başcı, Y., Baleanu, D. Hardy-type inequalities within fractional derivatives without singular kernel. J Inequal Appl 2018, 304 (2018). https://doi.org/10.1186/s13660-018-1893-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-018-1893-6