Skip to content

Advertisement

  • Research
  • Open Access

Hardy-type inequalities within fractional derivatives without singular kernel

Journal of Inequalities and Applications20182018:304

https://doi.org/10.1186/s13660-018-1893-6

  • Received: 19 February 2018
  • Accepted: 29 October 2018
  • Published:

Abstract

In this manuscript, we developed the Hardy-type inequality within the Caputo–Fabrizio fractional derivative. We presented some illustrative examples to confirm our work.

Keywords

  • Hardy-type inequality
  • Caputo–Fabrizio fractional derivative

MSC

  • 26D10
  • 26D15
  • 26A33
  • 26A40
  • 26A42
  • 26A51

1 Introduction

In 1920, Hardy [1] showed that, for \(p_{1}>1\), \(g\in L^{p_{1}}(0,\infty)\) being a non-negative function, the following inequality holds:
$$ \int^{\infty}_{0} \biggl(\frac{1}{x} \int^{x}_{0}g (t )\,dt \biggr)^{p_{1}}\,dx\leq \biggl(\frac{p_{1}}{p_{1}-1} \biggr)^{p_{1}} \int^{\infty }_{0} \bigl(g (x ) \bigr)^{p_{1}}\,dx, \quad p_{1}>1, $$
(1.1)
As is well known, the inequality (1.1) is today called to as classical Hardy’s integral inequality in the literature. It has many applications in analysis and in the theory of differential equations (see, e.g., [2, 3] and [4]). This inequality has been generalized and developed by many mathematicians. Various mathematicians studied new Hardy-type inequality for different fractional derivatives and integrals; see [49] and the references therein.
In 1964, Levinson [10] showed that inequality (1.1) holds for parameters \(a_{1}\) and \(b_{1}\). That is, for \(0< a_{1}< b_{1}<\infty\) the following inequality is valid:
$$ \int^{b_{1}}_{a_{1}} \biggl(\frac{1}{x} \int^{x}_{0}g (t )\,dt \biggr)^{p_{1}}\,dx\leq \biggl(\frac{p_{1}}{p_{1}-1} \biggr)^{p_{1}} \int^{\infty }_{0} \bigl(g (x ) \bigr)^{p_{1}}\,dx, \quad p_{1}>1. $$
(1.2)

In 2010, Iqbal et al. [7] obtained new fractional inequalities within fractional derivatives and integrals of Riemann–Liouville type. In 2011, 2013 and 2014, they proved some new inequalities involving Riemann–Liouville fractional integrals, Caputo fractional derivative and other fractional derivatives; see [1114].

In 2017, Iqbal et al. [15] presented the Hardy-type inequalities for Hilfer fractional derivative. Also, they obtained the Hardy-type inequality for generalized fractional integral within Mittag–Leffler function in its kernel utilizing convex and increasing functions. In the same year, Iqbal et al. [16] obtained Hardy-type inequalities for a generalized fractional integral operator within the Mittag–Leffler function in its kernel. Also, they set up a Hilfer fractional derivative utilizing convex and monotone convex function. In 2017, Nasibullin [17] proved new Hardy-type inequalities with fractional integrals and derivatives of Riemann–Liouville.

Recently, a new type of fractional derivative was introduced by Caputo and Fabrizio in [18]. The reason of introducing this new type of derivative was to search for fractional derivative with nonsingular kernel and without the Gamma function. Since then many researchers discussed this and applied this new fractional derivative to several real world phenomena and excellent results were reported [1935]. On the other side the discrete version of fractional derivative is one of the interesting topics nowadays [19, 3640]. Some of the applications of the discrete fractional Caputo derivative can be found in [41, 42].

The organization of this paper is given below. In Sect. 1, we given introduction. In Sect. 2, basic definitions and theorems are introduced. Motivated by [12, 26, 36] several Hardy-type inequalities for the new left Riemann fractional derivative are established in Sect. 3. Several examples are given for our results in Sect. 4.

2 Basic definitions and theorems

In this section, we present the following definitions and theorems, which are useful in proofs of our results.

Definition 2.1

([43])

Let \(I_{1}\) be an interval, and let ψ be a function \(I_{1}\rightarrow\mathbb{R}\). ψ is called convex if
$$ \psi \bigl(\beta x + (1-\beta )t \bigr)\leq\beta\psi (x )+ (1-\beta )\psi (t ) $$
(2.1)
for all points x and t in \(I_{1}\) and all \(0\leq\beta\leq1\). ψ is strictly convex if (2.1) holds strictly whenever x and t are distinct points and \(0<\beta<1\).
Let \((\sum_{1},\varOmega_{1},\mu_{1} )\) and \((\sum_{2},\varOmega _{2},\mu_{2} )\) be measure spaces with positive σ-finite measures. Also, let \(U_{1}(g)\) be the class of functions \(h:\varOmega _{1}\rightarrow\mathbb{R} \) defined as
$$h(x):= \int_{\varOmega_{2}} k_{1}(x,t)g(t)\,d\mu_{2}(t), $$
and let \(A_{k_{1}}\) be an integral operator defined as
$$A_{k_{1}} g(x):=\frac{h(x)}{K_{1}(x)}=\frac{1}{K_{1}(x)} \int_{\varOmega_{2}} k_{1}(x,t)g(t)\,d\mu_{2}(t) $$
such that \(k_{1}:\varOmega_{1} \times\varOmega_{2} \rightarrow\mathbb{R} \) denotes a non-negative measurable function, \(g:\varOmega_{2}\rightarrow\mathbb{R}\) represents a measurable function and
$$ K_{1}(x):= \int_{\varOmega_{2}} k_{1}(x,t)\,d\mu_{2}(t)>0,\quad x \in\varOmega_{1}. $$
(2.2)

Theorem 2.1

([7])

Let v be a weight function on \(\varOmega _{1}\), and \(k_{1}:\varOmega_{1} \times\varOmega_{2}\rightarrow\mathbb{R}\) be a non-negative measurable function. Also, let \(K_{1}\) be defined on \(\varOmega_{1}\) by (2.2). Suppose that \(x\mapsto v(x)\frac {k_{1}(x,t)}{K_{1}(x)}\) is an integrable function on \(\varOmega_{1}\) for each fixed \(t\in\varOmega_{2}\). Define u on \(\varOmega_{2}\) as
$$u(t):= \int_{\varOmega_{1}} v(x)\frac{k_{1}(x,t)}{K_{1}(x)}\,d\mu_{1} (x) < \infty. $$
If the function \(\psi:(0,\infty)\rightarrow\mathbb{R}\) denotes a convex and increasing function, then the inequality
$$ \int_{\varOmega_{1}} v(x)\psi \biggl( \biggl\vert \frac{h(x)}{K_{1}(x)} \biggr\vert \biggr)\,d\mu_{1} (x) \leq \int_{\varOmega_{2}} u(t)\psi \bigl( \bigl\vert g(t) \bigr\vert \bigr) \,d\mu_{2} (t) $$
(2.3)
holds for all measurable functions \(g:\varOmega_{2}\rightarrow\mathbb{R}\).

In Theorem 2.1, by replacing \(k_{1}(x,t)\) by \(k_{1}(x,t)g_{2}(t)\) and g by \(\frac{g_{1}}{g_{2}}\), where the functions \(g_{j}:\varOmega _{2}\rightarrow\mathbb{R}\) are measurable for \(j=1,2\), the following result is obtained (see [11]).

Theorem 2.2

Let \(g_{j}:\varOmega_{2}\rightarrow\mathbb{R} \) be measurable functions, \(h_{j}\in U_{1}(g_{j})\) \((j=1,2)\), with \(h_{2}(x)>0 \) for all \(x\in\varOmega _{1}\). Also, let v be a weight function on \(\varOmega_{1}\) and \(k_{1}:\varOmega_{1} \times\varOmega_{2}\rightarrow\mathbb{R}\) be a non-negative measurable function. Suppose that \(x\mapsto v(x)\frac {g_{2}(t)k_{1}(x,t)}{h_{2}(x)}\) is an integrable function on \(\varOmega_{1}\) for each fixed \(t\in\varOmega_{2}\). Define u on \(\varOmega_{2}\) by
$$u(t):=g_{2}(t) \int_{\varOmega_{1}} \frac{v(x)k_{1}(x,t)}{h_{2}(x)}\,d\mu_{1} (x) < \infty. $$
If the function \(\psi:(0,\infty)\rightarrow\mathbb{R} \) denotes a convex and increasing function, then the following inequality holds:
$$ \int_{\varOmega_{1}} v(x)\psi \biggl( \biggl\vert \frac{h_{1}(x)}{h_{2}(x)} \biggr\vert \biggr)\,d\mu_{1} (x) \leq \int_{\varOmega_{2}} u(t)\psi \biggl( \biggl\vert \frac {g_{1}(t)}{g_{2}(t)} \biggr\vert \biggr)\,d\mu_{2} (t). $$
(2.4)

Theorem 2.3

([7])

Let \((\sum_{1},\varOmega_{1},\mu_{1} )\) and \((\sum_{2},\varOmega_{2},\mu_{2} )\) be measure spaces with positive σ-finite measures. Also let v be a weight function on \(\varOmega_{1}\), let \(k_{1}:\varOmega_{1} \times\varOmega_{2}\rightarrow\mathbb{R}\) be a non-negative measurable function by (2.2), let \(K_{1}\) be defined on \(\varOmega_{1}\) and \(0< p_{1} \leq q_{1} <\infty\). If \(x\mapsto v(x)\frac {k_{1}(x,t)}{K_{1}(x)}\) is an integrable function on \(\varOmega_{1}\) for each fixed \(t\in\varOmega_{2}\), then u is written as
$$u(t):= \biggl[ \int_{\varOmega_{1}} v(x) \biggl(\frac{k_{1}(x,t)}{K_{1}(x)} \biggr)^{\frac{q_{1}}{p_{1}}} \,d\mu_{1} (x) \biggr]^{\frac{p_{1}}{q_{1}}}< \infty. $$
If the function ψ denotes a non-negative convex on the interval \(I_{1}\subseteq\mathbb{R} \), then the inequality
$$ \biggl[ \int_{\varOmega_{1}} v(x) \bigl(\psi \bigl(A_{k_{1}} g(x) \bigr) \bigr)^{\frac{q_{1}}{p_{1}}}\,d\mu_{1} (x) \biggr]^{\frac{1}{q_{1}}} \leq \biggl[ \int _{\varOmega_{2}} u(t)\psi \bigl(g(t) \bigr)\,d\mu_{2} (t) \biggr]^{\frac{1}{p_{1}}} $$
(2.5)
holds for all measurable functions \(g:\varOmega_{2}\rightarrow \mathbb{R} \) such that \(\operatorname{Im} g \subseteq I_{1}\).

Theorem 2.4

([7])

Let \(h_{j}\in U_{1}(g_{j})\) for \(j=1,2,3\), with \(h_{2}(x)>0\) for all \(x\in\varOmega_{1}\). Let v be a weight function on \(\varOmega_{1}\), and \(k_{1}:\varOmega_{1} \times\varOmega_{2}\rightarrow\mathbb{R}\) be a non-negative measurable function, then u is written as
$$u(t):=g_{2}(t) \int_{\varOmega_{1}} \frac{v(x)k_{1}(x,t)}{h_{2}(x)} \,d\mu_{1} (x)< \infty. $$
If the function \(\psi:(0,\infty) \times(0,\infty)\rightarrow\mathbb {R}\) represents a convex and increasing function, then the following inequality holds:
$$ \begin{aligned}[b] &\int_{\varOmega_{1}} v(x)\psi \biggl( \biggl\vert \frac{h_{1}(x)}{h_{2}(x)} \biggr\vert , \biggl\vert \frac{h_{3}(x)}{h_{2}(x)} \biggr\vert \biggr)\,d \mu_{1} (x) \leq \int_{\varOmega_{2}} u(t)\psi \biggl( \biggl\vert \frac {g_{1}(t)}{g_{2}(t)} \biggr\vert , \biggl\vert \frac{g_{3}(t)}{g_{2}(t)} \biggr\vert \biggr)\,d\mu _{2} (t). \end{aligned} $$
(2.6)

3 Main results

Below, we show the definition of the new left Riemann fractional derivative, then we discuss Hardy-type inequalities for the new left Riemann fractional derivative.

According to [19], if \(g\in H^{1}(a_{1},b_{1})\), \(0< a_{1}< b_{1}\leq\infty\), \(\alpha\in(0,1)\), then the left new Riemann fractional derivative \({}^{\mathrm{CFR}} _{a_{1}}D^{\alpha}\) is defined by
$$ \bigl({}^{\mathrm{CFR}}_{a_{1}}D^{\alpha} g \bigr) (x)= \frac{M(\alpha)}{1-\alpha}\,\frac {d}{dx} \int_{a_{1}} ^{x} g(t)\exp \bigl(\lambda(x-t) \bigr) \,dt, $$
(3.1)
with \(\lambda=\frac{-\alpha}{1-\alpha}\) and \(x\geq a_{1}\). Here \(M(\alpha )\) is a normalization constant depending on α.

Theorem 3.1

Let \(0< \alpha< 1\), \(p_{1}>1\) and \(q_{1}>1\). Also, let \({}^{\mathrm{CFR}} _{a_{1}}D^{\alpha}\) be defined by (3.1). If \(g' \in L^{q_{1}} (a_{1},b_{1})\), then the following inequality holds true:
$$\begin{aligned} \int_{a_{1}}^{b_{1}} \bigl\vert \bigl( {}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g \bigr) (x) \bigr\vert ^{q_{1}} \,dx \leq C_{1} \int_{a_{1}}^{b_{1}} \bigl\vert g'(t) \bigr\vert ^{q_{1}} \,dt, \end{aligned}$$
(3.2)
where \(\frac{1}{p_{1}}+\frac{1}{q_{1}}=1\), \(\lambda=\frac{-\alpha }{1-\alpha}\) and \(C_{1}= (\frac{M(\alpha)}{1-\alpha} )^{q_{1}} (-\frac{1}{p_{1}\lambda} )^{q_{1}/p_{1}} (b_{1}-a_{1})\).

Proof

We have
$$\begin{aligned} \bigl\vert \bigl( {}^{\mathrm{CFR}}_{a_{1}} D^{\alpha} g \bigr) (x) \bigr\vert =& \biggl\vert \frac {M(\alpha)}{1-\alpha}\,\frac{d}{dx} \int_{a_{1}}^{x} g(t)\exp \bigl(\lambda(x-t) \bigr)\,dt \biggr\vert \\ =& \biggl\vert \frac{M(\alpha)}{1-\alpha}\,\frac{d}{dx} \bigl(g(x)*\exp ( \lambda x ) \bigr) \biggr\vert \\ =& \biggl\vert \frac{M(\alpha)}{1-\alpha} \biggl(\frac {dg}{dx}(x)*\exp (\lambda x ) \biggr) \biggr\vert \\ \leq&\frac{M(\alpha)}{1-\alpha} \int_{a_{1}}^{x} \bigl\vert g'(t) \bigr\vert \exp \bigl(\lambda(x-t) \bigr)\,dt. \end{aligned}$$
By using Hölder’s inequality for \(\{p_{1},q_{1}\}\), we can write
$$\begin{aligned} \bigl\vert \bigl({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g \bigr) (x) \bigr\vert \leq&\frac {M(\alpha)}{1-\alpha} \biggl( \int_{a_{1}}^{x} \bigl\vert g'(t) \bigr\vert ^{q_{1}} \,dt \biggr) ^{\frac{1}{q_{1}}} \biggl( \int _{a_{1}}^{x} \exp \bigl(p_{1}\lambda(x-t) \bigr)\,dt \biggr)^{\frac{1}{p_{1}}} \\ =&\frac{M(\alpha)}{1-\alpha} \biggl(-\frac {1}{p_{1}\lambda}+\frac{\exp (p_{1}\lambda(x-a_{1}) )}{p_{1}\lambda } \biggr)^{\frac{1}{p_{1}}} \biggl( \int_{a_{1}}^{x} \bigl\vert g'(t) \bigr\vert ^{q_{1}} \,dt \biggr) ^{\frac{1}{q_{1}}}. \end{aligned}$$
Thus we get
$$\begin{aligned} \bigl\vert \bigl({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g \bigr) (x) \bigr\vert ^{q_{1}} \leq& \biggl(\frac{M(\alpha)}{1-\alpha} \biggr)^{q_{1}} \biggl(-\frac{1}{p_{1}\lambda}+\frac{\exp (p_{1}\lambda(x-a_{1}) )}{p_{1}\lambda} \biggr)^{\frac{q_{1}}{p_{1}}} \int_{a_{1}}^{x} \bigl\vert g'(t) \bigr\vert ^{q_{1}} \,dt \\ \leq& \biggl(\frac{M(\alpha)}{1-\alpha} \biggr)^{q_{1}} \biggl(- \frac{1}{p_{1}\lambda} \biggr)^{\frac{q_{1}}{p_{1}}} \int_{a_{1}}^{b_{1}} \bigl\vert g'(t) \bigr\vert ^{q_{1}} \,dt. \end{aligned}$$
Integrating both sides from \(a_{1}\) to \(b_{1}\), we obtain the following inequality:
$$\int_{a_{1}}^{b_{1}} \bigl\vert \bigl({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g \bigr) (x) \bigr\vert ^{q_{1}} \,dx \leq \biggl(\frac{M(\alpha)}{1-\alpha} \biggr)^{q_{1}} \biggl(-\frac{1}{p_{1}\lambda} \biggr)^{\frac{q_{1}}{p_{1}}}(b_{1}-a_{1}) \int_{a_{1}}^{b_{1}} \bigl\vert g'(t) \bigr\vert ^{q_{1}} \,dt. $$

Let \(C_{1}= (\frac{M(\alpha)}{1-\alpha} )^{q_{1}} (-\frac {1}{p_{1}\lambda} )^{\frac{q_{1}}{p_{1}}}(b-a)\). Then we obtain (3.2). □

Corollary 3.1

Let v be a weight function on \((a_{1},b_{1})\), \(0< \alpha< 1\) and \(\lambda=\frac{-\alpha}{1-\alpha}\). Also, let \({}^{\mathrm{CFR}} _{a_{1}}D^{\alpha}\) be defined by (3.1), let \(g\in H^{1}(a_{1},b_{1})\) and define u on \((a_{1},b_{1})\) by
$$u (t )=-\lambda \int_{t}^{b_{1}} \frac{v(x) \exp (\lambda (x-t) )}{1-\exp (\lambda(x-a_{1}) )}\,dx< \infty. $$
If the function \(\psi:(0,\infty)\rightarrow\mathbb{R} \) represents a convex and increasing function, then the inequality
$$\begin{aligned} & \int_{a_{1}}^{b_{1}} v(x)\psi \biggl(\frac{\lambda^{2}}{1-\exp (\lambda (x-a_{1}) )} \bigl\vert \bigl({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g \bigr) (x) \bigr\vert \biggr)\,dx \leq \int_{a_{1}}^{b_{1}} u(t)\psi \bigl( \bigl\vert g'(t) \bigr\vert \bigr)\,dt \end{aligned}$$
(3.3)
holds true.

Proof

By applying Theorem 2.1 with \(\varOmega _{1}=\varOmega_{2}=(a_{1},b_{1})\), \(d\mu_{1}(x)=dx\), \(d\mu_{2}(t)=dt\),
$$k_{1}(x,t)= \textstyle\begin{cases} -\frac{\exp (\lambda(x-t) )}{\lambda}, & a_{1}\leq t\leq x, \\ 0 ,&x< t\leq b_{1}, \end{cases} $$
then we find \(K_{1}(x)=\frac{1-\exp (\lambda(x-a_{1}) )}{\lambda ^{2}}\). Also, if g is replaced by \(g'\) and h is taken as \({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g\), we obtain (3.3). □

Remark 3.1

In Corollary 3.1, let \(v(x)=1-\exp(\lambda (x-a_{1}))\) be a particular weight function on \((a_{1},b_{1})\). Then we obtain the following inequality:
$$\begin{aligned} &\int_{a_{1}}^{b_{1}} \bigl(1-exp \bigl( \lambda(x-a_{1}) \bigr) \bigr)\psi \biggl(\frac{\lambda^{2}}{1-\exp (\lambda(x-a_{1}) )} \bigl\vert \bigl({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g \bigr) (x ) \bigr\vert \,dx \biggr) \\ &\qquad \qquad \qquad \qquad \qquad \qquad \qquad \leq \int_{a_{1}}^{b_{1}} \bigl(1-\exp \bigl(\lambda (b_{1}-t ) \bigr) \bigr)\psi \bigl( \bigl\vert g' (t ) \bigr\vert \bigr)\,dt. \end{aligned}$$
(3.4)
If the function \(\psi:(0,\infty) \rightarrow\mathbb{R}\) is defined by \(\psi (x )=x^{q_{1}}\) for \(q_{1}>1\), then (3.4) reduces to the following inequality:
$$\begin{aligned} & \int_{a_{1}}^{b_{1}} \bigl(1- \exp \bigl( \lambda(x-a_{1}) \bigr) \bigr) \biggl(\frac{\lambda^{2}}{1-\exp (\lambda(x-a_{1}) )} \bigl\vert \bigl({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g \bigr) (x) \bigr\vert \biggr)^{q_{1}} \,dx \\ &\qquad \qquad \qquad \qquad \qquad \qquad \qquad \leq \int_{a_{1}}^{b_{1}} \bigl(1-\exp \bigl( \lambda(b_{1}-t) \bigr) \bigr) \bigl\vert g'(t) \bigr\vert ^{q_{1}} \,dt. \end{aligned}$$
(3.5)
From \(x\in(a_{1},b_{1})\) and \(\lambda< 0\), then for the left-hand side of (3.5) holds the following inequality:
$$\begin{aligned} &\int_{a_{1}}^{b_{1}} \frac{\lambda^{2q_{1}}}{ (1-\exp (\lambda (x-a_{1}) ) )^{{q_{1}}-1}} \bigl\vert \bigl({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g \bigr) (x) \bigr\vert ^{q_{1}} \,dx \\ &\qquad \qquad \qquad \qquad \qquad \geq\frac{\lambda^{2q_{1}}}{ (1-\exp (\lambda(b_{1}-a_{1}) )^{{q_{1}}-1}} \int_{a_{1}}^{b_{1}} \bigl\vert \bigl({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g \bigr) (x) \bigr\vert ^{q_{1}} \,dx. \end{aligned}$$
(3.6)
Also, the right-hand of (3.5) satisfies the following inequality:
$$\begin{aligned} \int_{a_{1}}^{b_{1}} \bigl(1-\exp \bigl( \lambda(b_{1}-t) \bigr) \bigr) \bigl\vert g'(t) \bigr\vert ^{q_{1}} \,dt \leq \bigl(1- \bigl(\lambda(b_{1}-a_{1}) \bigr) \bigr) \int_{a_{1}}^{b_{1}} \bigl\vert g'(t) \bigr\vert ^{q_{1}} \,dt. \end{aligned}$$
(3.7)
So, by using (3.6) and (3.7) in (3.5) we obtain
$$\begin{aligned} &\frac{\lambda^{2q_{1}}}{ (1-\exp (\lambda(b_{1}-a_{1}) ) )^{q_{1}-1}} \int_{a_{1}}^{b_{1}} \bigl\vert \bigl({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g \bigr) (x) \bigr\vert ^{q_{1}} \,dx \\ &\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \leq \bigl(1-\exp \bigl(\lambda(b_{1}-a_{1}) \bigr) \bigr) \int_{a_{1}}^{b_{1}} \bigl\vert g'(t) \bigr\vert ^{q_{1}} \,dt. \end{aligned}$$
That is, we can write
$$\int_{a_{1}}^{b_{1}} \bigl\vert \bigl({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g \bigr) (x) \bigr\vert ^{q_{1}} \,dx \leq \biggl(\frac{1-\exp (\lambda(b_{1}-a_{1}) )}{\lambda^{2}} \biggr)^{q_{1}} \int_{a_{1}}^{b_{1}} \bigl\vert g'(t) \bigr\vert ^{q_{1}} \,dt. $$
Taking the power \(\frac{1}{q_{1}}\) on both sides, we get
$$\bigl\Vert {}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g \bigr\Vert _{q_{1}} \leq\frac{1-\exp (\lambda(b_{1}-a_{1}) )}{\lambda^{2}} \bigl\Vert g' \bigr\Vert _{q_{1}}. $$

Next, we obtain a special case of Theorem 2.2 for the left new Riemann fractional derivative.

Corollary 3.2

Let v be a weight function on \((a_{1},b_{1})\), \(0< \alpha< 1\) and \(\lambda=\frac{-\alpha}{1-\alpha}\). Let \({}^{\mathrm{CFR}} _{a_{1}}D^{\alpha }\) be defined by (3.1) and define u on \((a_{1},b_{1})\) by
$$u(t)=-\frac{g_{2}^{\prime}(t)}{\lambda} \int_{t}^{b_{1}} \frac{v(x)\exp (\lambda(x-t) )}{ ({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g_{2} )(x)}\,dx< \infty. $$
If the function \(\psi:(0,\infty)\rightarrow\mathbb{R}\) denotes a convex and increasing function, then the inequality
$$\begin{aligned} \int_{a_{1}}^{b_{1}} v(x)\psi \biggl( \biggl\vert \frac{ ({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g_{1} )(x)}{ ({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g_{2} )(x)} \biggr\vert \biggr)\,dx \leq \int_{a_{1}}^{b_{1}} u(t)\psi \biggl( \biggl\vert \frac{g_{1}^{\prime }(t)}{g_{2}^{\prime}(t)} \biggr\vert \biggr)\,dt \end{aligned}$$
(3.8)
holds true for all \(g_{j} \in H^{1}(a_{1},b_{1})\) \((j=1,2)\).

Proof

Using Theorem 2.2 with \(\varOmega_{1}=\varOmega _{2}=(a_{1},b_{1})\), \(d\mu_{1}(x)=dx\), \(d\mu_{2}(t)=dt\) and we get
$$k_{1}(x,t)= \textstyle\begin{cases} -\frac{\exp (\lambda(x-t) )}{\lambda}, & a_{1}\leq t\leq x, \\ 0 ,&x< t\leq b_{1}. \end{cases} $$
Also, if \(g_{j}\) is replaced by \(g_{j}^{\prime}\) and \(h_{j}\) is taken as \({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g_{j}\) for \(j=1,2\), then we obtain the inequality (3.8). □

Corollary 3.3

Let v be a weight function on \((a_{1},b_{1})\), \(0< p_{1}\leq q_{1}<\infty\), \(0< \alpha< 1\) and \(\lambda=\frac{-\alpha}{1-\alpha}\). Let \({}^{\mathrm{CFR}} _{a_{1}}D^{\alpha}\) be defined by (3.1) and define u on \((a_{1},b_{1})\) by
$$u(t)= \biggl[ \int_{t}^{b_{1}} v(x) \biggl(\frac{-\lambda\exp (\lambda (x-t) )}{ (1-\exp (\lambda(x-a_{1}) ) )} \biggr)^{\frac {q_{1}}{p_{1}}}\,dx \biggr]^{\frac{p_{1}}{q_{1}}}< \infty. $$
If the function ψ denotes a convex and non-negative increasing on an interval \(I_{1}\subseteq\mathbb{R} \), then the following inequality holds true:
$$\begin{aligned} & \biggl[ \int_{a_{1}}^{b_{1}} v(x) \biggl(\psi \biggl( \frac{\lambda^{2}}{1-\exp (\lambda(x-a_{1}) )} \bigl({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g \bigr) (x) \biggr) \biggr)^{\frac{q_{1}}{p_{1}}}\,dx \biggr]^{\frac{1}{q_{1}}} \\ &\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \leq \biggl[ \int_{a_{1}}^{b_{1}} u(t)\psi \bigl(g^{\prime}(t) \bigr)\,dt \biggr] ^{\frac{1}{p_{1}}}, \end{aligned}$$
(3.9)
for all measurable functions \(g':(a_{1},b_{1})\rightarrow\mathbb{R} \) such that \(\operatorname{Im} g'\subseteq I_{1}\).

Proof

By using Theorem 2.3 with \(\varOmega_{1}=\varOmega _{2}=(a_{1},b_{1})\), \(d\mu_{1}(x)=dx\), \(d\mu_{2}(t)=dt\),
$$k_{1}(x,t)= \textstyle\begin{cases} -\frac{\exp (\lambda(x-t) )}{\lambda}, & a_{1}\leq t\leq x \\ 0 ,&x< t\leq b_{1}, \end{cases} $$
then we find \(K_{1}(x)=\frac{1-\exp (\lambda(x-a_{1}) )}{\lambda ^{2}}\). Also, if g is replaced by \(g'\) and h is taken as \({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g\), we obtain (3.9). □

Corollary 3.4

Let v be a weight function on \((a_{1},b_{1})\), \(0< \alpha< 1\) and \(\lambda=\frac{-\alpha}{1-\alpha}\). Let \({}^{\mathrm{CFR}} _{a_{1}}D^{\alpha }\) be defined by (3.1), and \(g_{j} \in H^{1}(a_{1},b_{1})\) for \(j=1,2,3\), where \(g_{2}(x)>0\) for all \(x\in(a_{1},b_{1})\). If \(0< a_{1}< b_{1}<\infty\) and \(x\mapsto-\frac{v(x)g_{2} ^{\prime} (t)\exp (\lambda(x-t) ) }{\lambda ({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g_{2} )(x)}\) is integrable function over \((a_{1},b_{1})\), then \(u(t)\) is defined as
$$u (t )=-\frac{g_{2} ^{\prime} (t)}{\lambda} \int_{t}^{b_{1}} \frac {v(x)\exp (\lambda(x-t) )}{ ({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g_{2} )(x)}\,dx. $$
If the function \(\psi:(0,\infty)\times(0,\infty)\rightarrow\mathbb{R} \) denotes a convex and increasing function, then the following inequality holds true:
$$\begin{aligned} & \int_{a_{1}}^{b_{1}} v(x)\psi \biggl( \biggl\vert \frac{ ({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g_{1} )(x)}{ ({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g_{2} )(x)} \biggr\vert , \biggl\vert \frac{ ({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g_{3} )(x)}{ ({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g_{2} )(x)} \biggr\vert \biggr)\,dx \\ &\qquad \qquad \qquad \qquad \qquad \qquad \qquad \leq \int_{a_{1}}^{b_{1}} u(t)\psi \biggl( \biggl\vert \frac {g_{1}^{\prime} (t)}{g_{2}^{\prime} (t)} \biggr\vert , \biggl\vert \frac {g_{3}^{\prime}(t)}{g_{2}^{\prime} (t)} \biggr\vert \biggr)\,dt. \end{aligned}$$
(3.10)

Proof

Using Theorem 2.4 with \(\varOmega_{1}=\varOmega _{2}=(a_{1},b_{1})\), \(d\mu_{1}(x)=dx\), \(d\mu_{2}(t)=dt\), we get
$$k_{1}(x,t)= \textstyle\begin{cases} -\frac{\exp (\lambda(x-t) )}{\lambda}, & a_{1}\leq t\leq x, \\ 0 ,&x< t\leq b_{1}, \end{cases} $$
Also, \(K_{1}(x)=\frac{1-\exp (\lambda(x-a_{1}) )}{\lambda^{2}}\). Also, if \(g_{j}\) is replaced by \(g_{j}^{\prime}\) and \(h_{j}\) is taken as \({}^{\mathrm{CFR}} _{a_{1}} D^{\alpha} g_{j}\) for \(j=1,2\), then we obtain the inequality (3.10). □

4 Examples

Below, we will show the application of our some of our main results with three examples.

Example 4.1

In Theorem 3.1, let \(g(x)=\sin x\) and \((a_{1},b_{1})=(0,\frac{\pi}{2})\). Then we obtain
$$\begin{aligned} \bigl\vert \bigl({}^{\mathrm{CFR}}_{a_{1}}D^{\alpha}\sin \bigr) (x) \bigr\vert =& \biggl\vert \frac {M(\alpha)}{1-\alpha}\,\frac{d}{dx} \int^{x}_{0}\sin t \exp\bigl(\lambda (x-t)\bigr)\,dt \biggr\vert \\ =& \biggl\vert \frac{M(\alpha)}{1-\alpha}\,\frac {d}{dx} \bigl(\sin x *\exp( \lambda x) \bigr) \biggr\vert \\ =& \biggl\vert \frac{M(\alpha)}{1-\alpha} \bigl(\cos x *\exp(\lambda x) \bigr) \biggr\vert \\ \leq&\frac{M(\alpha)}{1-\alpha} \int ^{x}_{0} \vert \cos t \vert \exp\bigl( \lambda(x-t)\bigr)\,dt. \end{aligned}$$
By using Hölder’s inequality for \(\{p_{1},q_{1}\}\), we can write
$$\begin{aligned} \bigl\vert \bigl({}^{\mathrm{CFR}}_{a_{1}}D^{\alpha}\sin \bigr) (x ) \bigr\vert \leq& \frac{M(\alpha)}{1-\alpha} \biggl( \int^{x}_{0} \vert \cos t \vert ^{q_{1} } \,dt \biggr)^{\frac{1}{q_{1}}} \biggl( \int^{x}_{0}\exp\bigl(p_{1}\lambda (x-t) \bigr)\,dt \biggr)^{\frac{1}{p_{1}}} \\ \leq&\frac{M(\alpha)}{1-\alpha} \biggl(-\frac {1}{p_{1}\lambda} \biggr)^{\frac{1}{p_{1}}} \biggl( \int^{x}_{0} \vert \cos t \vert ^{q_{1}} \,dt \biggr)^{\frac{1}{q_{1}}}. \end{aligned}$$
Thus, we have
$$\bigl\vert \bigl({}^{\mathrm{CFR}}_{a_{1}}D^{\alpha}\sin \bigr) (x ) \bigr\vert ^{q_{1}}\leq \biggl(\frac{M(\alpha)}{1-\alpha} \biggl(- \frac{1}{p_{1}\lambda } \biggr)^{\frac{1}{p_{1}}} \biggr)^{q_{1}} \int^{x}_{0} \vert \cos t \vert ^{q_{1}} \,dt. $$
Integrating both sides from 0 to \(\frac{\pi}{2}\), we find
$$\int^{\frac{\pi}{2}}_{0} \bigl\vert \bigl({}^{\mathrm{CFR}}_{a_{1}}D^{\alpha} \sin \bigr) (x ) \bigr\vert ^{q_{1}}\,dx\leq\frac{\pi}{2} \biggl( \frac{M(\alpha )}{1-\alpha} \biggl(-\frac{1}{p_{1}\lambda} \biggr)^{\frac{1}{p_{1}}} \biggr)^{q_{1}} \int^{x}_{0} \vert \cos t \vert ^{q_{1}} \,dt. $$
So, \(g(x)=\sin x\) satisfies the Hardy-type inequality.

Example 4.2

In Corollary 3.2, let \({}^{\mathrm{CFR}}_{a_{1}}D^{\alpha}\) be the new Riemann fractional derivative and \(v(x)=\exp(\lambda (x-a_{1}))(\lambda(x-a_{1})+1)\) be a particular weight function. Also, let \(\psi(x)=x^{s}\) be a convex function for \(s\geq1\), \(x>0\), and \(g_{j}(x)=\exp (\lambda(x-a_{1}) )\) be a function for \(j=1,2\). Then we find
$$\begin{aligned} \bigl({}^{\mathrm{CFR}}_{a_{1}}D^{\alpha}g_{2} \bigr) (x )&=\frac{M(\alpha )}{1-\alpha}\,\frac{d}{dx} \int^{x}_{a_{1}}\exp\bigl(\lambda(t-a_{1}) \bigr) \exp\bigl(\lambda (x-t)\bigr)\,dt \\ &=\frac{M(\alpha)}{1-\alpha} \bigl[\lambda\exp \bigl(\lambda(x-a_{1}) \bigr) (x-a_{1})+\exp\bigl(\lambda(x-a_{1})\bigr) \bigr] \\ & =\frac{M(\alpha)}{1-\alpha}\exp\bigl(\lambda (x-a_{1})\bigr)\bigl[ \lambda(x-a_{1})+1\bigr]. \end{aligned}$$
So, we obtain
$$\begin{aligned} u(t)&=-\frac{g^{\prime}_{2}(t)}{\lambda} \int^{b_{1}}_{t}\frac{v(x)\exp (\lambda(x-t))}{ ({}^{\mathrm{CFR}}_{a_{1}}D^{\alpha}g_{2} )(x)}\,dx \\ &=- \exp\bigl(\lambda(t-a_{1})\bigr) \int^{b_{1}}_{t} \frac{\exp(\lambda (x-a_{1}))(\lambda(x-a_{1})+1) \exp(\lambda(x-t))}{ ({}^{\mathrm{CFR}}_{a_{1}}D^{\alpha}g_{2} ) (x )}\,dx \\ &=-\frac{1-\alpha}{\lambda M(\alpha)} \bigl[\exp\bigl(\lambda (b_{1}-a_{1}) \bigr)-\exp\bigl(\lambda(t-a_{1})\bigr) \bigr] < \infty. \end{aligned}$$
Therefore, from (3.8) in Corollary 3.2, we can write
$$\begin{aligned} & \int^{b_{1}}_{a_{1}} \exp\bigl(\lambda(x-a_{1}) \bigr) \bigl(\lambda(x-a_{1})+1\bigr)\psi(1) \,dx \\ &\qquad \qquad \leq \int^{b_{1}}_{a_{1}} -\frac{1-\alpha}{\lambda M(\alpha)} \bigl[\exp\bigl( \lambda(b_{1}-a_{1})\bigr)-\exp\bigl(\lambda(t-a_{1}) \bigr) \bigr]\psi(1)\,dt. \end{aligned}$$
After some calculation, we obtain
$$\lambda(b_{1}-a_{1})^{2}\exp\bigl( \lambda(b_{1}-a_{1})\bigr)\leq-\frac{1-\alpha}{\lambda M(\alpha)} \biggl[\exp \bigl(\lambda(b_{1}-a_{1})\bigr) (b_{1}-a_{1})- \frac{\exp(\lambda (b_{1}-a_{1}))-1}{\lambda} \biggr]. $$

Example 4.3

In Corollary 3.3, let \({}^{\mathrm{CFR}}_{a_{1}}D^{\alpha}\) be the new Riemann fractional derivative and \(v(x)=(1-\exp(\lambda (x-a_{1})))^{\frac{q_{1}}{p_{1}}}\) be a particular weight function. Also, let \(\psi(x)=x^{s}\) be a convex function for \(s\geq1\), \(x>0\). Then we find
$$\begin{aligned} u(t) =& \biggl[ \int^{b_{1}}_{t} v(x) \biggl(-\frac{\lambda\exp(\lambda (x-t))}{1-\exp(\lambda(x-a_{1}))} \biggr)^{\frac{q_{1}}{p_{1}}}\,dx \biggr]^{\frac {p_{1}}{q_{1}}} \\ =&-\lambda \biggl(\frac{p_{1}}{\lambda q_{1}} \biggr)^{\frac {p_{1}}{q_{1}}} \biggl[\exp \biggl( \frac{q_{1}}{p_{1}}\lambda(b_{1}-t) \biggr)-1 \biggr]^{\frac{p_{1}}{q_{1}}}< \infty, \end{aligned}$$
and from (3.9) we can write
$$\begin{aligned} & \biggl[ \int^{b_{1}}_{a_{1}} \bigl(1-\exp\bigl( \lambda(x-a_{1})\bigr) \bigr)^{\frac {(1-s)q_{1}}{p_{1}}}\lambda^{2s} \bigl( \bigl({}^{\mathrm{CFR}}_{a_{1}}D^{\alpha}g \bigr) (x ) \bigr)^{\frac{sq_{1}}{p_{1}}}\,dx \biggr]^{\frac {1}{q_{1}}} \\ &\qquad \qquad \leq \biggl[ \int^{b_{1}}_{a_{1}} (-\lambda) \biggl(\frac{p_{1}}{\lambda q_{1} } \biggr)^{\frac{p_{1}}{q_{1}}} \biggl(\exp \biggl(\frac{q_{1}}{p_{1}}\lambda (b_{1}-t) \biggr)-1 \biggr)^{\frac{p_{1}}{q_{1}}} \bigl\vert g'(t) \bigr\vert ^{s} \,dt \biggr]^{\frac{1}{p_{1}}}. \end{aligned}$$
(4.1)
The left-hand side of (4.1) satisfies the following inequality:
$$\begin{aligned} & \biggl[ \int^{b_{1}}_{a_{1}} \bigl(1-\exp\bigl( \lambda(x-a_{1})\bigr) \bigr)^{\frac {(1-s)q_{1}}{p_{1}}}\lambda^{2s} \bigl( \bigl({}^{\mathrm{CFR}}_{a_{1}}D^{\alpha}g \bigr) (x ) \bigr)^{\frac{sq_{1}}{p_{1}}}\,dx \biggr]^{\frac {1}{q_{1}}} \\ &\qquad \qquad \geq\lambda^{2s} \bigl(1-\exp\bigl(\lambda (b_{1}-a_{1}) \bigr) \bigr)^{\frac{1-s}{p_{1}}} \biggl( \int^{b_{1}}_{a_{1}} \bigl( \bigl({}^{\mathrm{CFR}}_{a_{1}}D^{\alpha}g \bigr) (x ) \bigr)^{\frac{sq_{1}}{p_{1}}}\,dx \biggr)^{\frac{1}{q_{1}}}. \end{aligned}$$
(4.2)
Also, the right-hand side of (4.1) satisfies the following inequality:
$$\begin{aligned} & \biggl[ \int^{b_{1}}_{a_{1}} (-\lambda) \biggl(\frac{p_{1}}{\lambda q_{1} } \biggr)^{\frac{p_{1}}{q_{1}}} \biggl[\exp \biggl(\frac{q_{1}}{p_{1}}\lambda (b_{1}-t) \biggr)-1 \biggr]^{\frac{p_{1}}{q_{1}}} \bigl\vert g'(t) \bigr\vert ^{s} \,dt \biggr]^{\frac{1}{p_{1}}} \\ &\qquad \qquad\leq(-\lambda)^{\frac{1}{p_{1}}} \biggl(\frac{p_{1}}{\lambda q_{1}} \biggr)^{\frac{1}{q_{1}}} \biggl( \exp \biggl(\frac{q_{1}}{p_{1}}\lambda (b_{1}-a_{1}) \biggr)-1 \biggr)^{\frac{1}{p_{1}}} \biggl( \int^{b_{1}}_{a_{1}} \bigl\vert g'(t) \bigr\vert ^{s} \,dt \biggr)^{\frac{1}{p_{1}}}. \end{aligned}$$
(4.3)
So, by using (4.2) and (4.3) in (4.1), we obtain
$$\begin{aligned} \biggl[ \int^{b_{1}}_{a_{1}} \bigl( \bigl({}^{\mathrm{CFR}}_{a_{1}}D^{\alpha}g \bigr) (x ) \bigr)^{\frac{sq_{1}}{p_{1}}}\,dx \biggr]^{\frac{1}{q_{1}}} \leq&(-1)^{\frac{s}{p_{1}}}\lambda^{\frac{1}{p_{1}}-2s} \biggl(\frac {p_{1}}{\lambda q_{1}} \biggr)^{\frac{1}{q_{1}}} \biggl[\exp \biggl(\frac {q_{1}}{p_{1}}\lambda(b_{1}-a_{1}) \biggr) \biggr]^{\frac{s}{p_{1}}} \\ &{} \qquad \qquad \qquad \qquad \qquad \times \biggl( \int^{b_{1}}_{a_{1}} \bigl\vert g'(t) \bigr\vert ^{s} \,dt \biggr)^{\frac{1}{p_{1}}}. \end{aligned}$$

Declarations

Acknowledgements

The authors would like to thank the referees for their useful comments and remarks.

Funding

Not applicable.

Authors’ contributions

All authors contributed to each part of this work equally, and they all read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Mathematics, Faculty of Arts and Sciences, Bolu Abant Izzet Baysal University, Bolu, Turkey
(2)
Department of Mathematics, Faculty of Arts and Sciences, Çankaya University, Ankara, Turkey
(3)
Institutes of Space Sciences, Magurele-Bucharest, Romania

References

  1. Hardy, G.H.: Note on some points in the integral calculus. LX. An inequality between integral. Messenger Math. 54, 150–156 (1925) Google Scholar
  2. Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives. Kluwer Academic, Dordrecht (1991) View ArticleGoogle Scholar
  3. Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht (1993) View ArticleGoogle Scholar
  4. Pečarić, J.E., Proschan, F., Tong, Y.L.: Convex Functions, Partial Orderings and Statistical Applications. Academic Press, Boston (1992) MATHGoogle Scholar
  5. Čižmešija, A., Krulić, K., Pečarić, J.: Some new refined Hardy-type inequalities with kernels. J. Math. Inequal. 4(4), 481–503 (2010) MathSciNetView ArticleGoogle Scholar
  6. Elezovič, N., Krulić, K., Pečarić, J.: Bounds for Hardy-type differences. Acta Math. Appl. Sin. Engl. Ser. 27(4), 671–684 (2011) MathSciNetView ArticleGoogle Scholar
  7. Iqbal, S., Krulić, K., Pečarić, J.: On an inequality of H.G. Hardy. J. Inequal. Appl. 2010, Article ID 264347 (2010) View ArticleGoogle Scholar
  8. Kaijser, S., Nikolova, L., Persson, L.E., Wedestig, A.: Hardy-type inequalities via convexity. Math. Inequal. Appl. 8(3), 403–417 (2005) MathSciNetMATHGoogle Scholar
  9. Krulić, K., Pečarić, J., Persson, L.E.: Some new Hardy-type inequalities with general kernels. Math. Inequal. Appl. 12, 473–485 (2009) MathSciNetMATHGoogle Scholar
  10. Levinson, N.: Generalizations of an inequality of Hardy. Duke Math. J. 31, 389–394 (1964) MathSciNetView ArticleGoogle Scholar
  11. Iqbal, S., Krulić, K., Pečarić, J.: On an inequality for convex functions with some applications on fractional derivatives and fractional integrals. J. Math. Inequal. 5(2), 219–230 (2011) MathSciNetView ArticleGoogle Scholar
  12. Iqbal, S., Krulić, K., Pečarić, J.: Weighted Hardy-type inequalities for monotone convex functions with some applications. Fract. Differ. Calc. 3(1), 31–53 (2013) MathSciNetView ArticleGoogle Scholar
  13. Iqbal, S., Krulić, K., Pečarić, J.: On refined Hardy-type inequalities with fractional integrals and fractional derivatives. Math. Slovaca 64(4), 879–892 (2014) MathSciNetView ArticleGoogle Scholar
  14. Iqbal, S., Krulić, K., Pečarić, J.: On a new class of Hardy-type inequalities with fractional integrals and fractional derivatives. Rad Hazu. Mathematičke Znanosti 18=519, 91–106 (2014) MathSciNetMATHGoogle Scholar
  15. Iqbal, S., Pečarić, J., Samraiz, M., Tomovski, Z.: Hardy-type inequalities for generalized fractional integral operators. Tbil. Math. J. 10(1), 75–90 (2017) MathSciNetView ArticleGoogle Scholar
  16. Iqbal, S., Pečarić, J., Samraiz, M., Tomovski, Z.: On some Hardy-type inequalities for fractional calculus operators. Banach J. Math. Anal. 11(2), 438–457 (2017) MathSciNetView ArticleGoogle Scholar
  17. Nasibullin, R.: Hardy-type inequalities for fractional integrals and derivatives of Riemann–Liouville. Lobachevskii J. Math. 38(4), 709–718 (2017) MathSciNetView ArticleGoogle Scholar
  18. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015) Google Scholar
  19. Abdeljawad, T., Baleanu, D.: On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 80, 1–27 (2017) MathSciNetView ArticleGoogle Scholar
  20. Algahtani, O.J.J.: Comparing the Atangana–Baleanu and Caputo–Fabrizio derivative with fractional order: Allen Cahn model author links open overlay panel. Chaos Solitons Fractals 89, 552–559 (2016) MathSciNetView ArticleGoogle Scholar
  21. Akman, T., Yıldız, B., Baleanu, D.: New discretization of Caputo–Fabrizio derivative. Comput. Appl. Math. 37, 3307–3333 (2018) MathSciNetView ArticleGoogle Scholar
  22. Al-Salti, N., Karimov, E., Sadarangani, K.: On a differential equation with Caputo–Fabrizio fractional derivative of order \(1 < \beta\leq2\) and application to Mass–Spring–Damper system. Prog. Fract. Differ. Appl. 2(4), 257–263 (2016) View ArticleGoogle Scholar
  23. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos). World Scientific, Singapore (2012) View ArticleGoogle Scholar
  24. Baleanu, D., Agheli, B., Al Qurashi, M.M.: Fractional advection differential equation within Caputo and Caputo–Fabrizio derivatives. Adv. Mech. Eng. 8(12), 1–8 (2016) View ArticleGoogle Scholar
  25. Baleanu, D., Mousalou, A., Rezapour, S.: A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo–Fabrizio derivative. Adv. Differ. Equ. 2017, 51 (2017). https://doi.org/10.1186/s13662-017-1088-3 MathSciNetView ArticleMATHGoogle Scholar
  26. Goufo, E.F.D.: Application of the Caputo–Fabrizio fractional derivative without singular kernel to Korteweg–de Vries–Bergers equation. Math. Model. Anal. 21(2), 188–198 (2016) MathSciNetView ArticleGoogle Scholar
  27. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000) View ArticleGoogle Scholar
  28. Khan, A., Abro, K.A., Tassaddiq, A., Khan, I.: Atangana–Baleanu and Caputo–Fabrizio analysis of fractional derivatives for heat and mass transfer of second grade fluids over a vertical plate: a comparative study. Entropy 19(279), 1–12 (2017) Google Scholar
  29. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. North Holland Mathematics Studies, vol. 204. Elsevier, New York (2006) MATHGoogle Scholar
  30. Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 87–92 (2015) Google Scholar
  31. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, Danbury (2006) Google Scholar
  32. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) MATHGoogle Scholar
  33. Samko, G., Kilbas, A.A., Marichev, S.: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach, Yverdon (1993) MATHGoogle Scholar
  34. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014) View ArticleGoogle Scholar
  35. Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Academic Press, San Diego (2016) MATHGoogle Scholar
  36. Abdeljawad, T., Atıcı, F.M.: On the definitions of nabla fractional operators. Abstr. Appl. Anal. 2012, Article ID 406757 (2012). https://doi.org/10.1155/2012/406757 MathSciNetView ArticleMATHGoogle Scholar
  37. Abdeljawad, T., Baleanu, D.: Fractional differences and integration by parts. J. Comput. Anal. Appl. 13(3), 574–582 (2011) MathSciNetMATHGoogle Scholar
  38. Atıcı, F.M., Eloe, P.W.: A transform method in discrete fractional calculus. Int. J. Differ. Equ. 2(2), 165–176 (2007) MathSciNetGoogle Scholar
  39. Atıcı, F.M., Eloe, P.W.: Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc. 137, 981–989 (2009) MathSciNetView ArticleGoogle Scholar
  40. Atıcı, F.M., Şengül, S.: Modeling with fractional difference equations. J. Math. Anal. Appl. 369, 1–9 (2010) MathSciNetView ArticleGoogle Scholar
  41. Wu, G.C., Baleanu, D., Zeng, S.D., Deng, Z.G.: Discrete fractional diffusion equation. Nonlinear Dyn. 80, 281–286 (2015) MathSciNetView ArticleGoogle Scholar
  42. Wu, G.C., Baleanu, D., Zeng, S.D.: Several fractional differences and their applications to discrete maps. J. Appl. Nonlinear Dyn. 4, 339–348 (2015) View ArticleGoogle Scholar
  43. Niculescu, C., Persson, L.E.: Convex Functions and Their Applications, a Contemporary Approach. CMC Books in Mathematics. Springer, New York (2006) View ArticleGoogle Scholar

Copyright

© The Author(s) 2018

Advertisement