Skip to main content

Seminormed double sequence spaces of four-dimensional matrix and Musielak–Orlicz function

Abstract

In this paper we study seminormed double sequence spaces of a four-dimensional matrix and Musielak–Orlicz function over n-normed spaces. We explore some interesting inclusion relations, algebraic and topological properties of these spaces.

1 Introduction and preliminaries

Generalizations of single sequence spaces are double sequence spaces which were initially given by Bromwich [2]. Later on, these spaces were investigated by Hardy [13], Móricz and Rhoades [24, 25], Tripathy [39, 40], Başarır and Sonalcan [1] and many other researchers. Hardy [13] presented the idea of regular convergence for double sequences. Recently, Hazarika and Esi [14] studied generalized difference paranormed sequence spaces defined over a seminormed sequence space using ideal convergence. A double sequence \(x=(x_{kl})\) is a double infinite array of elements \(x_{kl}\) for all \(k, l\in\mathbb{N}\). A double sequence has Pringsheim’s limit L if, given \(\epsilon> 0\), there exists \(n\in\mathbb{N}\) such that \(|x_{kl} -L|< \epsilon\) whenever \(k,l> n \). We shall write it as P-\(\lim_{k,l\rightarrow\infty}x_{kl}=L\), where k and l tend to infinity independent of each other. Throughout this paper, the limit of a double sequence means a limit in the Pringsheim’s sense.

Let w, \(l_{\infty}\), c and \(c_{0}\) denote the spaces of all, bounded, convergent and null sequences, respectively. Kızmaz [16] explored the concept of difference sequence spaces and studied the difference sequence spaces \(l_{\infty}(\Delta)\), \(c(\Delta)\) and \(c_{0}(\Delta)\). This concept was further explored by Et and Çolak [7] who introduced the spaces \(l_{\infty }(\Delta^{m})\), \(c(\Delta^{m})\) and \(c_{0}(\Delta^{m})\). Let m be a nonnegative integer. Then for \(Z = c, c_{0}\) and \(l_{\infty}\), these sequence spaces are defined as

$$ Z \bigl(\Delta^{m} \bigr) = \bigl\{ x = (x_{k})\in w : \bigl(\Delta^{m}x_{k} \bigr)\in Z \bigr\} , $$

where \(\Delta^{m} x = (\Delta^{m} x_{k}) = ( \Delta^{m-1}x_{k} - \Delta^{m-1} x_{k+1})\) and \(\Delta^{0} x_{k} = x_{k} \) for all \(k \in\mathbb{N}\), which is equivalent to the following binomial representation

Δ m x k = v = 0 m ( 1 ) v ( m v ) x k + v .

Taking \(m = 1\), we obtain the spaces studied by Et and Çolak [7]. Similarly, the difference operators can also be defined on double sequences as

$$\begin{aligned} \Delta x_{k,l} =&(x_{k,l}-x_{k,l+1})-(x_{k+1,l}-x_{k+1,l+1}) \\ =& x_{k,l}-x_{k,l+1}-x_{k+1,l}+x_{k+1,l+1} \end{aligned}$$

and

$$\begin{aligned} \Delta^{m} x_{k,l} = \Delta^{m-1}x_{k,l}- \Delta^{m-1}x_{k,l+1}- \Delta^{m-1}x_{k+1,l}+ \Delta^{m-1}x_{k+1,l+1}. \end{aligned}$$

In [15], Kadak and Mohiuddine extended the notion of an almost convergence and its statistical forms with respect to the difference operator involving the \((p, q)\)-gamma function. They estimated the rate of almost convergence of approximating linear operators by means of the modulus of continuity and derived some Voronovskaja type results by using the generalized Meyer–König and Zeller operators. Mohiuddine et al. [21] defined and studied statistical τ-convergence, statistical τ-Cauchy and \(S^{*}(\tau)\)-convergence of double sequences in a locally solid Riesz space. Quite recently, Mursaleen and Mohiuddine [28, 29] studied the notion of ideal convergence of double sequences in probabilistic normed spaces and also gave the concept of statistically convergent and statistically Cauchy double sequences in intuitionistic fuzzy normed spaces. For more details also see [22, 23, 30, 38].

In [33], Orlicz introduced functions, now called Orlicz functions, and constructed the sequence space \(\ell_{M}\). An Orlicz function \(M : [0, \infty) \rightarrow[0, \infty) \) is a continuous, nondecreasing and convex function such that \(M(0) = 0\), \(M(x)>0\) for \(x>0\) and \(M(x) \longrightarrow\infty\) as \(x \longrightarrow\infty \). The idea of an Orlicz function was used by Lindenstrauss and Tzafriri [18] to define the following sequence space:

$$ \ell_{M} = \Biggl\{ x= (x_{k}) \in w : \sum ^{\infty}_{k=1} M \biggl(\frac{ \vert x_{k} \vert }{\rho} \biggr) < \infty \text{ for some } \rho>0 \Biggr\} , $$

which is known as an Orlicz sequence space. The space \(\ell_{M}\) is a Banach space with the norm

$$ \Vert x \Vert = \inf \Biggl\{ \rho> 0 : \sum^{\infty}_{k=1} M \biggl(\frac{ \vert x_{k} \vert }{\rho} \biggr) \leq1 \Biggr\} . $$

A sequence \(\mathcal{M} = (M_{k})\) of Orlicz functions is said to be a Musielak–Orlicz function (see [19, 32]). A Musielak–Orlicz function \(\mathcal{M}=(M_{k})\) is said to satisfy the \(\Delta_{2}\)-condition if there exist constants \(a, K>0\) and a sequence \(c=(c_{k})^{\infty}_{k=1}\in l^{1}_{+}\) (the positive cone of \(l^{1}\)) such that the inequality

$$ M_{k}(2u)\leq K M_{k}(u) + c_{k} $$

holds for all \(k\in\mathbb{N}\) and \(u\in\mathbb{R}^{+}\), whenever \(M_{k}(u)\leq a\). Recently, Esi [3, 4] introduced some new generalized difference sequence spaces using a modulus function. In [5, 6], Esi et al. constructed new spaces of statistically convergent generalized difference sequences via a modulus function. They studied different properties of such sequences and obtained some inclusion relations involving these new difference sequence spaces.

In the middle of 1960s, Gähler [8] developed a satisfactory theory of 2-normed spaces, while that of n-normed spaces can be found in [20]. Since then in the early part of the last century, many researchers studied this concept and acquired various results, see [911]. For more details about sequence spaces and n-normed spaces, see, for instance, [17, 26, 27, 31, 3436, 41] and references therein.

Let \(A=(a_{mnkl})\) be a four-dimensional infinite matrix of scalars. For all \(m,n\in\mathbb{N}\), the sum

$$ y_{mn}=\sum_{k,l=1,1}^{\infty,\infty}a_{mnkl}x_{kl} $$

is called the A-mean of the double sequence \((x_{kl})\). A double sequence \((x_{kl})\) is said to be A-summable to the limit L if the A-mean exists for all m, n in the sense of Pringsheim’s convergence:

$$ P\text{-}\lim_{p,q\to\infty}\sum_{k,l=1,1}^{p,q}a_{mnkl}x_{kl}=y _{mn}\quad \text{and}\quad P\text{-}\lim_{m,n\to\infty}y_{mn}=L. $$

Theorem 1.1

(Robison [37] and Hamilton [12])

The four-dimensional matrix A is RH-regular if and only if

(RH1):

\(P\text{-} \lim_{m,n}a_{mnkl}=\) for each k and l,

(RH2):

\(P\text{-} \lim_{m,n}\sum_{k,l}|a_{mnkl}|=1\),

(RH3):

\(P\text{-} \lim_{m,n}\sum_{k}|a_{mnkl}|=0\) for each l,

(RH4):

\(P\text{-} \lim_{m,n}\sum_{l}|a_{mnkl}|=0\) for each k,

(RH5):

\(\sum_{k,l}|a_{mnkl}|<\infty\) for all \(m,n\in\mathbb{N}\).

Let \(P_{rs}\) denote the class of all subsets of \(\mathbb{N}\times \mathbb{N}\) not containing more than \((r,s)\) elements and let \(\{\phi_{mn}\}\) denote a nondecreasing double sequence of positive real numbers such that \((m,n)\phi_{m+1,n+1}\leq(m+1),(n+1)\phi_{m,n}\) for all \((m,n)\in\mathbb{N}\times\mathbb{N}\). Let \(w''(X)\) and \(l_{\infty}''(X)\) denote the spaces of all double and all double bounded sequences, respectively, with elements in X, where \((X,q)\) denotes a seminormed space. By \(\overline{\theta}=(\theta, \theta,\theta,\dots)\) we denote the zero sequence, where θ is the zero element of X.

Let \(\mathcal{M} = (M_{kl})\) be a Musielak–Orlicz function, \(p=(p_{kl})\) a bounded double sequence of positive real numbers, and \(u=(u_{kl})\) a double sequence of positive real numbers. Let \((X, \|\cdot,\ldots,\cdot\|)\) be an n-normed space and let \(A=(a_{mnkl})\) be a nonnegative four-dimensional bounded-regular matrix. Now we define the following classes of sequences:

$$\begin{aligned}& l_{\infty}^{\prime\prime } \bigl[\mathcal{M},A,\Delta^{m},u,p,q, \Vert \cdot,\ldots, \cdot \Vert \bigr] \\& \quad = \Biggl\{ x=(x_{kl})\in w''(X): \sup _{k,l\geq1} \sum^{\infty,\infty}_{k,l =1,1} a_{mnkl} M_{kl} \biggl[q_{kl} \biggl( \biggl\Vert \frac{u_{kl} \Delta^{m} x_{kl}}{\varrho},z_{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} < \infty, \\& \qquad \text{for some } \varrho>0 \Biggr\} \end{aligned}$$

and

$$\begin{aligned}& m^{\prime\prime } \bigl[\mathcal{M},A,\Delta^{m},u,\phi,p,q, \Vert \cdot,\ldots, \cdot \Vert \bigr] \\& \quad = \biggl\{ x=(x_{kl})\in w''(X): \sup _{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum_{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho}, z_{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \qquad < \infty, \text{for some } \varrho>0 \biggr\} . \end{aligned}$$

Throughout the paper, we shall use the following inequality: If \(0\leq p_{kl}\leq\sup p_{kl}=H\), \(K= \max(1,2^{H-1})\) then

$$ \vert a_{kl}+b_{kl} \vert ^{p_{kl}}\leq K \bigl( \vert a_{kl} \vert ^{p_{kl}}+ \vert b_{kl} \vert ^{p_{kl}} \bigr) $$
(1.1)

for all \(k,l \in\mathbb{N}\) and \(a_{kl}, b_{kl}\in\mathbb{C}\). Also \(|a|^{p_{kl}}\leq\max(1,|a|^{H})\) for all \(a\in\mathbb{C}\).

The main aim of this paper is to study some classes of seminormed double sequences of a four-dimensional matrix by using a Musielak–Orlicz function. Some interesting topological properties and interrelations are also examined.

2 Main results

Theorem 2.1

Let \(\mathcal{M}=(M_{kl})\) be a Musielak–Orlicz function, \(p=(p_{kl})\) a double sequence of positive real numbers, and \(u=(u_{kl})\) a double sequence of positive real numbers. Then the sequence spaces \(m^{\prime\prime }[\mathcal{M},A,\Delta^{m},u,\phi,p,q,\|\cdot,\ldots ,\cdot \|]\) and \(l_{\infty}^{\prime\prime }[\mathcal{M},A,\Delta^{m},u,p,q,\| \cdot, \ldots,\cdot\|]\) are linear spaces over the complex field \(\mathbb{C}\).

Proof

We shall prove the assertion for \(m^{\prime\prime }[\mathcal{M},A,\Delta^{m},u, \phi,p,q,\|\cdot,\ldots,\cdot\|]\) only. Let \(x=(x_{kl})\) and \(y=(y_{kl}) \in m^{\prime\prime }[\mathcal{M},A,\Delta^{m},u,p,q,\|\cdot ,\ldots ,\cdot\|]\) and \(\alpha, \beta\in\mathbb{C}\). Then there exist positive real numbers \(\varrho_{1}\), \(\varrho_{2}>0\) such that

$$ \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho_{1}},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} < \infty $$

and

$$ \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} y_{kl}}{\varrho_{2}},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} < \infty. $$

Define \(\varrho_{3} = \max(2 |\alpha| \varrho_{1}, 2 |\beta| \varrho_{2})\). Since \(\|\cdot,\ldots,\cdot\|\) is an n-norm on X and \((M_{kl})\) is a nondecreasing and convex function, by using inequality (1.1), we have

$$\begin{aligned}& \sup_{r,s\geq1, \sigma\in P_{r,s}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} (\alpha x_{kl} + \beta y_{kl})}{\varrho_{3}},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \quad \leq \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} \alpha x_{kl}}{\varrho_{3}},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \\& \qquad {}+q_{kl} \biggl( \biggl\Vert \frac{u_{kl} \Delta^{m} \beta y_{kl}}{\varrho _{3}},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \quad \leq K \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} \frac{1}{2^{pkl}}a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u_{kl} \Delta^{m} \alpha x_{kl}}{\varrho_{1}},z _{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \qquad {}+ K \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma}\frac{1}{2^{pkl}} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u_{kl} \Delta^{m} \beta y_{kl}}{\varrho_{2}},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \quad \leq K \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m}x_{kl}}{\varrho_{1}},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \qquad {}+ K \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} y_{kl}}{\varrho_{2}},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \quad < \infty. \end{aligned}$$

Thus, \(\alpha x + \beta y \in m^{\prime\prime }[\mathcal{M},A,\Delta^{m},u, \phi,p,q,\|\cdot,\ldots,\cdot\|]\). Hence, \(m^{\prime\prime }[\mathcal{M},A, \Delta^{m},u,p,q,\|\cdot,\ldots,\cdot\|]\) is a linear space. □

Theorem 2.2

Let \(\mathcal{M}=(M_{kl})\) be a Musielak–Orlicz function, \(p=(p_{kl})\) a bounded sequence of positive real numbers, and \(u=(u_{kl})\) a sequence of positive real numbers. Then the space \(m^{\prime\prime }[\mathcal {M},A,\Delta ^{m},u,\phi,p,q,\|\cdot,\ldots,\cdot\|]\) is a seminormed space with the seminorm g defined by

$$\begin{aligned}& g(x)= \inf \biggl\{ (\varrho)^{\frac{p_{kl}}{G}}>0: \\& \hphantom{g(x)=}{} \biggl( \sup_{r,s\geq1, \sigma\in P_{r,s}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \biggr)^{\frac{1}{G}}\leq1 \biggr\} , \end{aligned}$$

where \(G= \max\{1, \sup p_{kl}<\infty\}\).

Proof

Clearly, \(g(x)\geq0\) for \(x=(x_{kl}) \in m^{\prime\prime }[\mathcal {M},A,\Delta ^{m},u,\phi,p,q,\|\cdot,\ldots,\cdot\|]\). Since \(M_{kl}(0)=0\), we get \(g(\overline{\theta})=0\). Let \(\varrho_{1}>0\) and \(\varrho_{2}>0\) be such that

$$ \biggl( \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho_{1}},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \biggr)^{\frac{1}{G}}\leq1 $$

and

$$ \biggl( \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho_{2}},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \biggr)^{\frac{1}{G}}\leq1. $$

Let \(\varrho= \varrho_{1}+\varrho_{2}\). Then we have

$$\begin{aligned}& \biggl( \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} (x_{kl}+y_{kl})}{\varrho},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \biggr)^{\frac{1}{G}} \\& \quad = \biggl( \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} (x_{kl}+y_{kl})}{\varrho_{1}+\varrho_{2}},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \biggr)^{\frac{1}{G}} \\& \quad \leq \biggl( \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} \biggl\{ \biggl(\frac{\varrho}{\varrho _{1}+\varrho _{2}} \biggr) a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u_{kl} \Delta^{m} x_{kl}}{\varrho_{1}},z_{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \qquad {}+ \biggl(\frac{\varrho}{\varrho_{1}+\varrho_{2}} \biggr) a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u_{kl} \Delta^{m} y_{kl}}{\varrho_{2}},z _{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \biggr\} \biggr)^{ \frac{1}{G}} \\& \quad \leq \biggl(\frac{\varrho}{\varrho_{1}+\varrho_{2}} \biggr) \biggl( \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum_{k,l \in\sigma}a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho_{1}},z_{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \biggr)^{\frac{1}{G}} \\& \qquad {}+ \biggl(\frac{\varrho}{\varrho_{1}+\varrho_{2}} \biggr) \biggl( \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum_{k,l \in\sigma}a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} y_{kl}}{\varrho_{2}},z_{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \biggr)^{\frac{1}{G}} \\& \quad \leq 1. \end{aligned}$$

Since \(\varrho's\) are nonnegative, we have

$$\begin{aligned}& g(x + y) \\& \quad = \inf \biggl\{ (\varrho)^{\frac{p_{kl}}{G}}>0 : \\& \qquad {} \biggl( \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u_{kl} \Delta^{m} (x_{kl} + y_{kl})}{\varrho},z_{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \biggr)^{\frac{1}{G}} \leq1 \biggr\} \\& \quad \leq \inf \biggl\{ (\varrho_{1})^{\frac{p_{kl}}{G}}>0 : \\& \qquad {} \biggl( \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u_{kl} \Delta^{m} x_{kl}}{\varrho_{1}}, z_{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \biggr)^{\frac{1}{G}} \leq1 \biggr\} \\& \qquad {}+ \inf \biggl\{ (\varrho_{2})^{\frac{p_{kl}}{G}}>0 : \\& \qquad {} \biggl( \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u_{kl} \Delta^{m} y_{kl}}{\varrho_{2}}, z_{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \biggr)^{\frac{1}{G}} \leq1 \biggr\} \\& \quad = g(x) + g(y). \end{aligned}$$

Thus, \(g(x + y) \le g(x) + g(y)\).

Finally, we need to prove that the scalar multiplication is continuous. Let μ be any complex number. By definition,

$$\begin{aligned}& g(\mu x) \\& \quad = \inf \biggl\{ (\varrho)^{\frac{p_{kl}}{G}}>0: \\& \qquad {} \biggl( \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{ \mu u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \biggr)^{\frac{1}{G}} \leq1 \biggr\} \\& \quad = \inf \biggl\{ \bigl( \vert \mu \vert a \bigr)^{\frac{p_{kl}}{G}}>0: \\& \qquad {} \biggl( \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u_{kl}\Delta ^{m}x_{kl}}{a},z_{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \biggr)^{ \frac{1}{G}} \leq1 \biggr\} \\& \quad = \vert \mu \vert \inf \biggl\{ (a)^{\frac{p_{kl}}{G}}>0: \\& \qquad {} \biggl( \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{ u_{kl} \Delta^{m}x_{kl}}{a},z_{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \biggr)^{\frac{1}{G}} \leq1, \\& \qquad {} \text{where } a= \frac{\varrho}{ \vert \mu \vert } \biggr\} \\& \quad = \vert \mu \vert g(x). \end{aligned}$$

Thus, the scalar multiplication is continuous. The proof is complete. □

Proposition 2.3

For any Musielak–Orlicz function \(\mathcal{M}=(M_{kl})\), let \(p=(p_{kl})\) be a bounded sequence of positive real numbers and \(u=(u_{kl})\) a sequence of positive real numbers. Then the space \(l^{\prime\prime }_{\infty}[\mathcal{M},A,\Delta^{m},u,p,q,\|\cdot,\ldots, \cdot\|]\) is a seminormed space, with a seminorm given by

$$ g(x)= \inf \Biggl\{ (\varrho)^{\frac{p_{kl}}{G}}>0: \sup_{r,s\geq1} \sum _{k,l =1,1}^{\infty, \infty} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u_{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}}\leq1 \Biggr\} . $$

Theorem 2.4

Let \(\mathcal{M}=(M_{kl})\) be a Musielak–Orlicz function. Then

$$ m^{\prime\prime } \bigl[\mathcal{M},A,\Delta^{m},u, \phi^{*},p,q, \Vert \cdot,\ldots, \cdot \Vert \bigr] \subset m^{\prime\prime } \bigl[ \mathcal{M},A,\Delta^{m},u,\phi ^{**},p,q, \Vert \cdot, \ldots,\cdot \Vert \bigr] $$

if and only if \(\sup_{r,s\geq1} \frac{\phi_{rs}^{*}}{\phi_{rs}^{**}} < \infty\) for all \(r,s \in\mathbb{N}\).

Proof

Let \(x \in m^{\prime\prime }[\mathcal{M},A,\Delta^{m},u,\phi^{*},p,q,\| \cdot, \ldots,\cdot\|]\) and \(S = \sup_{r,s\geq1} \frac{\phi_{rs}^{*}}{\phi_{rs}^{**}} < \infty\). Then, we obtain

$$\begin{aligned}& \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi^{**}_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \quad \leq \sup_{r,s\geq1} \frac{\phi_{rs}^{*}}{\phi_{rs}^{**}} \sup _{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi^{*}_{rs}} \sum_{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \quad = S \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi^{*}_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \quad < \infty. \end{aligned}$$

Thus, \(x \in m^{\prime\prime }[\mathcal{M},A,\Delta^{m},u,\phi^{**},p,q,\| \cdot ,\ldots,\cdot\|]\).

Conversely, suppose that

$$ m^{\prime\prime } \bigl[\mathcal{M},A,\Delta^{m},u, \phi^{*},p,q, \Vert \cdot,\ldots, \cdot \Vert \bigr] \subset m^{\prime\prime } \bigl[ \mathcal{M},A,\Delta^{m},u,\phi ^{**},p,q, \Vert \cdot, \ldots,\cdot \Vert \bigr] $$

and \(x \in m^{\prime\prime }[\mathcal{M},A,\Delta^{m},u,\phi^{*},p,q,\| \cdot, \ldots,\cdot\|]\). Then there exists a \(\varrho> 0\) such that

$$ \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi^{*}_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} < \epsilon $$

for every \(\epsilon> 0\). Suppose that \(\sup_{r,s\geq1} \frac{\phi_{rs}^{*}}{\phi_{rs}^{**}} = \infty\), then there exists a sequence of numbers \((r_{i}, s_{j})\) such that \(\lim_{i,j\rightarrow\infty} \frac{\phi_{r_{i}s_{j}}^{*}}{ \phi_{r_{i}s_{j}}^{**}} = \infty\). Hence, we have

$$\begin{aligned}& \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi^{**}_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \quad \geq \sup_{i,j\geq1} \frac{\phi_{r_{i}s_{j}}^{*}}{\phi_{r_{i}s_{j}}^{**}} \sup _{r,s\geq1, \sigma\in P_{r_{i}s_{j}}} \frac{1}{\phi^{*}_{r_{i}s _{j}}} \sum_{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[q_{kl} \biggl( \biggl\vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1},\dots,z_{n-1} \biggr\vert \biggr) \biggr]^{p_{kl}} \\& \quad = \infty. \end{aligned}$$

Therefore, \(x \notin m^{\prime\prime }[\mathcal{M},A,\Delta^{m},u,\phi ^{**},p,q,\| \cdot,\ldots,\cdot\|]\), which is a contradiction. This completes the proof. □

Theorem 2.5

Let \(\mathcal{M}=(M_{kl})\) be any Musielak–Orlicz function. Then

$$ m^{\prime\prime } \bigl[\mathcal{M},A,\Delta^{m},u, \phi^{*},p,q, \Vert \cdot,\ldots, \cdot \Vert \bigr] = m^{\prime\prime } \bigl[\mathcal{M},A, \Delta^{m},u, \phi^{**},p,q, \Vert \cdot, \ldots,\cdot \Vert \bigr] $$

if and only if \(\sup_{r,s\geq1} \frac{\phi_{rs}^{*}}{\phi_{rs}^{**}} < \infty\) and \(\sup_{r,s\geq1} \frac{\phi_{rs}^{**}}{\phi_{rs}^{*}} <\infty\) for all \(r,s \in\mathbb{N}\).

Proof

We omit the details since the proof is easy. □

Theorem 2.6

For Musielak–Orlicz functions \(\mathcal{M^{\prime}}=(M^{\prime }_{kl})\) and \(\mathcal{M^{\prime\prime }}=(M^{\prime\prime }_{kl})\) which satisfy the \(\Delta_{2}\)-condition, the following relations hold:

  1. (i)

    \(m^{\prime\prime } [\mathcal{M},A,\Delta^{m},u,\phi,p,q,\| \cdot, \ldots,\cdot\|] \subset m^{\prime\prime }[\mathcal{M^{\prime}}\circ \mathcal{M^{\prime\prime }},A,\Delta^{m},u,\phi,p,q,\|\cdot,\ldots,\cdot \|]\)

  2. (ii)

    \(m^{\prime\prime } [\mathcal{M},A, \Delta^{m},u,\phi,p,q, \Vert \cdot,\ldots ,\cdot \Vert ] \cap m^{\prime\prime } [ \mathcal{M^{\prime\prime }},A, \Delta^{m},u,\phi,p,q, \Vert \cdot, \ldots,\cdot \Vert ] \subset m^{\prime\prime } [\mathcal{M^{\prime}}+ \mathcal{M^{\prime\prime }},A, \Delta^{m},u,\phi,p,q, \Vert \cdot, \ldots,\cdot \Vert ]\).

Proof

(i) Let \(x=(x_{kl}) \in m^{\prime\prime }[\mathcal{M},A,\Delta^{m},u,\phi ,p,q,\| \cdot,\ldots,\cdot\|]\). Then there exists a positive real number \(\varrho> 0\) such that

$$ \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} < \infty. $$

Since \(\mathcal{M^{\prime}}=(M^{\prime}_{kl})\) is a continuous function, we can find a real number δ, \(0\le t <\delta\), such that \(M^{\prime}_{kl}(t)< \epsilon\). Let \(y_{kl}= M^{\prime}_{kl} [q_{kl} ( \| \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1},\dots,z_{n-1} \| ) ]\). Hence we can write

$$ \sum_{k,l \in\sigma} a_{mnkl} M^{\prime\prime }_{kl} [ y_{kl} ]^{p_{kl}}= \sum^{\infty}_{y_{kl}\leq\delta} a_{mnkl} M^{\prime\prime }_{kl} [ y_{kl} ]^{p_{kl}} + \sum^{\infty}_{y_{kl}>\delta} a_{mnkl} M^{\prime\prime }_{kl} [ y_{kl} ]^{p_{kl}}, $$

and thus

$$\begin{aligned} \sum^{\infty}_{y_{kl}\leq\delta} a_{mnkl} M^{\prime\prime }_{kl} [ y_{kl} ]^{p_{kl}} \leq& \max \bigl\{ 1,M^{\prime\prime }_{kl}(1)^{H} \bigr\} \sum ^{\infty}_{y_{kl}\leq\delta} a_{mnkl} [ y_{kl} ]^{p_{kl}}. \end{aligned}$$
(2.1)

For \(y_{kl}>\delta\), we use the fact that \(y_{kl}<\frac{y_{kl}}{ \delta}<1+\frac{y_{kl}}{\delta}\). By using the definition of \(\mathcal{M^{\prime\prime }}=(M^{\prime\prime }_{kl})\), we have

$$ M^{\prime\prime }_{kl} ( y_{kl} )< M^{\prime\prime }_{kl} \biggl(1+ \frac{y_{kl}}{ \delta} \biggr)< \frac{1}{2}M^{\prime\prime }_{kl}(2)+ \frac{1}{2} \biggl(\frac {2y_{kl}}{ \delta} \biggr). $$

Since \(\mathcal{M^{\prime\prime }}=(M^{\prime\prime }_{kl})\) satisfies the \(\Delta_{2}\)-condition and \(\frac{y_{kl}}{\delta}>1\), there exists a \(T>0\) such that

$$ M^{\prime\prime }_{kl}(y_{kl})< \frac{1}{2} T \frac{y_{kl}}{\delta} M^{\prime\prime }_{kl}(2)+ \frac{1}{2} T \frac{y_{kl}}{\delta} M^{\prime\prime }_{kl}(2)= T \frac{y_{kl}}{ \delta} M^{\prime\prime }_{kl}(2). $$

Therefore, we have

$$\begin{aligned} \sum^{\infty}_{y_{kl}>\delta} a_{mnkl} \bigl[M^{\prime\prime }_{kl} (y_{kl}) \bigr]^{p _{kl}} \leq& \max \biggl\{ 1, \biggl( \frac{T M^{\prime\prime }_{kl}(2)}{\delta} \biggr)^{H} \biggr\} \sum^{\infty}_{y_{kl}>\delta} a_{mnkl} [y_{kl} ]^{p_{kl}}. \end{aligned}$$
(2.2)

Hence, by inequalities (2.1) and (2.2), we have

$$\begin{aligned}& \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} \bigl(M^{\prime}_{kl} \circ M^{\prime\prime }_{kl}\bigr) \biggl[ q _{kl} \biggl( \biggl\Vert \frac{u_{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \quad = \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} \bigl[ M^{\prime\prime }_{kl}( y_{kl}) \bigr]^{p_{kl}} \\& \quad \leq \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}}K \sum _{y_{kl}\leq\delta} a_{mnkl}( y_{kl})^{p_{kl}} \\& \qquad {}+ \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} G \sum _{y_{kl}>\delta} a_{mnkl} ( y_{kl})^{p_{kl}}, \end{aligned}$$

where \(K= \max\{1,M^{\prime\prime }_{kl}(1)^{H}\}\) and \(G= \max\{1, (\frac{TM ^{\prime\prime }_{kl}(2)}{\delta})^{H}\}\).

Hence, \(m^{\prime\prime } [\mathcal{M^{\prime}},A,\Delta^{m},u,\phi ,p,q,\|\cdot, \ldots,\cdot\|] \subset m^{\prime\prime }[\mathcal{M^{\prime}}\circ \mathcal{M^{\prime\prime }},A,\Delta^{m},u,\phi,p,q,\|\cdot,\ldots,\cdot \|]\).

(ii) Let

$$ x=(x_{kl}) \in m^{\prime\prime } \bigl[\mathcal{M},A, \Delta^{m},u,\phi,p,q, \Vert \cdot, \ldots,\cdot \Vert \bigr]\cap m^{\prime\prime } \bigl[\mathcal{M^{\prime\prime }},A,\Delta^{m},u, \phi,p,q, \Vert \cdot,\ldots,\cdot \Vert \bigr]. $$

Then

$$ \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M^{\prime}_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} < \infty \quad \text{for some } \varrho> 0 $$

and

$$ \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M^{\prime\prime }_{kl} \biggl[ q_{kl} \biggl( \biggl\vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \dots,z_{n-1} \biggr\vert \biggr) \biggr]^{p_{kl}} < \infty \quad \text{for some }\varrho> 0. $$

The result follows from the following inequality:

$$\begin{aligned}& \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} \bigl(M^{\prime}_{kl} + M^{\prime\prime }_{kl} \bigr) \biggl[ q _{kl} \biggl( \biggl\Vert \frac{u_{kl} \Delta^{m} x_{kl}}{\varrho},z_{1},\dots,z _{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \quad = \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M^{\prime}_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \qquad {}+ \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M^{\prime\prime }_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \quad \leq K \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M^{\prime}_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \qquad {}+ K \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M^{\prime\prime }_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \quad < \infty, \end{aligned}$$

where \(K=\max\{1, 2^{H-1}\}\). Therefore, \(x=(x_{kl})\in m^{\prime\prime }[\mathcal{M ^{\prime}}+\mathcal{M^{\prime\prime }},A,\Delta^{m},u,\phi,p,q,\|\cdot ,\ldots, \cdot\|]\). □

Theorem 2.7

One has the following inclusions:

$$ \begin{aligned} l_{1}^{\prime\prime } \bigl[\mathcal{M},A, \Delta^{m},u,p,q, \Vert \cdot,\ldots ,\cdot \Vert \bigr] &\subset m^{\prime\prime } \bigl[\mathcal{M},A,\Delta^{m},u,\phi,p,q, \Vert \cdot ,\ldots ,\cdot \Vert \bigr] \\ &\subset l_{\infty}^{\prime\prime } \bigl[\mathcal{M},A, \Delta^{m},u,p,q, \Vert \cdot, \ldots,\cdot \Vert \bigr], \end{aligned} $$

where

$$\begin{aligned}& l_{1}^{\prime\prime } \bigl[\mathcal{M},A,\Delta^{m},u,p,q, \Vert \cdot ,\ldots, \cdot \Vert \bigr] \\& \quad =\Biggl\{ (x_{kl})\in w''(x): \sup _{k,l\geq1} \sum^{\infty,\infty}_{k,l =1,1} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u_{kl} \Delta^{m} x_{kl}}{\varrho},z_{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} < \infty, \\& \qquad \textit{for some } \varrho> 0 \Biggr\} . \end{aligned}$$

Proof

Let \(x=(x_{kl}) \in l_{1}^{\prime\prime }[\mathcal{M},A,\Delta^{m},u,p,q,\| \cdot,\ldots,\cdot\|]\). Then

$$ \sup_{k,l\geq1} \sum^{\infty,\infty}_{k,l =1,1} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u_{kl} \Delta^{m} x_{kl}}{\varrho},z_{1},\ldots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} < \infty \quad \text{for some }\varrho> 0. $$

Since \((\phi_{rs})\) is monotonically increasing, it follows that

$$\begin{aligned}& \frac{1}{\phi_{rs}} \sum_{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \quad \leq \frac{1}{\phi_{11}} \sum_{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \quad \leq \frac{1}{\phi_{11}} \sum^{\infty,\infty}_{k,l=1,1} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u_{kl} \Delta^{m} x_{kl}}{\varrho},z_{1},\dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} \\& \quad < \infty. \end{aligned}$$

Thus, \(x=(x_{kl}) \in m^{\prime\prime }[\mathcal{M},A,\Delta^{m},u,\phi ,p,q,\| \cdot,\ldots,\cdot\|]\), which implies

$$ l_{1}^{\prime\prime } \bigl[\mathcal{M},A,\Delta^{m},u,p,q, \Vert \cdot,\ldots ,\cdot \Vert \bigr] \subset m^{\prime\prime } \bigl[ \mathcal{M},A,\Delta^{m},u,\phi,p,q, \Vert \cdot ,\ldots, \cdot \Vert \bigr]. $$

Further, let \(x=(x_{kl}) \in m^{\prime\prime }[\mathcal{M},A,\Delta ^{m},u,\phi,p,q,\| \cdot,\ldots,\cdot\|]\). Then

$$\begin{aligned}& \sup_{r,s\geq1, \sigma\in P_{rs}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \ldots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} < \infty \quad \text{for some }\varrho> 0 \\& \quad \Longrightarrow\quad \sup_{k,l \in\mathbb{N}\times\mathbb{N}} \frac{1}{\phi_{rs}} \sum _{k,l \in\sigma} a_{mnkl} M_{kl} \biggl[ q_{kl} \biggl( \biggl\Vert \frac{u _{kl} \Delta^{m} x_{kl}}{\varrho},z_{1}, \dots,z_{n-1} \biggr\Vert \biggr) \biggr]^{p_{kl}} < \infty \\& \quad \text{for some }\varrho> 0, \end{aligned}$$

where the cardinality of σ is taken to be 1. And then also

$$ x=(x_{kl}) \in l_{\infty}^{\prime\prime } \bigl[\mathcal{M},A, \Delta^{m},u,p,q, \Vert \cdot,\ldots,\cdot \Vert \bigr]. $$

Therefore,

$$ m^{\prime\prime } \bigl[\mathcal{M},A,\Delta^{m},u,\phi,p,q, \Vert \cdot,\ldots ,\cdot \Vert \bigr] \subset l_{\infty}^{\prime\prime } \bigl[ \mathcal{M},A,\Delta^{m},u,p,q, \Vert \cdot, \ldots,\cdot \Vert \bigr]. $$

 □

References

  1. Başarır, M., Sonalcan, O.: On some double sequence spaces. J. Indian Acad. Math. 21, 193–200 (1999)

    MathSciNet  MATH  Google Scholar 

  2. Bromwich, T.J.: An Introduction to the Theory of Infinite Series. Macmillan Co., New York (1965)

    Google Scholar 

  3. Esi, A.: Some new type generalized difference sequence spaces defined by a modulus. An. Univ. Vest. Timiş., Ser. Mat.-Inform. XLII(2), 27–34 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Esi, A.: On some generalized new type difference sequence spaces defined by a modulus function. Acta Math. Vietnam. 35, 243–252 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Esi, A., Tripathy, B.C.: On some generalized new type difference sequence spaces defined by a modulus function in a seminormed space. Fasc. Math. 40, 15–24 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Esi, A., Tripathy, B.C., Sarma, B.: On some new type generalized difference sequence spaces. Math. Slovaca 57, 1–8 (2007)

    Article  MathSciNet  Google Scholar 

  7. Et, M.: Sequence spaces defined by Orlicz function. J. Anal. 9, 21–28 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Gähler, S.: Linear 2-normietre rume. Math. Nachr. 28, 1–43 (1965)

    Article  Google Scholar 

  9. Gunawan, H.: On n-inner product, n-norms and the Cauchy–Schwartz inequality. Sci. Math. Jpn. 5, 47–54 (2001)

    Google Scholar 

  10. Gunawan, H.: The space of p-summable sequence and its natural n-norm. Bull. Aust. Math. Soc. 6, 137–147 (2001)

    Article  MathSciNet  Google Scholar 

  11. Gunawan, H., Mashadi, M.: On n-normed spaces. Int. J. Math. Math. Sci. 27, 631–639 (2001)

    Article  MathSciNet  Google Scholar 

  12. Hamilton, H.J.: Transformation of multiple sequences. Duke Math. J. 2, 29–60 (1936)

    Article  MathSciNet  Google Scholar 

  13. Hardy, G.H.: On the convergence of certain multiple series. Proc. Camb. Philol. Soc. 19, 86–95 (1917)

    Google Scholar 

  14. Hazarika, B., Esi, A.: On some I-convergent generalized difference lacunary double sequence spaces defined by Orlicz functions. Acta Sci., Technol. 35, 527–537 (2013)

    Article  Google Scholar 

  15. Kadak, U., Mohiuddine, S.A.: Generalized statistically almost convergence based on the difference operator which includes the \((p, q)\)-gamma function and related approximation theorems. Results Math. 73, 9 (2018)

    Article  MathSciNet  Google Scholar 

  16. Kızmaz, H.: On certain sequence spaces. Can. Math. Bull. 24, 169–176 (1981)

    Article  MathSciNet  Google Scholar 

  17. Lindberg, K.: On subspaces of Orlicz sequence spaces. Stud. Math. 45, 47–54 (1973)

    Article  MathSciNet  Google Scholar 

  18. Lindenstrauss, J., Tzafriri, L.: On Orlicz sequence spaces. Isr. J. Math. 10, 379–390 (1971)

    Article  MathSciNet  Google Scholar 

  19. Maligranda, L.: Orlicz Spaces and Interpolation. Seminars in Mathematics, vol. 5. Polish Sci., Warsaw (1989)

    MATH  Google Scholar 

  20. Misiak, A.: n-Inner product spaces. Math. Nachr. 140, 299–319 (1989)

    Article  MathSciNet  Google Scholar 

  21. Mohiuddine, S.A., Alotaibi, A., Mursaleen, M.: Statistical convergence of double sequences in locally solid Riesz spaces. Abstr. Appl. Anal. 2012, Article ID 719729 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Mohiuddine, S.A., Hazarika, B.: Some classes of ideal convergent sequences and generalized difference matrix operator. Filomat 31, 1827–1834 (2017)

    Article  MathSciNet  Google Scholar 

  23. Mohiuddine, S.A., Sharma, S.K., Abuzaid, D.A.: Some seminormed difference sequence spaces over n-normed spaces defined by a Musielak–Orlicz function of order \((\alpha, \beta)\). J. Funct. Spaces 2018, Article ID 4312817 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Móricz, F.: Extension of the spaces c and \(c_{0}\) from single to double sequences. Acta Math. Hung. 57, 129–136 (1991)

    Article  Google Scholar 

  25. Móricz, F., Rhoades, B.E.: Almost convergence of double sequences and strong regularity of summability matrices. Math. Proc. Camb. Philos. Soc. 104, 283–294 (1988)

    Article  MathSciNet  Google Scholar 

  26. Mursaleen, M.: Almost strongly regular matrices and a core theorem for double sequences. J. Math. Anal. Appl. 293, 523–531 (2004)

    Article  MathSciNet  Google Scholar 

  27. Mursaleen, M., Edely, O.H.H.: Statistical convergence of double sequences. J. Math. Anal. Appl. 288, 223–231 (2003)

    Article  MathSciNet  Google Scholar 

  28. Mursaleen, M., Mohiuddine, S.A.: Statistical convergence of double sequences in intuitionistic fuzzy normed spaces. Chaos Solitons Fractals 41, 2414–2421 (2009)

    Article  MathSciNet  Google Scholar 

  29. Mursaleen, M., Mohiuddine, S.A.: On ideal convergence of double sequences in probabilistic normed spaces. Math. Rep. 12, 359–371 (2010)

    MathSciNet  MATH  Google Scholar 

  30. Mursaleen, M., Mohiuddine, S.A., Edely, O.H.H.: On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces. Comput. Math. Appl. 59, 603–611 (2010)

    Article  MathSciNet  Google Scholar 

  31. Mursaleen, M., Raj, K.: Sliding window convergence and lacunary statistical convergence for measurable functions via modulus function. Bol. Soc. Parana. Mat. 36, 161–174 (2018)

    Article  MathSciNet  Google Scholar 

  32. Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034 (1983)

    MATH  Google Scholar 

  33. Orlicz, W.: Über Räume \((L_{M})\). Bull. Int. Acad. Polon. Sci., A, 93–107 (1936)

  34. Raj, K., Azimhan, A., Ashirbayev, K.: Some generalized difference sequence spaces of ideal convergence and Orlicz functions. J. Comput. Anal. Appl. 22, 52–63 (2017)

    MathSciNet  Google Scholar 

  35. Raj, K., Choudhary, A., Sharma, C.: Almost strongly Orlicz double sequence spaces of regular matrices and their applications to statistical convergence. Asian-Eur. J. Math. 5, 1850073 (2018). https://doi.org/10.1142/S1793557118500730

    Article  Google Scholar 

  36. Raj, K., Sharma, C.: Applications of strongly convergent sequences to Fourier series by means of modulus functions. Acta Math. Hung. 150, 396–411 (2016)

    Article  MathSciNet  Google Scholar 

  37. Robison, G.M.: Divergent double sequences and series. Trans. Am. Math. Soc. 28, 50–73 (1926)

    Article  MathSciNet  Google Scholar 

  38. Savas, E., Mohiuddine, S.A.: λ̄-Statistically convergent double sequences in probabilistic normed spaces. Math. Slovaca 62, 99–108 (2012)

    Article  MathSciNet  Google Scholar 

  39. Tripathy, B.C.: Statistically convergent double sequences. Tamkang J. Math. 34, 231–237 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Tripathy, B.C.: Generalized difference paranormed statistically convergent sequences defined by Orlicz function in a locally convex spaces. Soochow J. Math. 30, 431–446 (2004)

    MathSciNet  MATH  Google Scholar 

  41. Yurdagül, A., Esi, A.: Some generalized difference sequence spaces defined by Orlicz function in a seminormed space. Int. J. Open Probl. Comput. Sci. Math. 3, 201–210 (2010)

    Google Scholar 

Download references

Funding

The corresponding author thanks the Council of Scientific and Industrial Research (CSIR), India for partial support under Grant No. 25(0288)/18/EMR-II, dated 24/05/2018.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kuldip Raj.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, R., Sharma, C. & Raj, K. Seminormed double sequence spaces of four-dimensional matrix and Musielak–Orlicz function. J Inequal Appl 2018, 285 (2018). https://doi.org/10.1186/s13660-018-1877-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-018-1877-6

MSC

Keywords