- Research
- Open access
- Published:
Noninstantaneous impulsive inequalities via conformable fractional calculus
Journal of Inequalities and Applications volume 2018, Article number: 261 (2018)
Abstract
We establish some new noninstantaneous impulsive inequalities using the conformable fractional calculus.
1 Introduction and preliminaries
The subject of fractional differential equations has evolved as an interesting and important field of research in view of numerous applications in physics, mechanics, chemistry, engineering (like traffic, transportation, logistic, etc.), and so forth [1–3]. The tools of fractional calculus play a key role in improving the mathematical modeling of many real-world processes based on classical calculus. For some recent development on the topic, see [4–12] and the references therein.
Various types of fractional derivatives were introduced: Riemann–Liouville, Caputo, Hadamard, Erdélyi–Kober, Grünwald–Letnikov, Marchaud, and Riesz, to just name a few. Commonly, all they are defined as integrals with different singular kernels, that is, they have a nonlocal structure. Due to this fact, there are many inconsistencies of the existing fractional derivatives with classical derivative. Thus they do not obey the familiar product rule, the quotient rule for two functions, and the chain rule. Also, the fractional derivatives do not have a corresponding Rolle’s theorem or a corresponding mean value theorem.
On the other hand, a recently introduced definition of the so-called conformable fractional derivative involves a limit instead of an integral; see [13, 14]. This local definition enables us to prove many properties analogous to those of integer-order derivatives. The authors in [14] showed that the conformable fractional derivative obeys the product and quotient rules and has results similar to the Rolle theorem and the mean value theorem in classical calculus.
For recent works on conformable derivatives, we refer to [15–19] and the references therein.
Let us recall the definition of the conformable fractional derivative and integral.
Definition 1.1
Let \(0<\alpha\le1\). The conformable fractional derivative starting from a point ϕ of a function \(f: [\phi,\infty)\to{\mathbb {R}}\) is defined by
and \({}_{\phi}D^{\alpha}f(\phi)=\lim_{t\to\phi^{+}}{}_{\phi}D^{\alpha}f(t)\).
Note that if f is differentiable, then
Definition 1.2
Let \(0<\alpha\le1\). The conformable fractional integral of a function \(f: [\phi,\infty)\to{\mathbb {R}}\) from a point ϕ is defined by
The impulsive differential equations have been used to describe processes that have sudden changes in their states at certain moments. Many mathematical models in physical phenomena that have short-term perturbations at fixed impulse points \(t_{k}\), \(k=1,2,3,\ldots\) , caused by external interventions during their evolution appeared in population dynamics, biotechnology processes, chemistry, physics, engineering, and medicine; see [20–22]. In [23, 24], the authors introduced a new class of noninstantaneous impulsive differential equations with initial conditions to describe some certain dynamic changes of evolution processes in the pharmacotherapy. This kind of impulsive differential equations can be distinguished from the usual one as the changing processes containing no ordinary or fractional derivatives of their states work over intervals \((t_{k},s_{k}]\), whereas the usual does at points \(t_{k}\), \(k=1,2,3,\ldots\) . There are some papers on existence and stability theory of this kind of impulsive ordinary or fractional differential equations [25–36]. To the best of our knowledge, there is no literature on noninstantaneous impulsive inequalities. The main goal of the paper is to establish some new noninstantaneous impulsive inequalities using the conformable fractional calculus. The main results are presented in Sect. 2. In Sect. 3, the maximum principle and boundedness of solutions for noninstantaneous impulse problems are illustrated.
2 Main results
Assume that the independent variable t is the time defined on the half-line \({\mathbb {R}}_{+}=[0,\infty)\). Let \(\{t_{i}\}_{i=1}^{\infty}\) and \(\{s_{i}\}_{i=0}^{\infty}\) be two increasing sequences such that
for \(i=1,2,\ldots\) and \(\lim_{k\to\infty}t_{k}=\lim_{k\to\infty }s_{k}=\infty\). In addition, we define subsets of \({\mathbb {R}}_{+}\) by \(U_{s_{k}}=\bigcup_{k=0}^{\infty}(s_{k},t_{k+1}]\), \(U_{t_{k}}=\bigcup_{k=1}^{\infty}(t_{k},s_{k}]\) and \(U=U_{s_{k}}\cup U_{t_{k}}\). Note that \(U\cup\{0\}={\mathbb {R}}_{+}\). Set \(PC(U_{s_{k}}, {\mathbb {R}})\) = {\(x : U_{s_{k}}\rightarrow{\mathbb {R}} ; x(t)\) is continuous on \(U_{s_{k}}\), and \(x(s_{k}^{+})\) exists for \(k=0,1, 2, \ldots\)}, \(PC(U_{t_{k}}, {\mathbb {R}})\) = {\(x : U_{t_{k}}\rightarrow{\mathbb {R}} \); \(x(t)\) is continuous for \(t\in U_{t_{k}}\), and \(x(t_{k}^{+})\) exists for \(k=1, 2, 3,\ldots\)}, \(PC^{\alpha}_{s_{k}}(U_{s_{k}}, \mathbb{R})\) = {\(x\in PC(U_{s_{k}}, \mathbb {R}) : {}_{s_{k}}D^{\alpha}x(t)\) is continuous everywhere for \(t\in U_{s_{k}}\), and \({}_{s_{k}}D^{\alpha}x(s_{k}^{+})\) exists for \(k=0,1, 2, \ldots\)}, \(PC^{\alpha}_{t_{k}}(U_{t_{k}}, \mathbb{R})\) = {\(x\in PC(U_{t_{k}}, \mathbb{R}) : {}_{t_{k}}I^{\alpha}x(t)\) is continuous everywhere for all \(t\in U_{t_{k}}\), and \({}_{t_{k}}I^{\alpha}x(t_{k}^{+})\) exists for \(k=1, 2, 3, \ldots\)}, and \(PC^{\alpha}(U,\mathbb {R})=PC^{\alpha}_{s_{k}}(U_{s_{k}}, \mathbb{R})\cup PC^{\alpha }_{t_{k}}(U_{t_{k}}, \mathbb{R})\).
Let the maximums of impulsive points less than or equal to t be defined by
In addition, we define
Note that
and
where \(m< n\) are positive integers.
Throughout this paper, we assume that the unknown function \(u\in PC^{\alpha}(U,\mathbb{R})\) is left-continuous at \(s_{k}\) and \(t_{k}\) (\(k=1,2,3,\ldots\)). Now, we are in the position to establish noninstantaneous impulsive differential inequalities.
Theorem 2.1
Let \(b_{k}\), \(c_{k}\), \(d_{k}\) be given constants such that \(b_{k},c_{k}\geq0\) and \(d_{k}>0\), \(k=1,2,3,\ldots\) . Suppose that \(p, q\in PC(U_{s_{k}}, {\mathbb {R}})\) and
Then
and
Proof
For \(t\in(s_{0},t_{1}]\), the conformable fractional differential inequality can be written as
By taking the conformable fractional integral of order α from \(s_{0}\) to \(t\in(s_{0},t_{1}]\),
we obtain
which implies that (2.5) holds for \(k=0\).
For \(t\in(t_{1},s_{1}]\), we define the function
Note that \(z(t_{1})=0\) and
Then, taking the derivative with respect to t, we have
Multiplying this inequality by the integrating factor \(e^{-d_{1}\frac{(t-t_{1})^{\alpha}}{\alpha}}\), we get
which implies that
By (2.7) with \(t=t_{1}\) we have
This shows that the bound in (2.6) is true for \(k=1\).
Now, we assume that inequality (2.5) holds for \(t\in(s_{n}, t_{n+1}]\), \(n>0\). By mathematical induction we will show that (2.6) is true for \(t\in(t_{n+1}, s_{n+1}]\). Let
Then \(w(t_{n+1})=0\) and \(u(t)\leq c_{n+1}u(t_{n+1}^{-})+d_{n+1}w(t)+b_{n+1}\). Using the above method, we have
which leads to
Substituting the bound of \(w(t)\) and inequality (2.5) with \(t=t_{n+1}\), it follows that
by using formula (2.2). Therefore (2.6) is satisfied for \(t\in(t_{n+1}, s_{n+1}]\).
Finally, we suppose that estimate (2.6) is fulfilled for \(t\in(t_{n},s_{n}] \), where \(n>1\). Next, we will prove that inequality (2.5) holds for \((s_{n}, t_{n+1}]\). By using the above method, we get the inequality
Using (2.6) with \(t=s_{n}\) and applying (2.3), we obtain
Therefore inequality (2.5) is valid on \((s_{n}, t_{n+1}]\). This completes the proof. □
The following corollary can be obtained by replacing the given functions \(p(t)\) and \(q(t)\) by constants M and N, respectively.
Corollary 2.1
Let \(b_{k}, c_{k}\geq0\) and \(d_{k}>0\), \(k=1,2,3,\ldots\) , be constants. If \(M>0\), \(N\in\mathbb{R}\), and
then
and
where \(Q_{k}^{*}=e^{M\frac{(t_{k}-s_{k-1})^{\alpha}}{\alpha}}\), \(G_{k}^{*}=Q_{k}^{*}H_{k}\), and \(P_{k}^{*}=Q_{k}^{*}H_{k-1}\).
Let \(H(t)\) be the Heaviside function. We define two functions
and
Next, we establish some new noninstantaneous impulsive integral inequalities.
Theorem 2.2
Let \(p\in PC(U_{s_{k}}, {\mathbb {R}}_{+})\), constants \(c_{k},b_{k}\geq0\), \(d_{k}>0\), \(k=1,2,3,\ldots\) , and \(A\in\mathbb{R}\). If
where \(s_{m}\) and \(t_{\overline{m}}\) are defined by (2.1), then we have
for \(t\in(s_{k},t_{k+1}]\), \(k=0,1,2,\ldots\) , and
for \(t\in(t_{k},s_{k}]\), \(k=1,2,3,\ldots\) .
Proof
To prove inequalities (2.13) and (2.14), for \(t\in\mathbb{R}_{+}\), we define the function
which yields \(u(t)\leq v(t)\) for all \(t\in\mathbb{R}_{+}\) and \(v(s_{0})=A\). For any \(t\in(s_{k}, t_{k+1}]\), \(k=0,1,2,\ldots\) , we get
Also, taking the conformable fractional derivative of order α, we have
For \(t\in(t_{k},s_{k}]\), \(k=1,2,3,\ldots\) , we obtain
An application of Theorem 2.1 to (2.15) and (2.16) yields
for \(t\in(s_{k},t_{k+1}]\), \(k=0,1,2,\ldots\) , and
for \(t\in(t_{k},s_{k}]\), \(k=1,2,3,\ldots\) . From \(u(t)\leq v(t)\), \(t\in \mathbb{R}_{+}\), we get the desired results in (2.13) and (2.14). The proof is completed. □
Theorem 2.3
Let \(p\in PC(U_{s_{k}}, {\mathbb {R}}_{+})\), let h be a positive fractional integrable function of order α, and let \(c_{k},b_{k}\geq0\) and \(d_{k}>0\), \(k=1,2,3,\ldots\) , be constants. If
where \(s_{m}\) and \(t_{\overline{m}}\) are defined by (2.1), then we have
and
where the constants \(K_{k}\), \(k=1,2,3,\ldots\) , are defined by \(K_{k}=\int _{t_{k}}^{s_{k}}(\xi-t_{k})^{\alpha-1}h(\xi)\,d\xi\).
Proof
For \(t\in\mathbb{R}_{+}\), setting
we have
for \(t\in(s_{k},t_{k+1}]\), \(k=0,1,2,\ldots\) , and
for \(t\in(t_{k},s_{k}]\), \(k=1,2,3,\ldots\) . Since \(u(t)\leq h(t)+y(t)\), \(t\in\mathbb{R}_{+}\), this reduces to
and
Now Theorem 2.1, together with the inequality \(u(t)\leq h(t)+y(t)\), yields estimates (2.18) and (2.19), completing the proof. □
Next, we obtain the following corollary by putting constant values \(h(t)\equiv B>0\) and \(p(t)\equiv M>0\).
Corollary 2.2
Let constants \(c_{k},b_{k}\geq0\) and \(d_{k}>0\), \(k=1,2,3,\ldots\) . If
where \(s_{m}\) and \(t_{\overline{m}}\) are defined by (2.1), then we have
and
where \(G_{j}^{*}\) and \(P_{j}^{*}\) are defined as in Corollary 2.1, and \(Z_{k}=b_{k}+Bc_{k}+Bd_{k}(s_{k}-t_{k})^{\alpha}/\alpha\).
3 Applications
In this section, we establish two applications of noninstantaneous impulsive differential and integral inequalities. Let \(J=[0,T]\) with \(t_{n+1}=T\) and \(\overline{J}=[0,\overline{T}]\) with \(s_{n+1}=\overline{T}\) for some \(n\geq1\). The first purpose is accomplished by considering two problems that have the end points at \(t_{n+1}\) and \(s_{n+1}\), respectively. Now, we consider
and
where \(M>0\), \(a(t)\in C[\mathbb{R}_{+},\mathbb{R}_{+}]\), \(c_{k}\geq0\), and \(d_{k}>0\). Let us state the following conditions:
- (H1):
-
\(e^{M\frac{(T-s_{n})^{\alpha}}{\alpha}}\prod_{k=1}^{n}c_{k}G^{*}<1\),
- (H2):
-
\(\lambda\leq e^{M\frac{(T-s_{n})^{\alpha}}{\alpha }}\int_{s_{n}}^{T}a(\eta)(\eta-s_{n})^{\alpha-1}e^{-M\frac{(\eta -s_{n})^{\alpha}}{\alpha}}\,d\eta\),
- (H3):
-
\(\prod_{k=1}^{n+1}c_{k}G_{k}^{*}<1\),
- (H4):
-
\(\lambda\leq e^{d_{n+1}\frac{(\overline {T}-t_{n+1})^{\alpha}}{\alpha}}\sum_{k=1}^{n+1} (\prod_{k< j\leq n+1}c_{j}P_{j}^{*} )c_{k}D_{k}\), where \(D_{k}\) is defined by
$$ D_{k}=e^{M\frac{(t_{k}-s_{k-1})^{\alpha}}{\alpha}} \int _{s_{k-1}}^{t_{k}}a(\eta) (\eta-s_{k-1})^{\alpha-1}e^{-M\frac{(\eta -s_{k-1})^{\alpha}}{\alpha}} \,d\eta,\quad k=1,2,\ldots, n+1. $$
Corollary 3.1
Let u and v be unknown functions satisfying (3.1) and (3.2), respectively. If (H1)–(H2) hold, then \(u(t)\leq0\) for \(t\in J\). If (H3)–(H4) hold, then \(v(t)\leq0\) for \(t\in\overline{J}\).
Proof
Applying Theorem 2.1 to the first two inequalities in problem (3.1), we have
Since \(a(t)\geq0\) for all \(t\in\mathbb{R}_{+}\) and all constants are positive, it is sufficient to show that \(u(0)\leq0\). At the end point \(t=T\), we obtain
By conditions (H1)–(H2) we have
which yields \(u(0)\leq0\). Therefore \(u(t)\leq0\) for \(t\in[0,T]\).
Next, we will show that \(v(t)\leq0\) for \(t\in\overline{J}\). The application of Theorem 2.1 for the first two inequalities in problem (3.2) leads to
Substituting the end point at \(t=\overline{T}\), we have
which implies
by conditions (H3)–(H4). This means that \(v(0)\leq0\). In the same way, we can conclude that \(v(t)\leq0\) for \(t\in\overline{J}\). The proof is completed. □
Finally, we apply the noninstantaneous impulsive inequality to the initial value problem of the form
where \(0<\alpha\leq1\), \(c_{k}\geq0\), \(d_{k}>0\), \(u_{0}\in\mathbb{R}\), and the given function \(f\in PC(U_{s_{k}}\times\mathbb{R},\mathbb{R})\) satisfies
- (H5):
-
\(|f(t,u)|\leq M|u|\), \(M>0\), for all \(t\in U_{s_{k}}\).
Corollary 3.2
If (H5) holds, then the solution \(u(t)\) of problem (3.3) is estimated as
and
Proof
Taking the conformable fractional integral of order α to the first equation of problem (3.3), we obtain
From condition (H5) it follows that
Since \(u(s_{0})=u_{0}\), by Theorem 2.2 inequalities (3.4)–(3.5) hold, and the proof is completed. □
References
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics. Springer, Berlin (2010)
Agarwal, R.P., Zhou, Y., He, Y.: Existence of fractional neutral functional differential equations. Comput. Math. Appl. 59, 1095–1100 (2010)
Ahmad, B., Ntouyas, S.K., Tariboon, J.: Existence results for mixed Hadamard and Riemann–Liouville fractional integro-differential equations. Adv. Differ. Equ. 2015, 293 (2015)
Ahmad, B., Nieto, J.J.: Riemann–Liouville fractional integro-differential equations with fractional nonlocal integral boundary conditions. Bound. Value Probl. 2011, 36 (2011)
Ahmad, B., Ntouyas, S.K., Alsaedi, A.: New existence results for nonlinear fractional differential equations with three-point integral boundary conditions. Adv. Differ. Equ. 2011, Article ID 107384 (2011)
Tariboon, J., Ntouyas, S.K., Thiramanus, P.: Riemann–Liouville fractional differential equations with Hadamard fractional integral conditions. Int. J. Appl. Math. Stat. 54, 119–134 (2016)
Ahmad, B., Ntouyas, S.K., Alsaedi, A.: A study of nonlinear fractional differential equations of arbitrary order with Riemann–Liouville type multistrip boundary conditions. Math. Probl. Eng. 2013, Article ID 320415 (2013)
Alghamdi, N., Ahmad, B., Ntouyas, S.K., Alsaedi, A.: Sequential fractional differential equations with nonlocal boundary conditions on an arbitrary interval. Adv. Differ. Equ. 2017, 246 (2017)
Ntouyas, S.K., Tariboon, J.: Fractional boundary value problems with multiple orders of fractional derivatives and integrals. Electron. J. Differ. Equ. 2017, 100 (2017)
Thaiprayoon, C., Ntouyas, S.K., Tariboon, J.: On the nonlocal Katugampola fractional integral conditions for fractional Langevin equation. Adv. Differ. Equ. 2015, 374 (2015)
Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)
Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2015)
Usta, F., Sarikaya, M.: Some improvements of conformable fractional integral inequalities. Int. J. Anal. Appl. 14, 162–166 (2017)
Anderson, D.R., Ulness, D.J.: Results for conformable differential equations. Preprint
Atangana, A., Baleanu, D., Alsaedi, A.: New properties of conformable derivative. Open Math. 13, 889–898 (2015)
Katugampola, U.: A new fractional derivative with classical properties. arXiv:1410.6535 [math.CA]
Usta, F.: Explicit bounds on certain integral inequalities via conformable fractional calculus. Cogent Math. 4, Article ID 1277505 (2017)
Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
Benchohra, M., Henderson, J., Ntouyas, S.K.: Impulsive Differential Equations and Inclusions, vol. 2. Hindawi Publishing Corporation, New York (2006)
Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995)
Hernández, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641–1649 (2013)
Pierri, M., O’Regan, D., Rolnik, V.: Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219, 6743–6749 (2013)
Fec̆kan, M., Wang, J.R., Zhou, Y.: Periodic solutions for nonlinear evolution equations with non-instantaneous impulses. Nonauton. Dyn. Syst. 1, 93–101 (2014)
Gautam, G.R., Dabas, J.: Mild solution for fractional functional integro-differential equation with not instantaneous impulse. Malaya J. Mat. 2(3), 428–437 (2014)
Pandey, D.N., Das, S., Sukavanam, N.: Existence of solution for a second-order neutral differential equation with state dependent delay and non-instantaneous impulses. Int. J. Nonlinear Sci. 18(2), 145–155 (2014)
Wang, J.R., Li, X.: Periodic BVP for integer/fractional order nonlinear differential equations with non-instantaneous impulses. J. Appl. Math. Comput. 46, 321–334 (2014)
Sood, A., Srivastava, S.K.: On stability of differential systems with noninstantaneous impulses. Math. Probl. Eng. 2015, Article ID 691687 (2015)
Li, P., Xu, C.: Boundary value problems of fractional order differential equation with integral boundary conditions and not instantaneous impulses. J. Funct. Spaces 2015, Article ID 954925 (2015)
Pierri, M., Henríquez, H.R., Prokopczyk, A.: Global solutions for abstract differential equations with non-instantaneous impulses. Mediterr. J. Math. 13, 1685–1708 (2016)
Agarwal, R.P., Hristova, S., O’Regan, D.: Noninstantaneous impulses in Caputo fractional differential equations and practical stability via Lyapunov functions. J. Franklin Inst. 354, 3097–3119 (2017)
Agarwal, R.P., O’Regan, D., Hristova, S.: Monotone iterative technique for the initial value problem for differential equations with non-instantaneous impulses. Appl. Math. Comput. 298, 45–56 (2017)
Bai, L., Nieto, J.J., Wang, X.: Variational approach to non-instantaneous impulsive nonlinear differential equations. J. Nonlinear Sci. Appl. 10, 2440–2448 (2017)
Wang, J.R., Fečkan, M., Tian, Y.: Stability analysis for a general class of non-instantaneous impulsive differential equations. Mediterr. J. Math. 14, 46 (2017). https://doi.org/10.1007/s00009-017-0867-0
Yang, D., Wang, J.R.: Integral boundary value problems for nonlinear non-instantaneous impulsive differential equations. J. Appl. Math. Comput. 55, 59–78 (2017). https://doi.org/10.1007/s12190-016-1025-8
Availability of data and materials
Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.
Funding
This research was funded by College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Thailand.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that they have no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Sitho, S., Ntouyas, S.K., Agarwal, P. et al. Noninstantaneous impulsive inequalities via conformable fractional calculus. J Inequal Appl 2018, 261 (2018). https://doi.org/10.1186/s13660-018-1855-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-018-1855-z