Skip to content

Advertisement

  • Research
  • Open Access

Lyapunov-type inequalities for an anti-periodic fractional boundary value problem involving ψ-Caputo fractional derivative

Journal of Inequalities and Applications20182018:286

https://doi.org/10.1186/s13660-018-1850-4

  • Received: 1 July 2018
  • Accepted: 12 September 2018
  • Published:

Abstract

A Lyapunov-type inequality is established for the anti-periodic fractional boundary value problem
$$\begin{aligned} & \bigl({}^{C}D_{a}^{\alpha,\psi}u \bigr) (x)+f \bigl(x,u(x) \bigr)=0,\quad a< x< b, \\ &u(a)+u(b)=0,\qquad u'(a)+u'(b)=0, \end{aligned}$$
where \((a,b)\in\mathbb{R}^{2}\), \(a< b\), \(1<\alpha<2\), \(\psi\in C^{2}([a,b])\), \(\psi'(x)>0\), \(x\in[a,b]\), \({}^{C}D_{a}^{\alpha,\psi}\) is the ψ-Caputo fractional derivative of order α, and \(f: [a,b]\times\mathbb{R}\to\mathbb{R}\) is a given function. Next, we give an application of the obtained inequality to the corresponding eigenvalue problem.

Keywords

  • Lyapunov-type inequalities
  • anti-periodic fractional boundary value problem
  • ψ-Caputo fractional derivative
  • eigenvalues

MSC

  • 34A08
  • 26D10
  • 34L15

1 Introduction

In this paper, we are concerned with the anti-periodic fractional boundary value problem
$$ \begin{aligned} & \bigl({}^{C}D_{a}^{\alpha,\psi}u \bigr) (x)+f \bigl(x,u(x) \bigr)=0,\quad a< x< b, \\ &u(a)+u(b)=0,\qquad u'(a)+u'(b)=0, \end{aligned} $$
(1.1)
where \((a,b)\in\mathbb{R}^{2}\), \(a< b\), \(1<\alpha<2\), \(\psi\in C^{2}([a,b])\), \(\psi'(x)>0\), \(x\in[a,b]\), \({}^{C}D_{a}^{\alpha,\psi}\) is the ψ-Caputo fractional derivative of order α, and \(f: [a,b]\times\mathbb{R}\to\mathbb{R}\) is a given function. A Lyapunov-type inequality is derived for problem (1.1). Next, as an application of the obtained inequality, an upper bound of possible eigenvalues of the corresponding problem is obtained.
Let us mention some motivations for studying problem (1.1). Suppose that \(u\in C^{2}([a,b])\), \((a,b)\in\mathbb{R}^{2}\), \(a< b\), is a nontrivial solution to the boundary value problem
$$ \begin{aligned} &u''(x)+w(x)u(x)=0, \quad a< x< b, \\ &u(a)=0,\qquad u(b)=0, \end{aligned} $$
(1.2)
where \(w\in C([a,b])\) is a given function. Then (see [17])
$$ \int_{a}^{b} \bigl\vert w(x) \bigr\vert \,dx > \frac{4}{b-a}. $$
(1.3)
Inequality (1.3) is known in the literature as Lyapunov’s inequality, which provides a necessary condition for the existence of a nontrivial solution to (1.2). Many generalizations and extensions of (1.3) were derived by many authors. In particular, Hartman and Wintner [9] proved that if \(u\in C^{2}([a,b])\) is a nontrivial solution to (1.2), then
$$ \int_{a}^{b} (b-s) (s-a) w^{+}(s)\,ds>b-a, $$
(1.4)
where
$$w^{+}(s)=\max \bigl\{ w(s),0 \bigr\} ,\quad a\leq s\leq b. $$
It can be easily seen that (1.3) follows from (1.4). For other results related to Lyapunov-type inequalities, see, for example, [3, 5, 16, 18, 19, 21] and the references therein. On the other hand, due to the importance of fractional calculus in applications, the study of Lyapunov-type inequalities was extended to fractional boundary value problems by many authors. The first contribution in this direction is due to Ferreira [6], where the fractional boundary value problem
$$ \begin{aligned} & \bigl(D_{a}^{\alpha}u \bigr) (x)+w(x)u(x)=0,\quad a< x< b, \\ &u(a)=0,\qquad u(b)=0, \end{aligned} $$
(1.5)
with \(w\in C([a,b])\), \(1<\alpha<2\) and \(D_{a}^{\alpha}\) is the Riemann–Liouville fractional derivative of order α, was studied. The main result in [6] is the following: If u is a nontrivial solution to (1.5), then
$$ \int_{a}^{b} \bigl\vert w(x) \bigr\vert \,dx> \Gamma(\alpha) \biggl(\frac{4}{b-a} \biggr)^{\alpha-1}. $$
(1.6)
Note that in the limit case \(\alpha=2\), (1.5) reduces to (1.2). Moreover, taking \(\alpha=2\) in (1.6), we obtain (1.3). For other works related to Lyapunov-type inequalities for fractional boundary value problems, see, for example, [4, 7, 8, 1012, 20] and the references therein. In particular, in [8], the anti-periodic fractional boundary value problem
$$ \begin{aligned} & \bigl({}^{C}D_{a}^{\alpha}u \bigr) (x)+w(x)u(x)=0,\quad a< x< b, \\ &u(a)+u(b)=0,\qquad u'(a)+u'(b)=0, \end{aligned} $$
(1.7)
where \(w\in C([a,b])\), \(1<\alpha<2\) and \({}^{C}D_{a}^{\alpha}\) is the Caputo fractional derivative of order α, was studied. Note that (1.7) is a special case of (1.1) with \(\psi(x)=x\) and \(f(x,z)=w(x)z\).

Motivated by the above cited works, the problem (1.1) is investigated in this paper.

The rest of the paper is organized as follows. In Sect. 2, we recall some basic concepts on fractional calculus and prove some preliminary results. In Sect. 3, a Lyapunov-type inequality is established for problem (1.1). Moreover, some particular cases are discussed. Next, an application to fractional eigenvalue problems is given. In Sect. 4, we end the paper with some open questions.

2 Methods and preliminaries

The main idea in this paper consists to reduce (1.1) to a fractional boundary value problem involving Caputo fractional derivative by using an adequate change of variable. Next, using an integral representation of the solution and an estimate of the corresponding Green’s function, a Lyapunov-type inequality is derived for (1.1) under certain assumptions on the functions f and ψ. Before stating and proving the main results, we need some preliminaries on fractional calculus. The main references used in this part are [2, 13]. For other references related to fractional calculus, see, for example, [1, 14, 15].

First, let us fix \((a,b)\in\mathbb{R}^{2}\) with \(a< b\) and \(1<\alpha<2\).

Let \(\beta>0\). The Riemann–Liouville fractional integral of order β of a function \(f\in C([a,b])\) is given by (see [13])
$$\bigl(I_{a}^{\beta}f \bigr) (x)=\frac{1}{\Gamma(\beta)} \int_{a}^{x} (x-t)^{\beta-1} f(t)\,dt,\quad a \leq x\leq b, $$
where Γ is the Gamma function.
The Caputo fractional derivative of order α of a function \(f\in C^{2}([a,b])\) is given by (see [13])
$$\bigl({}^{C}D_{a}^{\alpha}f \bigr) (x)= \bigl(I_{a}^{2-\alpha}f'' \bigr) (x), \quad a< x< b, $$
i.e.,
$$\bigl({}^{C}D_{a}^{\alpha}f \bigr) (x)= \frac{1}{\Gamma(2-\alpha)} \int_{a}^{x} (x-t)^{1-\alpha} f''(t)\,dt,\quad a< x< b. $$
Further, Let \(\psi\in C^{2}([a,b])\) be a given function such that
$$\psi'(x)>0,\quad a\leq x\leq b. $$
The fractional integral of order \(\beta>0\) of a function \(f\in C([a,b])\) with respect to ψ is given by (see [13])
$$\bigl(I_{a}^{\beta,\psi}f \bigr) (x)=\frac{1}{\Gamma(\beta)} \int_{a}^{x} \psi '(t) \bigl(\psi(x)- \psi(t) \bigr)^{\beta-1} f(t)\,dt,\quad a\leq x\leq b. $$
The ψ-Caputo fractional derivative of order α of a function \(f\in C^{2}([a,b])\) is given by (see [2])
$$\bigl({}^{C}D_{a}^{\alpha,\psi}f \bigr) (x)= \biggl(I_{a}^{2-\alpha,\psi} \biggl( \frac{1}{\psi'(x)}\frac{d}{dx} \biggr)^{2}f \biggr) (x),\quad a< x< b, $$
i.e.,
$$\bigl({}^{C}D_{a}^{\alpha,\psi}f \bigr) (x)= \frac{1}{\Gamma(2-\alpha)} \int _{a}^{x} \psi'(t) \bigl(\psi(x)- \psi(t) \bigr)^{1-\alpha} \biggl( \frac{1}{\psi'(t)}\frac{d}{dt} \biggr)^{2} f(t)\,dt, \quad a< x< b. $$

The following lemma is crucial for the proof of our main result.

Lemma 2.1

Let \(f\in C^{2}([a,b])\). Then
$$\bigl({}^{C}D_{a}^{\alpha,\psi}f \bigr) \bigl( \psi^{-1}(y) \bigr)= \bigl({}^{C}D_{\psi(a)}^{\alpha}\bigl(f\circ\psi^{-1} \bigr) \bigr) (y),\quad\psi (a)< y< \psi(b). $$

Proof

Let \(\psi(a)< y< \psi(b)\) be fixed. We have
$$\bigl({}^{C}D_{a}^{\alpha,\psi}f \bigr) \bigl( \psi^{-1}(y) \bigr)= \frac{1}{\Gamma(2-\alpha)} \int_{a}^{\psi^{-1}(y)} \psi'(t) \bigl(y-\psi (t) \bigr)^{1-\alpha} \biggl( \frac{1}{\psi'(t)}\frac{d}{dt} \biggr)^{2} f(t)\,dt. $$
Let us consider the change of variable
$$s=\psi(t),\quad a< t< b. $$
Using the chain rule, we have
$$\frac{d}{ds}=\frac{1}{\psi'(t)}\frac{d}{dt}. $$
Hence, we obtain
$$\bigl({}^{C}D_{a}^{\alpha,\psi}f \bigr) \bigl( \psi^{-1}(y) \bigr)= \frac{1}{\Gamma(2-\alpha)} \int_{\psi(a)}^{y} (y-s)^{1-\alpha} \biggl( \frac {d}{ds} \biggr)^{2} \bigl(f\circ\psi^{-1} \bigr) (s) \,ds, $$
i.e.,
$$\bigl({}^{C}D_{a}^{\alpha,\psi}f \bigr) \bigl( \psi^{-1}(y) \bigr)= \bigl({}^{C}D_{\psi(a)}^{\alpha}\bigl(f\circ\psi^{-1} \bigr) \bigr) (y). $$
 □

We refer the reader to Ferreira [8] for the proofs of the following results.

Lemma 2.2

Let \(h\in C([A,B])\), \((A,B)\in\mathbb{R}^{2}\), \(A< B\). Then \(F\in C^{2}([A,B])\) is a solution to
$$ \begin{gathered} \bigl({}^{C}D_{A}^{\alpha}F \bigr) (t)+h(t)=0,\quad A< t< B, \\ F(A)+F(B)=0,\,\, F'(A)+F'(B)=0, \end{gathered} $$
if and only if
$$F(t)= \int_{A}^{B} (B-s)^{\alpha-2} H(t,s) h(s)\,ds, \quad A\leq t\leq B, $$
where
$$\begin{aligned} \Gamma(\alpha)H(t,s)= \textstyle\begin{cases} (\frac{t-A}{2}-\frac{B-A}{4} )(\alpha-1)+\frac{B-s}{2}- \frac{(t-s)^{\alpha-1}}{(B-s)^{\alpha-2}},\quad A\leq s\leq t< B,\\ (\frac{t-A}{2}-\frac{B-A}{4} )(\alpha-1)+\frac{B-s}{2}, \quad A\leq t\leq s\leq B. \end{cases}\displaystyle \end{aligned}$$

Lemma 2.3

The function H defined in Lemma 2.2 satisfies
$$\bigl\vert H(t,s) \bigr\vert \leq\frac{(B-A)(3-\alpha)}{4}, \quad(t,s)\in[A,B] \times[A,B]. $$

3 Results and discussion

3.1 A Lyapunov-type inequality for problem (1.1)

In this section, problem (1.1) is investigated under the following assumptions:
(A1): 

\(1<\alpha<2\), \(\psi\in C^{2}([a,b])\), \(\psi'(x)>0\), \(x\in[a,b]\).

(A2): 

\(\psi'(a)=\psi'(b)\).

(A3): 
The function \(f: [a,b]\times\mathbb{R}\to\mathbb{R}\) is continuous and satisfies
$$\bigl\vert f(x,z) \bigr\vert \leq q(x) \vert z \vert ,\quad(x,z)\in\,]a,b[\, \times\mathbb{R}, $$
where \(q\in C([a,b])\).
Observe that by (A3), we have \(f(x,0)=0\), for all \(x\in\,]a,b[\). Therefore, 0 is a trivial solution to (1.1).

Our main result is given by the following theorem.

Theorem 3.1

Let \(u\in C^{2}([a,b])\) be a nontrivial solution to (1.1). Then
$$ \int_{a}^{b} \bigl(\psi(b)-\psi(x) \bigr)^{\alpha-2} q(x) \psi'(x)\,dx\geq\frac {4}{(\psi(b)-\psi(a))(3-\alpha)}. $$
(3.1)

Proof

Let \(u\in C^{2}([a,b])\) be a nontrivial solution to (1.1). We introduce the function
$$v: \bigl[\psi(a),\psi(b) \bigr]\to\mathbb{R} $$
given by
$$ v(y)=u \bigl(\psi^{-1}(y) \bigr),\quad \psi(a)\leq y \leq \psi(b). $$
(3.2)
Using Lemma 2.1, we obtain
$$\bigl({}^{C}D_{\psi(a)}^{\alpha}v \bigr) (y)= \bigl({}^{C}D_{a}^{\alpha,\psi}u \bigr) \bigl( \psi^{-1}(y) \bigr),\quad \psi(a)< y< \psi(b), $$
which implies from (1.1) that
$$ \bigl({}^{C}D_{\psi(a)}^{\alpha}v \bigr) (y)+f \bigl(\psi^{-1}(y),v(y) \bigr)=0,\quad \psi(a)< y< \psi(b). $$
(3.3)
On the other hand, we have
$$v'(y)=\frac{1}{\psi'(\psi^{-1}(y))} u' \bigl( \psi^{-1}(y) \bigr)),\quad\psi(a)\leq y\leq\psi(b). $$
Therefore,
$$v' \bigl(\psi(a) \bigr)= \frac{1}{\psi'(a)} u'(a) \quad \mbox{and}\quad v' \bigl(\psi(b) \bigr) =\frac{1}{\psi'(b)} u'(b), $$
which implies form (A2) and the boundary conditions in (1.1) that
$$ v \bigl(\psi(a) \bigr)+v \bigl(\psi(b) \bigr)=0\quad\mbox{and} \quad v' \bigl(\psi(a) \bigr)+v' \bigl(\psi(b) \bigr)=0. $$
(3.4)
Therefore, \(v\in C^{2}([A,B])\), \((A,B)=(\psi(a),\psi(b))\), is a nontrivial solution to (3.3)–(3.4). Further, using Lemma 2.2, we obtain
$$v(y)= \int_{A}^{B} (B-s)^{\alpha-2} H(y,s) f \bigl( \psi^{-1}(s),v(s) \bigr)\,ds,\quad A\leq y\leq B. $$
Next, using (A3) and the estimate given by Lemma 2.3, for all \(A\leq y\leq B\), we obtain
$$\begin{aligned} \bigl\vert v(y) \bigr\vert \leq& \int_{A}^{B} (B-s)^{\alpha-2} \bigl\vert H(y,s) \bigr\vert \bigl\vert f \bigl(\psi ^{-1}(s),v(s) \bigr) \bigr\vert \,ds \\ \leq& \frac{(B-A)(3-\alpha)}{4} \int_{A}^{B} (B-s)^{\alpha-2} q \bigl(\psi ^{-1}(s) \bigr) \bigl\vert v(s) \bigr\vert \,ds \\ \leq& \biggl(\frac{(B-A)(3-\alpha)}{4} \int_{A}^{B} (B-s)^{\alpha-2} q \bigl(\psi ^{-1}(s) \bigr)\,ds \biggr) \Vert v \Vert _{\infty}, \end{aligned}$$
where
$$\Vert v \Vert _{\infty}=\max \bigl\{ \bigl\vert v(s) \bigr\vert : \, A\leq s\leq B \bigr\} . $$
Since \(\|v\|_{\infty}>0\) (because v is nontrivial), we obtain
$$\int_{A}^{B} (B-s)^{\alpha-2} q \bigl( \psi^{-1}(s) \bigr)\,ds\geq\frac {4}{(B-A)(3-\alpha)}. $$
Finally, using the change of variable
$$x=\psi^{-1}(s),\quad A\leq s\leq B, $$
inequality (3.1) follows. □

Further, let us discuss some particular cases following from Theorem 3.1.

We consider the case
$$\psi(x)=x,\quad a\leq x\leq b. $$
In this case, problem (1.1) reduces to
$$ \begin{aligned} & \bigl({}^{C}D_{a}^{\alpha}u \bigr) (x)+f \bigl(x,u(x) \bigr)=0,\quad a< x< b, \\ &u(a)+u(b)=0,\qquad u'(a)+u'(b)=0, \end{aligned} $$
(3.5)
where \(1<\alpha<2\). Observe that the function ψ satisfies assumptions (A1) and (A2). Therefore, under assumption (A3), from Theorem 3.1, we deduce the following result.

Corollary 3.2

Let \(u\in C^{2}([a,b])\) be a nontrivial solution to (3.5). Then
$$\int_{a}^{b} (b-x)^{\alpha-2} q(x) \,dx\geq \frac{4}{(b-a)(3-\alpha)}. $$
Next, let us consider the fractional boundary value problem
$$ \begin{aligned} & \bigl({}^{C}D_{a}^{\alpha}u \bigr) (x)+w(x)u(x)=0,\quad a< x< b, \\ &u(a)+u(b)=0,\qquad u'(a)+u'(b)=0, \end{aligned} $$
(3.6)
where \(1<\alpha<2\) and \(w\in C([a,b])\). Problem (3.6) is a special case of (3.5) with
$$f(x,z)=w(x) z,\quad (x,z)\in[a,b]\times\mathbb{R}. $$
Observe that the function f satisfies assumption (A3) with
$$q(x)= \bigl\vert w(x) \bigr\vert ,\quad a\leq x\leq b. $$
Therefore, by Corollary 3.2, we deduce the following result, which was derived in [8] (with strict inequality).

Corollary 3.3

Let \(u\in C^{2}([a,b])\) be a nontrivial solution to (3.6). Then
$$ \int_{a}^{b} (b-x)^{\alpha-2} \bigl\vert w(x) \bigr\vert \,dx\geq\frac{4}{(b-a)(3-\alpha)}. $$
(3.7)
Let us consider the fractional boundary value problem
$$ \begin{aligned} & \bigl({}^{C}D_{a}^{\alpha}u \bigr) (x)+w(x)\sin \bigl(u(x) \bigr)=0,\quad a< x< b, \\ &u(a)+u(b)=0,\qquad u'(a)+u'(b)=0, \end{aligned} $$
(3.8)
where \(1<\alpha<2\) and \(w\in C([a,b])\). Problem (3.6) is a special case of (3.5) with
$$f(x,z)=w(x) \sin(z),\quad (x,z)\in[a,b]\times\mathbb{R}. $$
Observe that the function f satisfies assumption (A3) with
$$q(x)= \bigl\vert w(x) \bigr\vert ,\quad a\leq x\leq b. $$
Therefore, by Corollary 3.2, we deduce the following result.

Corollary 3.4

Let \(u\in C^{2}([a,b])\) be a nontrivial solution to (3.8). Then (3.7) holds.

Let us consider the fractional boundary value problem
$$ \begin{aligned} & \bigl({}^{C}D_{a}^{\alpha}u \bigr) (x)+w(x)\arctan \bigl(u(x) \bigr)=0,\quad a< x< b, \\ &u(a)+u(b)=0,\qquad u'(a)+u'(b)=0, \end{aligned} $$
(3.9)
where \(1<\alpha<2\) and \(w\in C([a,b])\). Problem (3.9) is a special case of (3.5) with
$$f(x,z)=w(x) \arctan(z),\quad (x,z)\in[a,b]\times\mathbb{R}. $$
Note that the function f satisfies assumption (A3) with
$$q(x)= \bigl\vert w(x) \bigr\vert ,\quad a\leq x\leq b. $$
Therefore, by Corollary 3.2, we deduce the following result.

Corollary 3.5

Let \(u\in C^{2}([a,b])\) be a nontrivial solution to (3.9). Then (3.7) holds.

Further, we consider the case
$$ \psi(x)=\frac{x^{2N+1}}{2N+1}+c_{1}x+c_{2}, \quad-1\leq x\leq1, $$
(3.10)
where \(N\geq1\) is a natural number, \(c_{1}>0\) and \(c_{2}\in\mathbb{R}\). Observe that \(\psi\in C^{2}([-1,1])\). Moreover, we have
$$\psi'(x)=x^{2N}+c_{1}>0,\quad -1\leq x\leq1. $$
Observe also that
$$\psi'(-1)=\psi'(1)=c_{1}+1. $$
Therefore, the function ψ satisfies assumptions (A1) and (A2) with \((a,b)=(-1,1)\). Hence, by Theorem 3.1, we deduce the following result.

Corollary 3.6

Let \(u\in C^{2}([a,b])\) be a nontrivial solution to (1.1), where \((a,b)=(-1,1)\) and the function ψ is given by (3.10). Then
$$ \int_{-1}^{1} \biggl(\frac{1-x^{2N+1}}{2N+1}+c_{1}(1-x) \biggr)^{\alpha-2} q(x) \bigl(x^{2N}+c_{1} \bigr)\,dx\geq \frac{2}{ (\frac{1}{2N+1}+c_{1} )(3-\alpha)}. $$
(3.11)
Let us consider the case
$$ \psi(x)=\sinh(x),\quad-1\leq x\leq1. $$
(3.12)
Observe that \(\psi\in C^{2}([-1,1])\). Moreover, we have
$$\psi'(x)=\cosh(x)>0,\quad -1\leq x\leq1. $$
Note that due to the parity of the function \(\cosh(x)\), we have
$$\psi'(-1)=\cosh(-1)=\cosh(1)=\psi'(1). $$
Therefore, the function ψ satisfies assumptions (A1) and (A2) with \((a,b)=(-1,1)\). Hence, by Theorem 3.1, we deduce the following result.

Corollary 3.7

Let \(u\in C^{2}([a,b])\) be a nontrivial solution to (1.1), where \((a,b)=(-1,1)\) and the function ψ is given by (3.12). Then
$$ \int_{-1}^{1} \bigl(\sinh(1)-\sinh(x) \bigr)^{\alpha-2} q(x) \cosh (x)\,dx\geq\frac{2}{\sinh(1) (3-\alpha)}. $$
(3.13)
Many other results can be deduced from Theorem 3.1 for different choices of functions f and ψ. We end this section with additional examples of functions f and ψ satisfying assumptions (A1), (A2) and (A3):
$$\begin{aligned} &\psi(x)=\tan(x), \qquad \vert x \vert \leq \frac{\pi}{4}, \\ &\psi(x)= \arcsin(x),\qquad \vert x \vert \leq \frac{1}{2}, \\ &\psi(x)=\ln \biggl(\frac{1+x}{1-x} \biggr),\qquad \vert x \vert \leq \frac{1}{2}, \\ &\psi(x)= \int_{-1}^{x} e^{s^{2}}\,ds,\qquad \vert x \vert \leq 1, \end{aligned}$$
and
$$\begin{aligned} &f(x,z)=w(x) \cos \biggl(z+\frac{\pi}{2} \biggr), \quad(x,z)\in [a,b] \times\mathbb{R}, \\ &f(x,z)=w(x) ze^{- \vert z \vert }, \quad(x,z)\in[a,b]\times\mathbb{R}, \\ &f(x,z)=\frac{w(x) z}{\cosh(z)}, \quad(x,z)\in[a,b]\times\mathbb {R}, \\ &f(x,z)= w(x) \ln \bigl(1+ \vert z \vert \bigr),\quad(x,z)\in[a,b]\times \mathbb{R}, \end{aligned}$$
where \(w\in C([a,b])\).

3.2 An application to eigenvalue problems

Let \(\psi\in C^{2}([a,b])\) be a given function satisfying assumptions (A1) and (A2). We say that \(\lambda\in\mathbb{R}\) is an eigenvalue of the fractional boundary value problem
$$ \begin{aligned} & \bigl({}^{C}D_{a}^{\alpha,\psi}u \bigr) (x)+\lambda u(x)=0,\quad a< x< b, \\ &u(a)+u(b)=0,\qquad u'(a)+u'(b)=0, \end{aligned} $$
(3.14)
where \(1<\alpha<2\), if and only if (3.14) admits a nontrivial solution \(u_{\lambda}\in C^{2}([a,b])\).

The following result provides an upper bound of possible eigenvalues of (3.14).

Theorem 3.8

If λ is an eigenvalue of (3.14), then
$$ \vert \lambda \vert \geq\frac{4(\alpha-1)}{(3-\alpha)(\psi(b)-\psi(a))^{\alpha}}. $$
(3.15)

Proof

Let \(\lambda\in\mathbb{R}\) be an eigenvalue of (3.14). Then (3.14) admits a nontrivial solution \(u_{\lambda}\in C^{2}([a,b])\). On the other hand, observe that (3.14) is a special case of (1.1) with
$$f(x,z)=\lambda z,\quad(x,z)\in[a,b]\times\mathbb{R}. $$
Moreover, the function f satisfies assumption (A3) with
$$q(x)=\lambda,\quad a\leq x\leq b. $$
Hence, by Theorem 3.1, we obtain
$$\begin{aligned} \vert \lambda \vert \geq& \frac{4}{(\psi(b)-\psi(a))(3-\alpha)} \biggl( \int_{a}^{b} \bigl(\psi(b)-\psi(x) \bigr)^{\alpha-2} \psi'(x)\,dx \biggr)^{-1} \\ =& \frac{4(\alpha-1)}{(3-\alpha)(\psi(b)-\psi(a))^{\alpha}}. \end{aligned}$$
Therefore, we proved (3.15). □
Taking
$$\psi(x)=x,\quad a\leq x\leq b $$
in (3.14), we deduce the following result, which was obtained in [8].

Corollary 3.9

Let \(\lambda\in\mathbb{R}\) be an eigenvalue of the fractional boundary value problem
$$\begin{gathered} \bigl({}^{C}D_{a}^{\alpha}u \bigr) (x)+\lambda u(x)=0,\quad a< x< b, \\ u(a)+u(b)=0,\qquad u'(a)+u'(b)=0, \end{gathered} $$
where \(1<\alpha<2\). Then
$$\vert \lambda \vert \geq\frac{4(\alpha-1)}{(3-\alpha)(b-a)^{\alpha}}. $$

4 Conclusion

In this paper, a Lyapunov-type inequality is established for the fractional boundary value problem (1.1) under assumptions (A1), (A2) and (A3). Next, the obtained inequality is used to obtain bounds on possible eigenvalues of the corresponding problem. We end the paper with the following open questions. First, it would be interesting to compute the Green’s function for the fractional boundary value problem
$$ \begin{aligned} & \bigl({}^{C}D_{A}^{\alpha}F \bigr) (t)+h(t)=0,\quad A< t< B, \\ &F(A)+F(B)=0,\qquad F'(A)+\mu F'(B)=0, \end{aligned} $$
where \(\mu>0\), \(h\in C([A,B])\), and to obtain an estimate similar to that given by Lemma 2.3.
Next, the obtained estimate can be used to derive a Lyapunov-type inequality for problem (1.1) by considering a more general class of functions ψ without assumption (A2). In fact, from the proof of Theorem 3.1, the function v given by (3.2) satisfies (3.3) and the boundary conditions
$$v(A)=v(B)=0\quad\mbox{and}\quad v'(A)+\frac{\psi'(b)}{\psi'(a)} v'(B)=0, $$
where \((A,B)=(\psi(a),\psi(b))\).

Declarations

Acknowledgements

Not applicable.

Availability of data and materials

Not applicable.

Funding

Not applicable.

Authors’ contributions

Both authors read and approved the manuscript.

Competing interests

The authors declare that they have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
(2)
Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
(3)
Department of Mathematics, College of Education of Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
(4)
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

References

  1. Agarwal, P., Jain, S., Mansour, T.: Further extended Caputo fractional derivative operator and its applications. Russ. J. Math. Phys. 24(4), 415–425 (2017) MathSciNetView ArticleGoogle Scholar
  2. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017) MathSciNetView ArticleGoogle Scholar
  3. Brown, R.C., Hinton, D.B.: Lyapunov inequalities and their applications. In: Survey on Classical Inequalities, Math. Appl., vol. 517 pp. 1–25 Kluwer Acad. Publ., Dordrecht Google Scholar
  4. Cabrera, I.J., Rocha, J., Sadarangani, K.B.: Lyapunov type inequalities for a fractional thermostat model, RACSAM. https://doi.org/10.1007/s13398-016-0362-7 MathSciNetView ArticleGoogle Scholar
  5. Das, K.M., Vatsala, A.S.: Green’s function for nn boundary value problem and an analogue of Hartman’s result. J. Math. Anal. Appl. 51(3), 670–677 (1975) MathSciNetView ArticleGoogle Scholar
  6. Ferreira, R.A.C.: A Lyapunov-type inequality for a fractional boundary value problem. Fract. Calc. Appl. Anal. 16(4), 978–984 (2013) MathSciNetView ArticleGoogle Scholar
  7. Ferreira, R.A.C.: On a Lyapunov-type inequality and the zeros of a certain Mittag–Leffler function. J. Math. Anal. Appl. 412(2), 1058–1063 (2014) MathSciNetView ArticleGoogle Scholar
  8. Ferreira, R.A.C.: Lyapunov-type inequality for an anti-periodic fractional boundary value problem. Fract. Calc. Appl. Anal. 20(1), 284–291 (2017) MathSciNetView ArticleGoogle Scholar
  9. Hartman, P., Wintner, A.: On an oscillation criterion of Lyapunov. Am. J. Math. 73, 885–890 (1951) View ArticleGoogle Scholar
  10. Jleli, M., Ragoub, L., Samet, B.: A Lyapunov-type inequality for a fractional differential equation under a Robin boundary condition. J. Funct. Spaces 2015, Article ID 468536 (2015) MathSciNetMATHGoogle Scholar
  11. Jleli, M., Samet, B.: Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions. Math. Inequal. Appl. 18(2), 443–451 (2015) MathSciNetMATHGoogle Scholar
  12. Jleli, M., Samet, B.: Lyapunov-type inequalities for fractional boundary-value problems. Electron. J. Differ. Equ. 2015, Article ID 88 (2015) MathSciNetView ArticleGoogle Scholar
  13. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006) View ArticleGoogle Scholar
  14. Kiymaz, I.O., Agarwal, P., Jain, S., Çetinkaya, A.: On a new extension of Caputo fractional derivative operator. In: Ruzhansky, M., Cho, Y., Agarwal, P., Area, I. (eds.) Advances in Real and Complex Analysis with Applications. Trends in Mathematics. Birkhäuser, Singapore (2017) Google Scholar
  15. Kiymaz, I.O., Çetinkaya, A., Agarwal, P.: An extension of Caputo fractional derivative operator and its applications. J. Nonlinear Sci. Appl. 9, 3611–3621 (2016) MathSciNetView ArticleGoogle Scholar
  16. Lee, C., Yeh, C., Hong, C., Argarwal, R.P.: Lyapunov and Wirtinger inequalities. Appl. Math. Lett. 17, 847–853 (2004) MathSciNetView ArticleGoogle Scholar
  17. Lyapunov, A.M.: Problème général de la stabilité du mouvement. Ann. Fac. Sci. Univ. Tolouse 2, 203–407 (1907) Google Scholar
  18. Pachpatte, B.G.: On Lyapunov-type inequalities for certain higher order differential equations. J. Math. Anal. Appl. 195, 527–536 (1955) MathSciNetView ArticleGoogle Scholar
  19. Pinasco, J.P.: Lyapunov-Type Inequalities. Springer Briefs in Mathematics. Springer, New York (2013) View ArticleGoogle Scholar
  20. Rong, J., Bai, C.: Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions. Adv. Differ. Equ. 2015, 82 (2015) MathSciNetView ArticleGoogle Scholar
  21. Wang, Y.: Lyapunov-type inequalities for certain higher order differential equations with anti-periodic boundary conditions. Appl. Math. Lett. 25(12), 2375–2380 (2012) MathSciNetView ArticleGoogle Scholar

Copyright

© The Author(s) 2018

Advertisement