Skip to main content

General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function

Abstract

In this paper some new general fractional integral inequalities for convex and m-convex functions by involving an extended Mittag-Leffler function are presented. These results produce inequalities for several kinds of fractional integral operators. Some interesting special cases of our main results are also pointed out.

1 Introduction, definitions, and preliminaries

Convex functions are very important in the field of integral inequalities. A lot of fractional integral inequalities and novel results have been established due to convex functions (for more details, see [1, 8, 13, 14]).

Definition 1

A function \(f: I\rightarrow\mathbb{R}\), where I is an interval in \(\mathbb{R}\), is said to be a convex function if

$$ f\bigl(tx+(1-t)y\bigr)\leq tf(x)+(1-t)f(y) $$
(1)

holds for \(t\in[0,1]\) and \(x,y\in I\).

A convex function \(f: I\rightarrow\mathbb{R}\) is also equivalently defined by the Hadamard inequality

$$ f \biggl(\frac{a+b}{2} \biggr)\leq\frac{1}{b-a} \int_{a}^{b}f(x)\,dx \leq\frac{f(a)+f(b)}{2}, $$

where \(a,b\in I\), \(a< b\).

The concept of m-convexity was introduced in [17] and since then many properties, especially inequalities, have been obtained for this class of functions (see [3, 6, 7, 18]).

Definition 2

A function \(f:[0,b]\rightarrow\mathbb{R}\), \(b>0\) is called m-convex, where \(m\in[0,1]\), if for every \(x,y\in[0,b]\) and \(t\in[0,1]\), we have

$$ f \bigl(tx+m(1-t)y \bigr)\leq tf(x)+m(1-t)f(y). $$

For \(m=1\), we recapture the definition of convex functions, and for \(m=0\), the definition of star-shaped functions defined on \([0,b]\). We recall that a function \(f:[0,b]\to\mathbb{R}\) is called star-shaped if

$$f(tx)\leq tf(x)\quad \mbox{for all } t\in[0,1] \mbox{ and } x\in[0,b]. $$

If we denote by \(K_{m}(b)\) the set of m-convex functions defined on \([0,b]\) for which \(f(0)<0\), then

$$K_{1}(b) \subset K_{m}(b) \subset K_{0}(b), $$

whenever \(m\in(0,1)\). Note that in the class \(K_{1}(b)\) there are only convex functions \(f:[0,b]\to\mathbb{R}\) for which \(f(0)\leq0\) (see [4]), while \(k_{0}(b)\) contains star-shaped functions.

Example 1.1

([6])

The function \(f:[0,\infty)\to\mathbb{R}\), given by

$$f(x)=\frac{1}{12} \bigl(x^{4}-5x^{3}+9x^{2}-5x \bigr), $$

is a \(\frac{16}{17}\)-convex function but it is not m-convex for any \(m\in(\frac{16}{17},1]\).

For more results and inequalities related to m-convex functions, one can consult, for example, [3, 6, 7] along with the references therein.

Recently in [2] Andrić et al. defined an extended generalized Mittag-Leffler function \(E_{\mu,\alpha,l}^{\gamma,\delta,k,c}(\cdot;p)\) as follows.

Definition 3

([2])

Let \(\mu,\alpha,l,\gamma,c\in\mathbb{C}\), \(\Re(\mu),\Re(\alpha ),\Re(l)>0\), \(\Re(c)>\Re(\gamma)>0\) with \(p\geq0\), \(\delta>0\), and \(0< k\leq\delta+\Re(\mu)\). Then the extended generalized Mittag-Leffler function \(E_{\mu,\alpha,l}^{\gamma,\delta,k,c}(t;p)\) is defined by

$$ E_{\mu,\alpha,l}^{\gamma,\delta,k,c}(t;p)= \sum _{n=0}^{\infty }\frac{\beta_{p}(\gamma+nk,c-\gamma)}{\beta(\gamma,c-\gamma)} \frac{(c)_{nk}}{\Gamma(\mu n +\alpha)} \frac{t^{n}}{(l)_{n \delta}}, $$
(2)

where \(\beta_{p}\) is the generalized beta function defined by

$$ \beta_{p}(x,y) = \int_{0}^{1}t^{x-1}(1-t)^{y-1}e^{-\frac {p}{t(1-t)}}\,dt $$

and \((c)_{nk}\) is the Pochhammer symbol defined as \((c)_{nk}=\frac {\Gamma(c+nk)}{\Gamma(c)}\).

In [2] properties of the generalized Mittag-Leffler function are discussed, and it is given that \(E_{\mu,\alpha,l}^{\gamma,\delta,k,c}(t;p)\) is absolutely convergent for \(k<\delta+\Re(\mu)\). Let S be the sum of series of absolute terms of the Mittag-Leffler function \(E_{\mu,\alpha,l}^{\gamma,\delta,k,c}(t;p)\), then we have \(\vert E_{\mu,\alpha,l}^{\gamma,\delta,k,c}(t;p) \vert \leq S\). We use this property of Mittag-Leffler function in our results where we need.

The corresponding left and right sided extended generalized fractional integral operators are defined as follows.

Definition 4

([2])

Let \(\omega,\mu,\alpha,l,\gamma,c\in\mathbb{C}\), \(\Re(\mu),\Re(\alpha),\Re(l)>0\), \(\Re(c)>\Re(\gamma)>0\) with \(p\geq0\), \(\delta>0\) and \(0< k\leq \delta+\Re(\mu)\). Let \(f\in L_{1}[a,b]\) and \(x\in[a,b]\). Then the extended generalized fractional integral operators \(\epsilon_{\mu,\alpha,l,\omega,a^{+}}^{\gamma,\delta,k,c}f \) and \(\epsilon_{\mu,\alpha,l,\omega,b^{-}}^{\gamma,\delta,k,c}f\) are defined by

$$ \bigl( \epsilon_{\mu,\alpha,l,\omega,a^{+}}^{\gamma,\delta,k,c}f \bigr) (x;p)= \int_{a}^{x}(x-t)^{\alpha-1}E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega(x-t)^{\mu};p\bigr)f(t)\,dt $$
(3)

and

$$ \bigl( \epsilon_{\mu,\alpha,l,\omega,b^{-}}^{\gamma,\delta,k,c}f \bigr) (x;p)= \int_{x}^{b}(t-x)^{\alpha-1}E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega(t-x)^{\mu};p\bigr)f(t)\,dt. $$
(4)

From extended generalized fractional integral operators, we have

$$\begin{aligned} & (\epsilon_{\mu,\alpha,l,\omega,a^{+}}^{\gamma,\delta,k,c}1 )(x;p) \\ &\quad = \int_{a}^{x}(x-t)^{\alpha-1}E_{\mu,\alpha,l}^{\gamma,\delta,k,c}(w(x-t)^{\mu};p)\,dt \\ &\quad = \int_{a}^{x}(x-t)^{\alpha-1}\sum_{n=0}^{\infty}\frac{\mathrm{B}_{p}(\gamma+nk,c-\gamma)}{\mathrm{B}(\gamma,c-\gamma)}\frac {(c)_{nk}}{\Gamma(\mu n+\alpha)}\frac{w^{n}(x-t)^{\mu n}}{(l)_{n\delta}}\,dt \\ &\quad =\sum_{n=0}^{\infty}\frac{\mathrm{B}_{p}(\gamma+nk,c-\gamma )}{\mathrm{B}(\gamma,c-\gamma)}\frac{(c)_{nk}}{\Gamma(\mu n+\alpha)}\frac{w^{n} }{(l)_{n\delta}} \int_{a}^{x}(x-t)^{\mu n+\alpha-1}\,dt \\ &\quad = (x-a )^{\alpha}\sum_{n=0}^{\infty}\frac{\mathrm{B}_{p}(\gamma+nk,c-\gamma)}{\mathrm{B}(\gamma,c-\gamma)}\frac {(c)_{nk}}{\Gamma(\mu n+\alpha)}\frac{w^{n} }{(l)_{n\delta}} (x-a )^{\mu n}\frac{1}{\mu n + \alpha}. \end{aligned}$$

Hence

$$ \bigl(\epsilon_{\mu,\alpha,l,\omega,a^{+}}^{\gamma,\delta,k,c}1 \bigr) (x;p)= (x-a )^{\alpha} E_{\mu,\alpha +1,l}^{\gamma,\delta,k,c}\bigl(w(x-a)^{\mu};p \bigr), $$

and similarly

$$ \bigl(\epsilon_{\mu,\alpha,l,\omega,b^{-}}^{\gamma,\delta,k,c}1 \bigr) (x;p)= (b-x )^{\alpha} E_{\mu,\alpha +1,l}^{\gamma,\delta,k,c}\bigl(w(b-x)^{\mu};p \bigr). $$

We use the following notations in our results:

$$ C_{\alpha,a^{+}}(x;p)= \bigl(\epsilon_{\mu,\alpha,l,\omega,a^{+}}^{\gamma,\delta,k,c}1 \bigr) (x;p) $$
(5)

and

$$ C_{\alpha,b^{-}}(x;p)= \bigl(\epsilon_{\mu,\alpha,l,\omega,b^{-}}^{\gamma,\delta,k,c}1 \bigr) (x;p). $$
(6)

For more information related to Mittag-Leffler functions and corresponding fractional integral operators, the readers are referred to [912, 15, 16, 19].

In this paper we give general fractional integral inequalities for convex and m-convex functions by involving an extended Mittag-Leffler function and deduce some results already published in [1, 5, 6, 8, 13]. Also we give a Hadamard type inequality for convex and m-convex functions by involving an extended Mittag-Leffler function.

2 Main results

Here we give some fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function and corresponding fractional integral operators given in (3) and (4). The following lemma is useful to establish the results.

Lemma 2.1

Let \(f:[a,mb]\rightarrow\mathbb{R}\) be a differentiable function such that \(f'\in L_{1}[a,mb]\) with \(0\leq a< mb\). Also let \(g:[a,mb]\rightarrow\mathbb{R}\) be a continuous function on \([a,mb]\), then the following identity for extended generalized fractional integral operators holds:

$$\begin{aligned} & \biggl( \int_{a}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha}\bigl[f(a)+f(mb) \bigr] \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int_{t}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \\ &\quad = \int_{a}^{mb} \biggl( \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha}f'(t)\,dt \\ &\qquad{} - \int_{a}^{mb} \biggl( \int_{t}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha }f'(t)\,dt. \end{aligned}$$
(7)

Proof

On integrating by parts one can have

$$\begin{aligned} & \int_{a}^{mb} \biggl( \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha}f'(t)\,dt \\ &\quad = \biggl( \int_{a}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha}f(mb) \\ &\qquad {}-\alpha \int _{a}^{mb} \biggl( \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k,c}\bigl(\omega t^{\mu };p \bigr)f(t)\,dt \end{aligned}$$
(8)

and

$$\begin{aligned} & \int_{a}^{mb} \biggl( \int_{t}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha}f'(t)\,dt \\ &\quad =- \biggl( \int_{a}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha}f(a) \\ & \qquad {}+\alpha \int _{a}^{mb} \biggl( \int_{t}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha-1}g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k,c}\bigl(\omega t^{\mu };p \bigr)f(t)\,dt. \end{aligned}$$
(9)

Subtracting (9) from (8), we get (7) which is the required identity. □

If we take \(m=1\) in (7), then we get the following identity for a convex function.

Corollary 2.2

Let \(f:[a,b]\subseteq[0,\infty)\rightarrow\mathbb{R}\) be a differentiable function such that \(f'\in L_{1}[a,b]\) with \(a< b\). Also let \(g:[a,b]\rightarrow\mathbb{R}\) be continuous on \([a,b]\), then the following identity for extended generalized fractional integral operators holds:

$$\begin{aligned} & \biggl( \int_{a}^{b}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha}\bigl[f(a)+f(b) \bigr] \\ &\qquad{} -\alpha \int _{a}^{b} \biggl( \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k,c}\bigl(\omega t^{\mu };p\bigr)f(t)\,dt \\ &\qquad{} -\alpha \int_{a}^{b} \biggl( \int_{t}^{b}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c}\bigl( \omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha -1}g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega t^{\mu };p\bigr)f(t)\,dt \\ &\quad = \int_{a}^{b} \biggl( \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha}f'(t)\,dt \\ &\qquad{} - \int_{a}^{b} \biggl( \int_{t}^{b}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c}\bigl( \omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha}f'(t)\,dt. \end{aligned}$$
(10)

We use identity (7) to establish the following fractional integral inequality.

Theorem 2.3

Let \(f:[a,mb]\rightarrow\mathbb{R}\) be a differentiable function such that \(f'\in L_{1}[a,mb]\) with \(0\leq a< mb\). Also let \(g:[a,mb]\rightarrow\mathbb{R}\) be a continuous function on \([a,mb]\). If \(|f'|\) is an m-convex function on \([a,mb]\), then the following inequality for extended generalized fractional integral operators holds:

$$\begin{aligned} & \biggl\vert \biggl( \int_{a}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha}\bigl(f(a)+f(mb) \bigr) \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int_{t}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \biggr\vert \\ &\quad \leq\frac{(mb-a)^{\alpha+1} \Vert g \Vert _{\infty}^{\alpha}S^{\alpha }}{(\alpha+1)}\bigl( \bigl\vert f'(a) \bigr\vert +m \bigl\vert f'(b) \bigr\vert \bigr) \end{aligned}$$
(11)

for \(k<\delta+\Re(\mu)\) and \(\Vert g \Vert_{\infty}= \sup_{t\in[a,mb]}|g(t)|\).

Proof

From Lemma 2.1, we have

$$\begin{aligned} & \biggl\vert \biggl( \int_{a}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha}\bigl(f(a)+f(mb) \bigr) \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int _{t}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \biggr\vert \\ & \quad \leq \int_{a}^{mb} \biggl\vert \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr\vert ^{\alpha } \bigl\vert f'(t) \bigr\vert \,dt \\ &\qquad{} + \int_{a}^{mb} \biggl\vert \int_{t}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr\vert ^{\alpha} \bigl\vert f'(t) \bigr\vert \,dt. \end{aligned}$$
(12)

Using absolute convergence of the Mittag-Leffler function and \(\Vert g \Vert_{\infty}= \sup_{t\in[a,b]}|g(t)|\), we have

$$\begin{aligned} & \biggl\vert \biggl( \int_{a}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha}\bigl(f(a)+f(mb) \bigr) \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int_{t}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \biggr\vert \\ & \quad \leq \Vert g \Vert _{\infty}^{\alpha}S^{\alpha} \biggl( \int _{a}^{mb}(t-a)^{\alpha} \bigl\vert f'(t) \bigr\vert \,dt+ \int_{a}^{mb}(mb-t)^{\alpha } \bigl\vert f'(t) \bigr\vert \,dt \biggr). \end{aligned}$$
(13)

Since \(|f'|\) is an m-convex function, we have

$$ \bigl\vert f'(t) \bigr\vert \leq \frac{mb-t}{mb-a} \bigl\vert f'(a) \bigr\vert +m \frac{t-a}{mb-a} \bigl\vert f'(b) \bigr\vert $$
(14)

for \(t\in[a,mb]\).

Using (14) in (13), we have

$$\begin{aligned} & \biggl\vert \biggl( \int_{a}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha}\bigl(f(a)+f(mb) \bigr) \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int_{t}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \biggr\vert \\ & \quad \leq \Vert g \Vert _{\infty}^{\alpha}S^{\alpha} \biggl( \int _{a}^{mb}(t-a)^{\alpha} \biggl( \frac{mb-t}{mb-a} \bigl\vert f'(a) \bigr\vert +m \frac {t-a}{mb-a} \bigl\vert f'(b) \bigr\vert \biggr)\,dt \\ &\qquad{} + \int_{a}^{mb}(mb-t)^{\alpha} \biggl( \frac {mb-t}{mb-a} \bigl\vert f'(a) \bigr\vert +m \frac{t-a}{mb-a} \bigl\vert f'(b) \bigr\vert \biggr)\,dt \biggr) . \end{aligned}$$
(15)

After simple calculation of the above inequality, we get (11) which is required. □

If we take \(m=1\) in (11), then we get the following result for a convex function.

Corollary 2.4

Let \(f:[a,b]\subseteq[0,\infty)\rightarrow\mathbb{R}\) be a differentiable function such that \(f'\in L_{1}[a,b]\) with \(a< b\). Also let \(g:[a,b]\rightarrow\mathbb{R}\) be a continuous function on \([a,b]\). If \(|f'|\) is a convex function on \([a,b]\), then the following inequality for extended generalized fractional integral operators holds:

$$\begin{aligned} & \biggl\vert \biggl( \int_{a}^{b}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha}\bigl[f(a)+f(b) \bigr] \\ &\quad{} -\alpha \int_{a}^{b} \biggl( \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k,c}\bigl(\omega t^{\mu };p\bigr)f(t)\,dt \\ &\quad{} -\alpha \int_{a}^{b} \biggl( \int_{t}^{b}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c}\bigl( \omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha -1}g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega t^{\mu };p\bigr)f(t)\,dt \biggr\vert \\ & \leq\frac{(b-a)^{\alpha+1} \Vert g \Vert _{\infty}^{\alpha}S^{\alpha }}{(\alpha+1)}\bigl[ \bigl\vert f'(a) \bigr\vert + \bigl\vert f'(b) \bigr\vert \bigr] \end{aligned}$$
(16)

for \(k<\delta+\Re(\mu)\) and \(\Vert g \Vert_{\infty}= \sup_{t\in[a,b]}|g(t)|\).

Remark 2.5

In Theorem 2.3.

  1. (i)

    If we put \(p=0\), then we get [6, Theorem 3.2].

  2. (ii)

    If we put \(\omega=p=0\) and \(m=1\), then we get [13, Theorem 6].

  3. (iii)

    If we take \(\omega=p=0\), \(m=1\), \(\alpha=\frac{\mu }{k}\), and \(g(s)=1\), then we get [8, Corollary 2.3].

  4. (iv)

    For \(g(s)=1\) along with \(\omega=p=0\), \(m=1\), and \(\alpha =\mu\), we get [13, Corollary 2].

Remark 2.6

In Corollary 2.4.

  1. (i)

    If we put \(p=0\), then we get [1, Theorem 3.2].

  2. (ii)

    If we put \(\omega=p=0\), then we get [13, Theorem 6].

  3. (iii)

    For \(\omega=p=0\), \(\alpha=\frac{\mu}{k}\), and \(g(s)=1\), we get [8, Corollary 2.3].

  4. (iv)

    For \(g(s)=1\) along with \(\omega=p=0\), we get [13, Corollary 2].

Next we give the following fractional integral inequality.

Theorem 2.7

Let \(f:[a,mb]\rightarrow\mathbb{R}\) be a differentiable function such that \(f\in L_{1}[a,mb]\) with \(0\leq a< mb\). Also let \(g:[a,mb]\rightarrow\mathbb{R}\) be a continuous function on \([a,mb]\). If \(|f'|^{q}\) is a convex function on \([a,mb]\), then for \(q>0\) the following inequality for extended generalized fractional integral operators holds:

$$\begin{aligned} & \biggl\vert \biggl( \int_{a}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha}\bigl(f(a)+f(mb) \bigr) \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int_{t}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \biggr\vert \\ &\quad \leq\frac{2(mb-a)^{\alpha+1} \Vert g \Vert _{\infty}^{\alpha}S^{\alpha }}{(\alpha p+1)^{\frac{1}{q}}} \biggl(\frac { \vert f'(a) \vert ^{q}+m \vert f'(b) \vert ^{q}}{2} \biggr)^{\frac{1}{q}} \end{aligned}$$
(17)

for \(k<\delta+\Re(\mu)\) and \(\Vert g \Vert_{\infty}= \sup_{t\in[a,mb]}|g(t)|\) and \(\frac{1}{p}+\frac{1}{q}=1\).

Proof

From Lemma 2.1 and by using Hölder’s inequality, we have

$$\begin{aligned} & \biggl\vert \biggl( \int_{a}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha}\bigl(f(a)+f(mb) \bigr) \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int_{t}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \biggr\vert \\ & \quad \leq \biggl( \int_{a}^{mb} \biggl\vert \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr\vert ^{\alpha p}\,dt \biggr)^{\frac{1}{p}} \biggl( \int_{a}^{mb} \bigl\vert f'(t) \bigr\vert ^{q}\,dt \biggr)^{\frac{1}{q}} \\ &\qquad{} + \biggl( \int_{a}^{mb} \biggl\vert \int_{t}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr\vert ^{\alpha p}\,dt \biggr)^{\frac{1}{p}} \biggl( \int_{a}^{mb} \bigl\vert f'(t) \bigr\vert ^{q}\,dt \biggr)^{\frac{1}{q}}. \end{aligned}$$
(18)

Using absolute convergence of the Mittag-Leffler function and \(\Vert g \Vert_{\infty}= \sup_{t\in[a,b]}|g(t)|\), we have

$$\begin{aligned} & \biggl\vert \biggl( \int_{a}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha}\bigl(f(a)+f(mb) \bigr) \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int _{t}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \biggr\vert \\ & \quad \leq \Vert g \Vert _{\infty}^{\alpha}S^{\alpha} \biggl( \biggl( \int _{a}^{mb} \vert t-a \vert ^{\alpha p}\,dt \biggr)^{\frac{1}{p}} \\ &\qquad {}+ \biggl( \int _{a}^{mb} \vert mb-t \vert ^{\alpha p}\,dt \biggr)^{\frac{1}{p}} \biggr) \biggl( \int _{a}^{mb} \bigl\vert f'(t) \bigr\vert ^{q}\,dt \biggr)^{\frac{1}{q}}. \end{aligned}$$
(19)

Since \(|f'(t)|^{q}\) is an m-convex function, we have

$$ \bigl\vert f'(t) \bigr\vert ^{q}\leq \frac{mb-t}{mb-a} \bigl\vert f'(a) \bigr\vert ^{q}+m \frac{t-a}{mb-a} \bigl\vert f'(b) \bigr\vert ^{q}. $$
(20)

Using (20) in (19), we have

$$\begin{aligned} & \biggl\vert \biggl( \int_{a}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha}\bigl(f(a)+f(mb) \bigr) \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \\ &\qquad{} -\alpha \int_{a}^{mb} \biggl( \int_{t}^{mb}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega s^{\mu}; p\bigr)\,ds \biggr)^{\alpha-1} g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega t^{\mu}; p\bigr)f(t)\,dt \biggr\vert \\ & \quad \leq \Vert g \Vert _{\infty}^{\alpha}S^{\alpha} \biggl( \biggl( \int _{a}^{mb} \vert t-a \vert ^{\alpha p}\,dt \biggr)^{\frac{1}{p}}+ \biggl( \int _{a}^{mb} \vert mb-t \vert ^{\alpha p}\,dt \biggr)^{\frac{1}{p}} \biggr) \\ & \qquad {}\times \biggl( \int_{a}^{mb}\frac{mb-t}{mb-a} \bigl\vert f'(a) \bigr\vert ^{q}+m\frac {t-a}{mb-a} \bigl\vert f'(b) \bigr\vert ^{q} \biggr)^{\frac{1}{q}} . \end{aligned}$$
(21)

After simple calculation of the above inequality, we get (17) which is required. □

If we take \(m=1\) in (17), then we get the following result for a convex function.

Corollary 2.8

Let \(f:[a,b]\subseteq[0,\infty)\rightarrow\mathbb{R}\) be a differentiable function such that \(f'\in L_{1}[a,b]\) with \(a< b\). Also let \(g:[a,b]\rightarrow\mathbb{R}\) be a continuous function on \([a,b]\). If \(|f'|^{q}\) is a convex function on \([a,b]\), then for \(q>0\) the following inequality for extended generalized fractional integral operators holds:

$$\begin{aligned} & \biggl\vert \biggl( \int_{a}^{b}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha}\bigl[f(a)+f(b) \bigr] \\ &\qquad{} -\alpha \int_{a}^{b} \biggl( \int_{a}^{t}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha -1}g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega t^{\mu};p\bigr)f(t)\,dt \\ &\qquad{} -\alpha \int_{a}^{b} \biggl( \int_{t}^{b}g(s)E_{\mu,\alpha,l}^{\gamma,\delta,k,c}\bigl( \omega s^{\mu};p\bigr)\,ds \biggr)^{\alpha -1}g(t)E_{\mu,\alpha,l}^{\gamma,\delta,k,c} \bigl(\omega t^{\mu };p\bigr)f(t)\,dt \biggr\vert \\ &\quad \leq\frac{2(b-a)^{\alpha+1} \Vert g \Vert _{\infty}^{\alpha}S^{\alpha }}{(\alpha p+1)^{\frac{1}{q}}} \biggl[\frac { \vert f'(a) \vert ^{q}+ \vert f'(b) \vert ^{q}}{2} \biggr]^{\frac{1}{q}} \end{aligned}$$
(22)

for \(k<\delta+\Re(\mu)\) and \(\Vert g \Vert_{\infty}= \sup_{t\in[a,b]}|g(t)|\) and \(\frac{1}{p}+\frac{1}{q}=1\).

Remark 2.9

In Theorem 2.7.

  1. (i)

    If we put \(p=0\), then we get [6, Theorem 3.6].

  2. (ii)

    If we put \(\omega=p=0\) and \(m=1\), then we get [13, Theorem 7].

  3. (iii)

    If we take \(\omega=p=0\), \(m=1\) along with \(\alpha=\frac {\mu}{k}\), then we get [8, Theorem 2.5].

  4. (iv)

    If we take \(g(s)=1\), \(m=1\), and \(\omega=p=0\), then we get [5, Theorem 2.3].

  5. (v)

    If we put \(\omega=p=0\), \(m=1\), and \(\alpha=1\), then we get [5, Corollary 3].

Remark 2.10

In Corollary 2.8.

  1. (i)

    If we put \(p=0\), then we get [1, Theorem 3.5].

  2. (ii)

    If we put \(\omega=p=0\), then we get [13, Theorem 7].

  3. (iii)

    If we put \(\omega=p=0\), \(\alpha=1\), then we get [13, Corollary 3].

  4. (iv)

    If we take \(\omega=p=0\) along with \(\alpha=\frac{\mu }{k}\), then we get [8, Theorem 2.5].

  5. (v)

    If we take \(g(s)=1\) and \(\omega=p=0\), then we get [5, Theorem 2.3].

In the next result we give Hadamard type inequalities for m-convex functions via an extended Mittag-Leffler function.

Theorem 2.11

Let \(f:[a,mb]\rightarrow\mathbb{R}\) be a function such that \(f\in L_{1}[a,mb]\) with \(0\leq a< mb\). If f is m-convex on \([a,mb]\), then the following inequalities for extended generalized fractional integral operators hold:

$$\begin{aligned} &2f \biggl(\frac{a+mb}{2} \biggr)C_{\alpha, (\frac {a+mb}{2} )^{+}}(mb;p) \\ &\quad \leq \bigl( \epsilon_{\mu,\alpha,l,\omega',(\frac {a+mb}{2})^{+}}^{\gamma,\delta,k, c}f \bigr) (mb;p) + m^{\alpha+1} \bigl( \epsilon_{\mu,\alpha,l,m^{\mu}\omega',(\frac {a+mb}{2m})^{-}}^{\gamma,\delta,k, c}f \bigr) \biggl( \frac {a}{m};p \biggr) \\ &\quad \leq\frac{1}{mb-a} \biggl( f(a)-m^{2}f \biggl(\frac{a}{m^{2}} \biggr) \biggr)C_{\alpha+1, (\frac{a+mb}{2} )^{+}}(mb;p) \\ &\qquad{} +m^{\alpha+1} \biggl( f(b)+mf \biggl(\frac{a}{m^{2}} \biggr) \biggr)C_{\alpha, (\frac{a+mb}{2m} )^{-}} \biggl(\frac {a}{m};p \biggr), \end{aligned}$$
(23)

where \(\omega'=\frac{2^{\mu}\omega}{(mb-a)^{\mu}}\).

Proof

Since f is an m-convex function, we have

$$ 2f \biggl(\frac{a+mb}{2} \biggr)\leq f \biggl( \frac{t}{2}a+\frac {2-t}{2}mb \biggr)+mf \biggl(\frac{2-t}{2m}a+ \frac{t}{2}b \biggr). $$
(24)

Also from m-convexity of f, we have

$$\begin{aligned} &f \biggl(\frac{t}{2}a+m\frac{2-t}{2}b \biggr)+mf \biggl( \frac {2-t}{2m}a+\frac{t}{2}b \biggr) \\ &\quad \leq\frac{t}{2} \biggl(f(a)-m^{2}f \biggl(\frac{a}{m^{2}} \biggr) \biggr)+m \biggl(f(b)+mf \biggl(\frac{a}{m^{2}} \biggr) \biggr). \end{aligned}$$
(25)

Multiplying (24) by \(t^{\alpha-1}E_{\mu,\alpha,l}^{\gamma,\delta,k, c}(\omega t^{\mu}; p)\) on both sides and then integrating over \([0,1]\), we have

$$\begin{aligned} &2f \biggl(\frac{a+mb}{2} \biggr) \int_{0}^{1}t^{\alpha-1}E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega t^{\mu}; p\bigr)\,dt \\ &\quad \leq \int_{0}^{1}t^{\alpha-1}E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega t^{\mu}; p\bigr)f \biggl(\frac{t}{2}a+ \frac{2-t}{2}mb \biggr)\,dt \\ &\qquad{} +m \int_{0}^{1}t^{\alpha-1}E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega t^{\mu}; p\bigr)f \biggl(\frac{2-t}{2m}a+ \frac{t}{2}b \biggr)\,dt. \end{aligned}$$
(26)

Putting \(u=\frac{t}{2}a+\frac{2-t}{2}mb\) and \(v=\frac {2-t}{2m}a+\frac{t}{2}b\) in (26), we have

$$\begin{aligned} &2f \biggl(\frac{a+mb}{2} \biggr) \int_{\frac {a+mb}{2}}^{mb}(mb-u)^{\alpha-1} E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\bigl(\omega' (mb-u)^{\mu}; p\bigr)\,du \\ & \quad \leq \int_{\frac{a+mb}{2}}^{mb}(mb-u)^{\alpha-1}E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega' (mb-u)^{\mu}; p\bigr)f(u)\,du \\ &\qquad{} +m^{\alpha+1} \int_{\frac{a}{m}}^{\frac{a+mb}{2m}} \biggl(v-\frac {a}{m} \biggr)^{\alpha-1}E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \biggl(m^{\mu} \omega'\biggl(v-\frac{a}{m}\biggr)^{\mu}:p \biggr)f(v)\,dv . \end{aligned}$$

By using (3), (4), and (5) we get the first inequality of (23).

Now multiplying (25) by \(t^{\alpha-1}E_{\mu,\alpha,l}^{\gamma,\delta,k, c}(\omega t^{\mu}; p)\) on both sides and then integrating over \([0,1]\), we have

$$\begin{aligned} & \int_{0}^{1}t^{\alpha-1}E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega t^{\mu}; p\bigr)f \biggl(\frac{t}{2}a+m \frac{2-t}{2}b \biggr)\,dt \\ &\qquad{} +m \int_{0}^{1}t^{\alpha-1}E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega t^{\mu}; p\bigr)f \biggl(\frac{2-t}{2m}a+ \frac{t}{2}b \biggr) \\ & \quad \leq\frac{1}{2} \biggl(f(a)-m^{2}f\biggl(\frac{a}{m^{2}} \biggr) \biggr) \int _{0}^{1}t^{\alpha}E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega t^{\mu}; p\bigr)\,dt \\ &\qquad{} +m \biggl(f(b)+mf\biggl(\frac{a}{m^{2}}\biggr) \biggr) \int_{0}^{1}t^{\alpha -1}E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega t^{\mu}; p\bigr)\,dt. \end{aligned}$$
(27)

Putting \(u=\frac{t}{2}a+m\frac{2-t}{2}b\) and \(v=\frac {2-t}{2m}a+\frac{t}{2}b\) in (27), we have

$$\begin{aligned} & \int_{\frac{a+mb}{2}}^{mb}(mb-u)^{\alpha-1}E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega' (mb-u)^{\mu};p\bigr)f(u)\,du \\ &\qquad{} + \int_{\frac{a}{m}}^{\frac{a+mb}{2m}} \biggl(v-\frac{a}{m} \biggr)^{\alpha-1}E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\biggl(m^{\mu} \omega' \biggl(v-\frac{a}{m} \biggr)^{\mu};p \biggr)f(v)\,dv \\ &\quad \leq\frac{1}{2} \biggl( f(a)-m^{2}f\biggl(\frac{a}{m^{2}} \biggr) \biggr) \int _{\frac{a+mb}{2}}^{mb}(mb-u)^{\alpha}E_{\mu,\alpha,l}^{\gamma,\delta,k, c} \bigl(\omega' (mb-u)^{\mu};p \bigr)\,dt \\ &\qquad{} +m^{\alpha+1} \biggl( f(b)+mf\biggl(\frac{a}{m^{2}}\biggr) \biggr) \\ &\qquad {}\times \int_{\frac {a}{m}}^{\frac{a+mb}{2m}} \biggl(v-\frac{a}{m} \biggr)^{\alpha -1}E_{\mu,\alpha,l}^{\gamma,\delta,k, c}\biggl(m^{\mu} \omega' \biggl(v-\frac{a}{m} \biggr)^{\mu};p \biggr)\,dt. \end{aligned}$$
(28)

By using (3), (4), and (6), we get the second inequality of (23). □

If we take \(m=1\) in (23), then we get the following Hadamard type inequality for a convex function.

Corollary 2.12

Let \(f:[a,b]\subseteq[0,\infty)\rightarrow\mathbb{R}\) be a function such that \(f\in L_{1}[a,b]\) with \(a< b\). If f is convex on \([a,b]\), then the following inequalities for extended generalized fractional integral operators hold:

$$\begin{aligned} &f \biggl(\frac{a+b}{2} \biggr)C_{\alpha, (\frac{a+b}{2} )^{+}}(b;p) \\ &\quad \leq \bigl[ \bigl( \epsilon_{\mu,\alpha,l,\omega ',(\frac{a+b}{2})^{+}}^{\gamma,\delta,k,c}f \bigr) (b;p) + \bigl( \epsilon_{\mu,\alpha,l,\omega',(\frac {a+b}{2})_{-}}^{\gamma,\delta,k,c}f \bigr) (a;p) \bigr] \\ &\quad \leq\frac{f(a)+f(b)}{2}C_{\alpha, (\frac{a+b}{2} )^{-}}(a;p), \end{aligned}$$
(29)

where \(\omega'=\frac{2^{\mu}\omega}{(b-a)^{\mu}}\).

Remark 2.13

In Theorem 2.11.

  1. (i)

    If we put \(p=0\), then we get [6, Theorem 3.10].

  2. (ii)

    If we put \(\omega=p=0\), \(m=1\), and \(\alpha=1\), then we get the classical Hadamard inequality.

Remark 2.14

In Corollary 2.12.

  1. (i)

    If we put \(p=0\), then we get [1, Theorem 3.9].

  2. (ii)

    If we put \(\omega=p=0\) and \(\alpha=1\), then we get the classical Hadamard inequality.

  3. (iii)

    If we take \(\omega=p=0\), then we get [14, Theorem 4].

3 Concluding remarks

We have investigated more general fractional integral inequalities. By selecting specific values of parameters quite interesting results can be obtained. For example selecting \(p=0\), fractional integral inequalities for fractional integral operators defined by Salim and Faraj in [12], selecting \(l=\delta=1\), fractional integral inequalities for fractional integral operators defined by Rahman et al. in [11], selecting \(p=0\) and \(l=\delta=1\), fractional integral inequalities for fractional integral operators defined by Shukla and Prajapati in [15] (see also [16]), selecting \(p=0\) and \(l=\delta=k=1\), fractional integral inequalities for fractional integral operators defined by Prabhakar in [10], selecting \(p=\omega=0\), fractional integral inequalities for Riemann–Liouville fractional integral operators.

References

  1. Abbas, G., Khan, K.A., Farid, G., Rehman, A.U.: Generalizations of some fractional integral inequalities via generalized Mittag-Leffler function. J. Inequal. Appl. 2017(1), 121 (2017)

    Article  MathSciNet  Google Scholar 

  2. Andrić, M., Farid, G., Pečarić, J.: A generalization of Mittag-Leffler function associated with Opial type inequalities due to Mitrinović and Pečarić. Submitted

  3. Bakula, M.K., Ozdemir, M.E., Pečarić, J.: Hadamard type inequalities for m-convex and \((\alpha,m)\)-convex functions. J. Inequal. Pure Appl. Math. 9(4), Article 9 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Dragomir, S.S.: On some new inequalities of Hermite–Hadamard type for m-convex functions. Tamkang J. Math. 33(1), 45–55 (2002)

    MathSciNet  Google Scholar 

  5. Dragomir, S.S., Agarwal, R.P.: Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula. Appl. Math. Lett. 11(5), 91–95 (1998)

    Article  MathSciNet  Google Scholar 

  6. Farid, G., Abbas, G.: Generalizations of some fractional integral inequalities for m-convex functions via generalized Mittag-Leffler function. Stud. Univ. Babeş–Bolyai, Math. 63(1), 23–35 (2018)

    Article  MathSciNet  Google Scholar 

  7. Farid, G., Marwan, M., Rehman, A.U.: New mean value theorems and generalization of Hadamard inequality via coordinated m-convex functions. J. Inequal. Appl. 2015(1), 283 (2015)

    Article  MathSciNet  Google Scholar 

  8. Farid, G., Rehman, A.U.: Generalizations of some integral inequalities for fractional integrals. Ann. Math. Sil. 32(1), 201–214 (2018)

    MathSciNet  Google Scholar 

  9. Parmar, R.K.: A class of extended Mittag-Leffler functions and their properties related to integral transforms and fractional calculus. Mathematics 3, 1069–1082 (2015)

    Article  MathSciNet  Google Scholar 

  10. Prabhakar, T.R.: A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19, 7–15 (1971)

    MathSciNet  MATH  Google Scholar 

  11. Rahman, G., Baleanu, D., Qurashi, M.A., Purohit, S.D., Mubeen, S., Arshad, M.: The extended Mittag-Leffler function via fractional calculus. J. Nonlinear Sci. Appl. 10, 4244–4253 (2017)

    Article  MathSciNet  Google Scholar 

  12. Salim, T.O., Faraj, A.W.: A generalization of Mittag-Leffler function and integral operator associated with integral calculus. J. Fract. Calc. Appl. 3(5), 1–13 (2012)

    Google Scholar 

  13. Sarikaya, M.Z., Erden, S.: On the Hermite–Hadamard Fejér type integral inequality for convex functions. Turk. J. Anal. Number Theory 2(3), 85–89 (2014)

    Article  Google Scholar 

  14. Sarikaya, M.Z., Yildirim, H.: On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 17(2), 1049–1059 (2017)

    Article  MathSciNet  Google Scholar 

  15. Shukla, A.K., Prajapati, J.C.: On a generalization of Mittag-Leffler function and its properties. J. Math. Anal. Appl. 336, 797–811 (2007)

    Article  MathSciNet  Google Scholar 

  16. Srivastava, H.M., Tomovski, Z.: Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211(1), 198–210 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Toader, G.H.: Some generalization of convexity. In: Proc. Colloq. Approx. Optim, Cluj Napoca (Romania), pp. 329–338 (1984)

    Google Scholar 

  18. Toader, G.H.: Some inequalities for m-convex functions. Stud. Univ. Babeş–Bolyai, Math. 38(1), 21–28 (1993)

    MathSciNet  MATH  Google Scholar 

  19. Tomovski, Z., Hiller, R., Srivastava, H.M.: Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler function. Integral Transforms Spec. Funct. 21(11), 797–814 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the editor and referees for their careful reading and valuable suggestions to make the article reader friendly. The research work of Ghulam Farid is supported by COMSATS University Islamabad.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution in this article. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Mehmood.

Ethics declarations

Competing interests

It is declared that authors have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farid, G., Khan, K.A., Latif, N. et al. General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function. J Inequal Appl 2018, 243 (2018). https://doi.org/10.1186/s13660-018-1830-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-018-1830-8

MSC

Keywords