Skip to content

Advertisement

  • Research
  • Open Access

Duality in nonlinear programming problems under fuzzy environment with exponential membership functions

Journal of Inequalities and Applications20182018:218

https://doi.org/10.1186/s13660-018-1812-x

  • Received: 11 April 2018
  • Accepted: 13 August 2018
  • Published:

Abstract

In this paper, we have established appropriate duality relations for a general nonlinear optimization problem under fuzzy environment, taking exponential membership functions and using the aspiration level approach. A numerical example has also been shown to justify the results presented in the paper.

Keywords

  • Fuzzy optimization
  • Duality results
  • Exponential membership function
  • Mangasarian dual

MSC

  • 90C26
  • 90C30
  • 90C70
  • 49N15

1 Introduction

Zadeh in 1965 introduced fuzzy set theory by publishing the first article in this area. He generalized the classical notion of a set and a proposition to accommodate fuzzyness. This has been applied in diverse fields such as machine learning, multi-attribute decision making, supply chain problems, management sciences, etc. Fuzzy control, which directly uses fuzzy rules, is the important application in fuzzy theory. Fuzzy set theory is also applicable in the real life case like controlling smart traffic light. The controller is designed in such a way that it changes the cycle time depending upon the densities of cars behind red and green lights.

The fuzzy set theory provides various logical operators that allow the aggregation of several criteria to just one criterion. These operators can be evaluated with respect to axiomatic requirements, numeric efficiency robustness, degree of compensation among the criteria, and ability to model expert behavior.

Bellman and Zadeh [1] proposed the idea of decision making in fuzzy environment. After the pioneering work on fuzzy linear programming problems (FLPP) in Tanaka et al. [2] and Zimmermann [3], several kinds of (FLPP) along with the different solution methodologies have been discussed in the literature. Many researchers, including Lai and Hwang [4], Shaochang [5], Buckley [6, 7], and Negi [8], have considered the problems where all parameters are fuzzy. Lai and Hwang [4] assumed that the parameters have a triangular possibility distribution. Using multiobjective linear programming methods, they provided an auxiliary model related to it.

Rodder and Zimmermann [9] were the first who studied the duality of (FLPP), considering the economic interpretation of the dual variables. After that, many interesting results regarding the duality of (FLPP) have been investigated by several researchers [1018]. Zhang et al. [19] investigated the duality theory in fuzzy mathematical programming problems with fuzzy coefficients. Ovchinnikov [20] characterized Zadeh’s extension principle in terms of the duality principle. Introducing the concept of convex fuzzy variables for fuzzy constrained programming, Yang [21] proved a convexity theorem with convex fuzzy parameters and a duality theorem for fuzzy linear constrained programming. Later on, Farhadinia and Kamyad [22] extended the duality theorems for the crisp conic optimization problems to the fuzzy conic programming problems based on the convexity-like concept of fuzzy mappings and the parameterized representation of fuzzy numbers.

The paper is organized as follows. In Sect. 2, we construct a general fuzzy nonlinear programming problem and formulate its Mangasarian type dual. Further, we prove duality theorems using exponential membership functions under convexity assumptions. In the next section, we illustrate a numerical example.

2 Definitions and preliminaries

In the crisp sense, a general nonlinear primal-dual pair can be expressed as follows:

Primal Problem (MP)
$$\begin{aligned}& \mbox{Minimize } f(x) \\& \quad \mbox{s.t. } g_{i}(x)\leq0,\quad i=1,2,\ldots,m, \\& \hphantom{\quad \mbox{s.t. }} x\in X. \end{aligned}$$
Dual Problem (MD)
$$\begin{aligned}& \mbox{Maximize } L(w,u)=f(w)+ u^{T} g(w) \\& \quad \mbox{s.t. } \nabla f(w)+ u^{T}\nabla g(w)=0, \\& \hphantom{\quad \mbox{s.t. }} u\geq0, \end{aligned}$$
where \(X\subseteq R^{n}\), \(x, w \in\mathbb{R}^{n}\), \(u \in\mathbb {R}^{m}\), \(f:R^{n}\rightarrow R\), \(g_{i}:R^{n}\rightarrow R\), \(i=1,2,\ldots,m\).

Let the aspiration levels corresponding to the objective function of primal (MP) and dual (MD) be denoted by \(z_{0}\) and \(w_{0}\), respectively.

Now, the above crisp pair (MP) and (MD) can be described in the fuzzy sense as the following pair (MP̃) and (DD̃):

Primal Problem
$$\begin{aligned}& (\widetilde{\mathit{MP}})\quad \mbox{Find } x\in\mathbb{R}^{n} \mbox{ such that} \\& \hphantom{(\widetilde{\mathit{MP}})\quad}\quad f(x)\lesssim z_{0}, \\& \hphantom{(\widetilde{\mathit{MP}})\quad}\quad g_{i}(x)\lesssim0,\quad i=1,2,\ldots,m, \\& \hphantom{(\widetilde{\mathit{MP}})\quad}\quad x\in X. \end{aligned}$$
Dual Problem
$$\begin{aligned}& (\widetilde{\mathit{DD}})\quad \mbox{Find } (w,u)\in\mathbb{R}^{n}{ \times} {\mathbb {R}^{m}} \mbox{ such that} \\& \hphantom{(\widetilde{\mathit{DD}})\quad}\quad L(w,u)=f(w)+ u^{T}g(w) \gtrsim w_{0}, \\& \hphantom{(\widetilde{\mathit{DD}})\quad}\quad \nabla f(w)+ u^{T}\nabla g(w)=0, \\& \hphantom{(\widetilde{\mathit{DD}})\quad}\quad u\geq0, \end{aligned}$$
where “” and “” are the representations of inequalities “≥” and “≤” in the fuzzy sense, respectively, and have interpretation of “essentially greater than” and “essentially less than” in the sense of Zimmermann.
The exponential membership functions associated with the objective function and the ith constraint, \(i=1,2,\ldots,m\), are as follows:
$$ \mu_{0}(x) = \textstyle\begin{cases} 1 &\mbox{if } f(x)-z_{0} \leq0, \\ \frac{{e^{-F}-e^{-\alpha}}}{1-e^{-\alpha}}&\mbox{if } 0< f(x)-z_{0}< p_{0}, \\ 0 &\mbox{if } f(x)-z_{0}\geq p_{0} \end{cases} $$
and
$$ \mu_{i}(x) = \textstyle\begin{cases} 1 &\mbox{if } g_{i}(x)\leq0, \\ \frac{{e^{-G_{i}}-e^{-\alpha_{i}}}}{1-e^{-\alpha_{i}}}&\mbox{if } 0< g_{i}(x)< p_{i}, \\ 0&\mbox{if } g_{i}(x)\geq p_{i}, \end{cases} $$
where \(F=\alpha((f(x)-z_{0})/p_{0})\), \(G_{i}=\alpha_{i}(g_{i}(x)/p_{i})\), and α, \(\alpha_{i}\), \(0<\alpha, \alpha_{i}<\infty\) are fuzzy parameters, also called shape parameters as they measure the degree of vagueness. The constants \(p_{0}\), \(p_{i}\) (\(i=1,2,\ldots,m\)) are the allowed change or violations corresponding to the objective function and the constraints of (MP), respectively.
The set of feasible solutions of the fuzzy nonlinear programming problem (MP̃) is denoted and defined as follows:
$$\widetilde{D}=\bigl\{ x\in\mathbb{R}^{n}: f(x)\lesssim z_{0}, g_{i}(x)\lesssim0, i=1,2,\ldots,m\bigr\} . $$
It represents the decision space with respect to the fuzzy constraints of (MP̃). Its membership function \(\mu_{\widetilde{D}} : R \rightarrow[0, 1]\) can be determined from the membership functions of individual fuzzy sets as follows:
$$\mu_{\widetilde{D}}(x)=\min\bigl\{ \mu_{0}\bigl(f(x)\bigr), \mu_{1}\bigl(g_{1}(x)\bigr),\ldots,\mu _{m} \bigl(g_{m}(x)\bigr)\bigr\} . $$
For every \(\hat{\mu}_{0}\), \(\hat{\mu}_{i}\) lying between 0 and 1, there exist unique \(\hat{p}_{0}\), \(0<\hat{p}_{0}<p_{0}\) and \(\hat{p}_{i}\), \(0<\hat{p}_{i}<p_{i}\) such that
$$\mu_{0}(z_{0}+\hat{p}_{0})=\hat{ \mu}_{0}\quad \mbox{and} \quad \mu_{i}(\hat{p}_{i})= \hat{\mu}_{i}. $$
Denote
$$\mathit{FR}(\hat{p}_{0},\hat{p})=\bigl\{ x\in\mathbb{R}^{n}: f(x)\lesssim z_{0}+\hat{p}_{0}, g(x)\lesssim\hat{p}\bigr\} . $$
Let X be the universe, whose generic elements are the sets \(\mathit{FR}(\hat {p}_{0},\hat{p})\). Then we define a membership function \(\mu_{\widetilde {\mathit{FR}}}: X\rightarrow[0, 1]\) by \(\mu_{\widetilde{\mathit{FR}}}(\mathit{FR}(\hat{p}_{0},\hat {p}))=\min\{\hat{\mu}_{0},\hat{\mu}_{1},\ldots,\hat{\mu}_{m} \}\). Therefore, the set can also be written as
$$\widetilde{D}=\bigcup_{(\hat{p}_{0},\hat{p})}\bigl(\mathit{FR}( \hat{p}_{0},\hat{p}),\mu _{\widetilde{\mathit{FR}}}\bigl(\mathit{FR}( \hat{p}_{0},\hat{p})\bigr)\bigr):\mathit{FR}(\hat{p}_{0}, \hat{p})\in X. $$
Here, is a fuzzy set whose elements are the set of points in \(R^{n}\) which are generated with the unique aspiration level \(z_{0}+\hat{p}_{0}\) and \(\hat{p}_{i}\).
Now, following Bellman–Zadeh’s maximization principle and using the fuzzy membership functions defined above, the crisp equivalent of (MP̃) can be formulated as follows:
$$\begin{aligned}& \mbox{(PP)} \quad \mbox{Maximize } \xi \\& \hphantom{\mbox{(PP)} \quad}\quad \mbox{s.t. } \xi\leq\frac{{e^{-F}-e^{-\alpha}}}{1-e^{-\alpha}}, \\& \hphantom{\mbox{(PP)} \quad\quad \mbox{s.t. }}\xi\leq\frac{{e^{-G_{i}}-e^{-\alpha_{i}}}}{1-e^{-\alpha_{i}}}\quad (i=1,2,\ldots,m), \\& \hphantom{\mbox{(PP)} \quad\quad \mbox{s.t. }}0 \leq\xi\leq1, \end{aligned}$$
where \(F=\alpha((f(x)-z_{0})/p_{0})\) and \(G_{i}=\alpha_{i}(g_{i}(x)/p_{i})\), \(i=1,2,\ldots,m\).
The above problem can be equivalently expressed as follows:
$$\begin{aligned}& \mbox{(PP-1)}\quad \mbox{Maximize } \xi \\& \hphantom{\mbox{(PP-1)}\quad}\quad \mbox{s.t. } p_{0} \log\bigl(\xi+ e^{-\alpha}(1- \xi)\bigr)\leq\alpha\bigl(z_{0}-f(x)\bigr), \end{aligned}$$
(1)
$$\begin{aligned}& \hphantom{\mbox{(PP-1)}\quad\quad \mbox{s.t. }}p_{i} \log\bigl(\xi+e^{-\alpha_{i}}(1- \xi)\bigr)\leq-\alpha_{i} g_{i}(x)\quad (i=1,2,\ldots,m), \end{aligned}$$
(2)
$$\begin{aligned}& \hphantom{\mbox{(PP-1)}\quad\quad \mbox{s.t. }}0 \leq\xi\leq1. \end{aligned}$$
(3)
Similarly, if the constant \(q_{0}\) denotes admissible violations of the objective function of the problem (DD), then the crisp equivalent of (DD̃) can be obtained as follows:
$$\begin{aligned}& \mbox{(DP)}\quad \mbox{Minimize } -\psi \\& \hphantom{\mbox{(DP)}\quad}\quad \mbox{s.t. } \psi\leq\frac{{e^{-H}-e^{-\beta}}}{1-e^{-\beta}}, \\& \hphantom{\mbox{(DP)}\quad\quad \mbox{s.t. }}\nabla f(w)+ u^{T}\nabla g(w)=0, \\& \hphantom{\mbox{(DP)}\quad\quad \mbox{s.t. }}\psi\in[0,1],\qquad u\geq0, \end{aligned}$$
where \(H=\beta((w_{0}-L(w,u))/q_{0})\).
This can be further re-written as
$$\begin{aligned}& \mbox{(DP-1)} \quad \mbox{Minimize } -\psi \\& \hphantom{\mbox{(DP-1)} \quad}\quad \mbox{s.t. } q_{0} \log\bigl(\psi+ e^{-\beta}(1- \psi)\bigr)\leq\beta\bigl(L(w,u)-w_{0}\bigr), \end{aligned}$$
(4)
$$\begin{aligned}& \hphantom{\mbox{(DP-1)} \quad\quad \mbox{s.t. }}\nabla f(w)+ u^{T} \nabla g(w)=0, \\ \end{aligned}$$
(5)
$$\begin{aligned}& \hphantom{\mbox{(DP-1)} \quad\quad \mbox{s.t. }}\psi\in[0,1],\qquad u\geq0, \end{aligned}$$
(6)
where β is a shape parameter that measures the degree of vagueness of the objective function of (DD̃).

Theorem 2.1

For each feasible point of the problem (MP̃) there exists ξ, \(0 \leq\xi\leq1\) such that \((x,\xi)\) satisfies the constraints (1)(3) of (PP-1).

Proof

Let \(x\in\widetilde{D}\). Then there exist some \(\hat {p}_{0}\), \(0 \leq\hat{p}_{0} \leq p_{0}\), \(\hat{p}_{i}\), \(0 \leq\hat{p}_{i} \leq p_{i}\), \(i=1,2,\ldots,m\), such that \(x\in \mathit{FR}(\hat{p}_{0},\hat{p})\) and its membership value is given by \(\mu_{\widetilde{\mathit{FR}}}(\mathit{FR}(\hat{p}_{0},\hat {p}))=\min\{\hat{\mu}_{0},\ldots,\hat{\mu}_{m}\}\).

Now, since \(x\in \mathit{FR}(\hat{p}_{0},\hat{p})\), therefore we have
$$ f(x)\leq z_{0}+\hat{p}_{0},\qquad g(x)\leq \hat{p}. $$
(7)
For some \(\xi_{0}, \xi_{i}\in[0,1]\), let
$$\begin{aligned}& \hat{p}_{0}=p_{0} \frac{\log(\xi_{0}+ e^{-\alpha}(1-\xi _{0}))}{\alpha}\quad \mbox{and} \\& \hat{p}_{i}=p_{i} \frac{\log(\xi_{i} + e^{-\alpha_{i}}(1-\xi _{i}))}{\alpha_{i}},\quad i=1,2, \ldots,m. \end{aligned}$$
Hence, inequality (7) becomes
$$\begin{aligned}& p_{0} \log\bigl(\xi+ e^{-\alpha}(1-\xi)\bigr)\leq\alpha \bigl(z_{0}-f(x)\bigr), \\& p_{i} \log\bigl(\xi+ e^{-\alpha_{i}}(1-\xi)\bigr)\leq- \alpha_{i}g_{i}(x),\quad i=1,2,\ldots,m, \\& \quad 0 \leq\xi\leq1, \end{aligned}$$
where \(\xi=\min(\xi_{0},\xi_{1},\ldots,\xi_{m})\). Therefore, \((x,\xi)\) is feasible for (PP-1). Hence the result. □

Theorem 2.2

Suppose \(x_{0}\) and \((x_{0},u_{0})\) are the feasible solutions of (MP) and (MD), respectively. If the corresponding objective value of (MP) fully (partially) satisfies the goal \(z_{0}\), then the weak duality theorem between (MP̃) and (DD̃) holds (partially holds). That is, \(z_{0}\geq w_{0}\) (\(z_{0}+p_{0}\geq w_{0}-q_{0}\)).

Proof

By the weak duality result between (MP) and (MD), we have
$$ f(x_{0})\geq L(x_{0},u_{0}). $$
(8)
Since \(x_{0}\) is a feasible solution of (MP), therefore we get
$$\begin{aligned} g_{i}(x_{0})\leq0 \quad \mbox{for all } i. \end{aligned}$$
Hence \(\mu_{i}(g_{i}(x_{0}))=1\), i.
If \(f(x_{0})\) fully satisfies the goal \(z_{0}\), then \(f(x_{0})\leq z_{0}\). Therefore
$$ \mu_{0}\bigl(f(x_{0})\bigr)=1. $$
Also, the membership value of \(L(x_{0},u_{0})\),
$$\begin{aligned} \nu\bigl(L(x_{0},u_{0})\bigr)&=\nu\bigl(f(x_{0})+u_{0}^{T}g(x_{0}) \bigr) \\ &=\min\bigl\{ \mu_{0}\bigl(f(x_{0})\bigr), \mu_{1}\bigl(g_{1}(x_{0})\bigr),\ldots, \mu_{m}\bigl(g_{m}(x_{0})\bigr)\bigr\} =1. \end{aligned}$$
So, \(L(x_{0},u_{0})\geq w_{0}\).
Combining this with (8) yields
$$ z_{0}\geq f(x_{0})\geq L(x_{0},u_{0}) \geq w_{0}. $$
Now, if \(f(x_{0})\) partially satisfies the goal \(z_{0}\), then \(z_{0}\leq f(x_{0})\leq z_{0}+p_{0}\). Then
$$ \mu_{0}\bigl(f(x_{0})\bigr)\in[0, 1]. $$
That is,
$$\begin{aligned} \nu\bigl(L(x_{0},u_{0})\bigr)&=\nu\bigl(f(x_{0})+u_{0}^{T}g(x_{0}) \bigr) \\ &=\min\bigl\{ \mu_{0}\bigl(f(x_{0})\bigr), \mu_{1}\bigl(g_{1}(x_{0})\bigr),\ldots, \mu_{m}\bigl(g_{m}(x_{0})\bigr)\bigr\} \in[0, 1]. \end{aligned}$$
Hence
$$w_{0}-q_{0}\leq L(x_{0},u_{0})\leq w_{0}. $$
This yields
$$z_{0}+p_{0}\geq f(x_{0})\geq L(x_{0},u_{0})\geq w_{0}-q_{0} \quad \mbox{or}\quad z_{0}+p_{0}\geq w_{0}-q_{0}. $$
This completes the proof. □

Theorem 2.3

(Modified weak duality)

Let \((x,\xi)\) and \((w,u,\psi)\) be feasible solutions for (PP-1) and (DP-1), respectively. Further, assume that the functions f and g are convex at w. Then
$$ \sum_{i=1}^{m} \frac{\log(\xi+ e^{-\alpha_{i}}(1- \xi)) }{\alpha _{i}}{p_{i} u_{i}}\leq f(x)-f(w)-u^{T}g(w). $$

Proof

Multiplying the constraint (2) of (PP-1) by \(u_{i}\geq0\) and further adding all the \(`m'\) inequalities, we obtain
$$ \sum_{i=1}^{m} \frac{\log(\xi+ e^{-\alpha_{i}}(1- \xi)) }{\alpha _{i}}{p_{i} u_{i}}\leq-u^{T}g(x). $$
(9)
By the convexity of f and g at w, we have
$$ f(x)-f(w)\geq(x-w)^{T}\nabla f(w) $$
(10)
and
$$ g(x)-g(w)\geq(x-w)^{T}\nabla g(w). $$
(11)
Employing \(u\geq0\) in (11) and then adding with inequality (10), we get
$$ (x-w)^{T}\bigl(\nabla f(w)+u^{T}\nabla g(w) \bigr)\leq f(x)-f(w)-u^{T}g(w). $$
(12)
Finally, using (5) in the addition of (9) and (12), we have
$$ \sum_{i=1}^{m} \frac{\log(\xi+ e^{-\alpha_{i}}(1- \xi)) }{\alpha _{i}}{p_{i} u_{i}}\leq f(x)-f(w)-u^{T}g(w). $$
Hence the result. □

Theorem 2.4

Let \((\bar{x}, \bar{\xi})\) and \((\bar{w},\bar{u},\bar{\psi})\) be feasible solutions for (PP-1) and (DP-1), respectively. Assume that the following conditions hold:
$$\begin{aligned} (\mathrm{i})&\quad \sum_{i=1}^{m} \frac{\log(\bar{\xi}+ e^{-\alpha_{i}}(1-\bar{\xi})) }{\alpha_{i}}{p_{i} \bar{u}_{i}}= f(\bar{x})-f(\bar{w})- \bar{u}^{T}g(\bar{w}), \\ (\mathrm{ii})&\quad \frac{\log(\bar{\xi}+ e^{-\alpha}(1- \bar{\xi})) }{\alpha }{p_{0}}+\frac{\log(\bar{\psi}+e^{-\beta}(1- \bar{\psi}))}{\beta}q_{0}= \bigl\{ G(\bar{w},\bar{u})-f(\bar{x})\bigr\} +\{z_{0}-w_{0}\}, \\ (\mathrm{iii})&\quad w_{0}-z_{0}\leq0. \end{aligned}$$
Then \((\bar{x}, \bar{\xi})\) and \((\bar{w},\bar{u},\bar{\psi})\) are the optimal solutions to (PP-1) and (DP-1), respectively.

Proof

Let \(( x,\xi)\) and \((w,u,\psi)\) be feasible solutions for (PP-1) and (DP-1), respectively. Then
$$ \sum_{i=1}^{m} \frac{\log(\xi+ e^{-\alpha_{i}}(1-\xi)) }{\alpha_{i}}{p_{i} u_{i}}+f(w)+u^{T}g(w)-f(x)\leq0. $$
Using hypothesis (i) gives
$$\begin{aligned}& \sum_{i=1}^{m}\frac{\log(\xi+ e^{-\alpha_{i}}(1-\xi)) }{\alpha_{i}}{p_{i} u_{i}}+ f(w)+u^{T}g(w)-f(x) \\& \quad \leq\sum_{i=1}^{m} \frac{\log(\bar{\xi}+ e^{-\alpha_{i}}(1-\bar{\xi})) }{\alpha_{i}}{p_{i} \bar{u}_{i}}-f(\bar{x})+f(\bar{w})+\bar{u}^{T}g(\bar{w})=0. \end{aligned}$$
It follows that \(( \bar{x},\bar{\xi}, \bar{w},\bar{u},\bar{\psi})\) is the optimal solution to the following optimization problem whose maximum value is zero:
$$\begin{aligned}& \bigl(\mathit{MP}^{*}\bigr)\quad \mbox{Maximize }\sum _{i=1}^{m} \frac{\log(\xi+ e^{-\alpha_{i}}(1-\xi))}{\alpha_{i}}{p_{i} u_{i}}+ f(w)+u^{T}g(w)-f(x) \\& \hphantom{(\mathit{MP}^{*})\quad}\quad \mbox{s.t. } \frac{\log(\xi+e^{-\alpha}(1- \xi)) }{\alpha}{p_{0}}\leq z_{0}-f(x), \\& \hphantom{(\mathit{MP}^{*})\quad\quad \mbox{s.t. }}\frac{\log(\psi+ e^{-\beta}(1-\psi)) }{\beta}{q_{0}}\leq L(w,u)-w_{0}, \\& \hphantom{(\mathit{MP}^{*})\quad\quad \mbox{s.t. }}\frac{\log(\xi+ e^{-\alpha_{i}}(1- \xi)) }{\alpha_{i}}{p_{i}}\leq-g_{i}(x)\quad ( i=1,2,\ldots,m), \\& \hphantom{(\mathit{MP}^{*})\quad\quad \mbox{s.t. }}\nabla f(w)+ \sum_{i=1}^{m} u_{i}\nabla g_{i}(w)=0, \\& \hphantom{(\mathit{MP}^{*})\quad\quad \mbox{s.t. }}0 \leq\xi\leq1,\qquad 0 \leq\psi\leq1,\qquad u\geq0. \end{aligned}$$
Further, hypotheses (i) and (ii) yield
$$\begin{aligned}& \sum_{i=1}^{m} \frac{\log(\bar{\xi}+ e^{-\alpha_{i}}(1- \bar{\xi})) }{\alpha_{i}}{p_{i} \bar{u}_{i}}+\frac{\log(\bar{\xi}+e^{-\alpha}(1- \bar{\xi})) }{\alpha}{p_{0}} \\& \quad{} +\frac{\log(\bar{\psi}+ e^{-\beta}(1- \bar{\psi}))}{\beta}q_{0}+\{ w_{0}-z_{0} \}=0. \end{aligned}$$
Since \(\bar{\xi}, \bar{\psi}\leq1\), therefore each term in the above expression is nonpositive, which sums up to zero. Hence
$$\begin{aligned}& \sum_{i=1}^{m} \frac{\log(\bar{\xi}+e^{-\alpha_{i}}(1- \bar{\xi})) }{\alpha_{i}}{p_{i} \bar{u}_{i}}=0, \\& \frac{\log(\bar{\xi}+ e^{-\alpha}(1- \bar{\xi})) }{\alpha}{p_{0}}=0, \quad \mbox{and} \\& \frac{\log(\bar{\psi}+e^{-\beta}(1- \bar{\psi}))}{\beta}q_{0}=0. \end{aligned}$$
Since
$$ \frac{\log(\xi+ e^{-\alpha}(1- \xi)) }{\alpha}{p_{0}}\leq0= \frac{\log(\bar{\xi}+ e^{-\alpha}(1- \bar{\xi})) }{\alpha}{p_{0}}, $$
therefore
$$ \log\bigl(\xi+ e^{-\alpha}(1- \xi)\bigr)\leq \log\bigl(\bar{\xi}+ e^{-\alpha}(1- \bar{\xi})\bigr), $$
which implies \(\xi\leq\bar{\xi}\). Similarly, we obtain \(-\psi\geq-\bar{\psi}\). This proves the result. □

3 Numerical illustration

Consider the following primal-dual pair:
$$\begin{aligned}& \mbox{(P)}\quad \mbox{Minimize } h(x,y)=x+2x^{2}+y^{2} \\& \hphantom{\mbox{(P)}\quad}\quad \mbox{s.t. } 2x+2y\geq1. \end{aligned}$$
and
$$\begin{aligned}& \mbox{(D)} \quad \mbox{Maximize } H(w,z,u)=w+2w^{2}+z^{2}+u(1-2w-2z) \\& \hphantom{\mbox{(D)} \quad}\quad \mbox{s.t. } 4w-2u+1=0, \\& \hphantom{\mbox{(D)} \quad\quad \mbox{s.t. }}u-z=0, \\& \hphantom{\mbox{(D)} \quad\quad \mbox{s.t. }}u\geq0. \end{aligned}$$
Taking an exponential membership function in the primal problem (P) and the dual problem (D), the corresponding problems (PP-1) and (DP-1) become:
$$\begin{aligned}& \mbox{(FP)}\quad \mbox{Maximize } \xi \\& \hphantom{\mbox{(FP)}\quad}\quad \mbox{s.t. } \log\bigl(\xi+e^{-2}(1- \xi)\bigr) \leq\bigl(1-x-2x^{2}-y^{2}\bigr), \\& \hphantom{\mbox{(FP)}\quad\quad \mbox{s.t. }}2 \log\bigl(\xi+ e^{-1}(1- \xi)\bigr)\leq(2x+2y-1), \\& \hphantom{\mbox{(FP)}\quad\quad \mbox{s.t. }}\xi\in[0,1], \end{aligned}$$
and
$$\begin{aligned}& \mbox{(FD)}\quad \mbox{Minimize } -\psi \\& \hphantom{\mbox{(FD)}\quad }\quad \mbox{s.t. } \log\bigl(\psi+e^{-2}(1- \psi)\bigr) \leq2\bigl(w+2w^{2}+z^{2}+u-2uw-2uz-1\bigr), \\& \hphantom{\mbox{(FD)}\quad \quad \mbox{s.t. }}4w-2u+1=0, \\& \hphantom{\mbox{(FD)}\quad \quad \mbox{s.t. }}u-z=0, \\& \hphantom{\mbox{(FD)}\quad \quad \mbox{s.t. }}\psi\in[0,1],\qquad u\geq0, \end{aligned}$$
where \(p_{0}=p_{1}=2\), \(z_{0}=1\), \(\alpha=2\), \(\alpha_{1}=1\) and \(q_{0}=1\), \(\beta=2, w_{0}=1\). Using a software MAPLE 12, the optimal solutions of (FP) and (FD) are \(x^{*}=0.3190 \), \(y^{*}=0.6910\), \(\xi^{*}=1 \) and \(\psi^{*}= 0.1016\), \(u^{*}= z^{*}=0.50\), \(w^{*}=0\), respectively. Since all the assumptions of Theorems 2.3 and 2.4 are satisfied for the above problems, hence at these points the results of the theorems can easily be verified.

Declarations

Acknowledgements

The authors wish to thank the referees for several valuable suggestions which have considerably improved the presentation of the paper.

Funding

This research is supported by the King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, under the Internal Project No. IN161058.

Authors’ contributions

All authors contributed equally to this work. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Department of Mathematics, Indian Institute of Technology, Roorkee, India
(2)
Department of Mathematics, Marwari College, Kishanganj, India
(3)
Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

References

  1. Bellman, R.E., Zadeh, L.A.: Decision making in a fuzzy environment. Manag. Sci. 17, 141–164 (1970) MathSciNetView ArticleMATHGoogle Scholar
  2. Tanaka, H., Asia, K.: Fuzzy solution in fuzzy linear programming problems. IEEE Trans. Syst. Man Cybern. Syst. 14, 325–328 (1984) View ArticleMATHGoogle Scholar
  3. Zimmermann, H.J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1, 45–55 (1978) MathSciNetView ArticleMATHGoogle Scholar
  4. Lai, Y.J., Hwang, C.L.: A new approach to some possibilistic linear programming problem. Fuzzy Sets Syst. 49, 121–133 (1992) MathSciNetView ArticleGoogle Scholar
  5. Shaocheng, T.: Interval number and fuzzy number linear programming. Fuzzy Sets Syst. 66, 301–306 (1994) MathSciNetView ArticleGoogle Scholar
  6. Buckley, J.J.: Possibilistic linear programming with triangular fuzzy numbers. Fuzzy Sets Syst. 26, 135–138 (1988) MathSciNetView ArticleMATHGoogle Scholar
  7. Buckley, J.J.: Solving possibilistic linear programming problems. Fuzzy Sets Syst. 31, 329–341 (1989) MathSciNetView ArticleMATHGoogle Scholar
  8. Lai, Y.J., Hwang, C.L.: Fuzzy Mathematical Programming Methods and Applications. Springer, Berlin (1992) View ArticleMATHGoogle Scholar
  9. Rodder, W., Zimmermann, H.J.: Duality in fuzzy linear programming. In: Internat. Symp. on Extremal Methods and Systems Analysis, University of Texas at Austin, pp. 415–427 (1980) View ArticleGoogle Scholar
  10. Bector, C.R., Chandra, S.: On duality in linear programming under fuzzy environment. Fuzzy Sets Syst. 125, 317–325 (2002) MathSciNetView ArticleMATHGoogle Scholar
  11. Bector, C.R., Chandra, S., Vidyottama, V.: Matrix games with fuzzy goals and fuzzy linear programming duality. Fuzzy Optim. Decis. Mak. 3, 255–269 (2004) MathSciNetView ArticleMATHGoogle Scholar
  12. Bector, C.R., Chandra, S., Vijay, V.: Duality in linear programming with fuzzy parameters and matrix games with fuzzy pay-offs. Fuzzy Sets Syst. 146, 253–269 (2004) MathSciNetView ArticleMATHGoogle Scholar
  13. Liu, Y., Shi, Y., Liu, Y.H.: Duality of fuzzy MC2 linear programming: a constructive approach. J. Math. Anal. Appl. 194, 389–413 (1995) MathSciNetView ArticleMATHGoogle Scholar
  14. Ramik, J.: Duality in fuzzy linear programming: some new concepts and results. Fuzzy Optim. Decis. Mak. 4, 25–39 (2005) MathSciNetView ArticleMATHGoogle Scholar
  15. Verdegay, J.L.: A dual approach to solve the fuzzy linear programming problems. Fuzzy Sets Syst. 14, 131–141 (1984) MathSciNetView ArticleMATHGoogle Scholar
  16. Wu, H.C.: Duality theory in fuzzy linear programming problems with fuzzy coefficients. Fuzzy Optim. Decis. Mak. 2, 61–73 (2003) MathSciNetView ArticleGoogle Scholar
  17. Richardt, J., Karl, F., Miller, C.: A fuzzy dual decomposition method for large-scale multiobjective nonlinear programming problems. Fuzzy Sets Syst. 96, 307–334 (1998) View ArticleGoogle Scholar
  18. Sakawa, M., Yano, H.: A dual approach to solve the fuzzy linear programming problems. Fuzzy Sets Syst. 67, 19–27 (1994) View ArticleMATHGoogle Scholar
  19. Zhang, C., Yuan, X.H., Lee, E.S.: Duality theory in fuzzy mathematical programming problems with fuzzy coefficients. Comput. Math. Appl. 49, 1709–1730 (2005) MathSciNetView ArticleMATHGoogle Scholar
  20. Ovchinnikov, S.: The duality principle in fuzzy set theory. Fuzzy Sets Syst. 42, 133–144 (1991) MathSciNetView ArticleMATHGoogle Scholar
  21. Yang, X.: Some properties for fuzzy chance constrained programming. Iran. J. Fuzzy Syst. 8, 1–8 (2011) MathSciNetMATHGoogle Scholar
  22. Farhadinia, B., Kamyad, A.V.: Weak and strong duality theorems for fuzzy conic optimization problems. Iran. J. Fuzzy Syst. 1, 143–152 (2013) MathSciNetMATHGoogle Scholar

Copyright

© The Author(s) 2018

Advertisement