- Research
- Open Access
- Published:
Inequalities for the fractional convolution operator on differential forms
Journal of Inequalities and Applications volume 2018, Article number: 176 (2018)
Abstract
The purpose of this paper is to derive some Coifman type inequalities for the fractional convolution operator applied to differential forms. The Lipschitz norm and BMO norm estimates for this integral type operator acting on differential forms are also obtained.
1 Introduction
As a generalization of functions, the differential form can be regarded as a special kind of vector-valued function. So, if some operators in function spaces are generalized to that in differential forms, similar properties could be obtained as in the function space. In recent years, the research on the generalization of operators from functional spaces to differential forms seems to become a new highlight in the inequalities with differential forms, see [1–6]. In this paper, we mainly consider the following convolution type fractional integrals operator acting on differential forms and develop some norm inequalities for the fractional convolution operator. Given a nonnegative, locally integrable function \(K_{\alpha }\) and \(\hbar _{I}(y)\) is a bounded function with a compactly supported set on \(\mathbb{R}^{n}\), write \(\hbar _{I}(y)\in L^{\infty }_{c}\). The fractional convolution operator \(F_{\alpha }\) is defined by a convolution integral
provided this integral exists for almost all \(\mathbb{R}^{n}\), where \(\hbar (x)=\sum_{I}\hbar _{I}(y)\,\mathrm{d}x_{I}\) is a ℓ-form defined on \(\mathbb{R}^{n}\), the summation is over all ordered ℓ-tuples I. The function \(K_{\alpha }\) is also assumed to be a wide class of kernels satisfying the following growth condition (see [7]):
-
(1)
\(K_{\alpha }\in S_{\alpha }\) if there exists a constant \(C>0\) such that
$$ \int _{\vert x \vert \sim s} \bigl\vert K_{\alpha }(x) \bigr\vert \, \mathrm{d}x\leq Cs^{\alpha }; $$(1.2) -
(2)
\(K_{\alpha }\) is said to satisfy the \(L^{\alpha,\varphi }\)-Hörmander condition, and write \(K_{\alpha }\in H_{\alpha,\varphi }\). If there exist \(c\geq 1\) and \(C>0\) (only dependent on φ) such that, for all \(y\in \mathbb{R}^{n}\) and \(R>c\vert y \vert \),
$$ \sum^{\infty }_{m=1} \bigl(2^{m}R \bigr)^{n-\alpha }\nparallel K_{\alpha }(\cdot -y)-K_{\alpha }(\cdot )\bigr\Vert _{\varphi (\vert x \vert \sim 2^{m}R)}\leq C, $$(1.3)where φ is a Young function defined on \([0,+\infty )\), \(\vert x \vert \sim s\) stands for the set \(\{s<\vert x \vert \leq 2s\}\), \(O(0,s)\) is a ball with the center at the origin and the radius equal to s, and the φ-mean Luxemburg norm of a function f on a cube (or a ball)O in \(\mathbb{R}^{n}\) is given by
$$ \nparallel f\Vert _{\varphi (O)} =\inf \biggl\{ \lambda >0:\frac{1}{\vert O \vert } \int _{O}\varphi \biggl(\frac{\vert f \vert }{\lambda } \biggr)\,\mathrm{d}x \leq 1 \biggr\} . $$(1.4)
Differential forms can be viewed as an extension of functions. When \(\hbar (x)\) is a 0-form, the above-mentioned notations are in accord with those of function spaces, and the fractional convolution operator \(F_{\alpha }\) we study in this paper degenerates into the operator which Bernardis discussed in [7]. Namely, for any Lebesgue measurable function \(f\in L^{\infty }_{c}\), \(F_{\alpha }\) is given as follows:
This degenerated fractional convolution operator was also introduced by Riveros in [8], who presented weighted Coifman type estimates, two weight estimates of strong and weak type for general fractional operators and gave applications to fractional operators produced by a homogeneous function and a Fourier multiplier.
Now we introduce some notations and definitions. Let Θ be an open subset of \(\mathbb{R}^{n}\) (\(n\geq 2\)) and O be a ball in \(\mathbb{R}^{n}\). Let ρO denote the ball with the same center as O and \(\operatorname{diam}(\rho O) = \rho \operatorname{diam}(O)(\rho >0)\). \(\vert \Theta \vert \) is used to denote the Lebesgue measure of a set \(\Theta \subset \mathbb{R}^{n}\). Let \(\bigwedge^{\ell }= \bigwedge^{\ell }(\mathbb{R}^{n}), \ell = 0,1,\ldots, n\), be the linear space of all ℓ-forms \(\hbar (x)= \sum_{I}\hbar _{I}(x)\,\mathrm{d}x_{I}=\sum_{I}\hbar _{i_{1}i_{2}\cdots i_{\ell }}(x)\,\mathrm{d}x_{i_{1}}\wedge\mathrm{d}x_{i_{2}}\cdots \wedge\mathrm{d}x_{i_{\ell }}\) in \(\mathbb{R}^{n}\), where \(I= (i_{1}, i_{2}, \ldots,i_{\ell }), 1\leq i_{1}< i_{2}<\cdots <i_{\ell } \leq n\), are the ordered ℓ-tuples. Moreover, if each of the coefficients \(\hbar _{I}(x)\) of \(\hbar (x)\) is differential on Θ, then we call \(\hbar (x)\) a differential ℓ-form on Θ and use \(D^{\prime}(\Theta,\bigwedge^{\ell })\) to denote the space of all differential ℓ-forms on Θ. \(C^{\infty }(\Theta,\bigwedge^{\ell })\) denotes the space of smooth ℓ-forms on Θ. The exterior derivative \(d:D^{\prime}(\Theta,\bigwedge^{\ell })\rightarrow D^{\prime}(\Theta,\bigwedge^{\ell +1})\), \(\ell =0,1,\ldots,n-1\), is given by
for all \(\hbar \in D^{\prime}(\Theta,\bigwedge^{\ell })\). \(L^{p}(\Theta,\bigwedge^{\ell })(1\leq p<\infty )\) is a Banach space with the norm \(\Vert \hbar \Vert _{p,\Theta }=(\int _{\Theta }\vert \hbar (x) \vert ^{p}\,\mathrm{d}x)^{1/p}=(\int _{\Theta }(\sum_{I}\vert \hbar _{I}(x) \vert ^{2})^{p/2}\,\mathrm{d}x)^{1/p}<\infty \). Similarly, the notations \(L^{p}_{\textrm{loc}}(\Theta,\bigwedge^{\ell })\) and \(W^{1,p}_{\textrm{loc}}(\Theta,\bigwedge^{\ell })\) are self-explanatory.
From [9], ħ is a differential form in a bounded convex domain Θ, then there is a decomposition
where T is called a homotopy operator. For the homotopy operator T, we know that
holds for any differential form \(\hbar \in L^{p}_{\textrm{loc}}(\Theta,\bigwedge^{\ell }),\ell =1,2,\ldots,n,1< p<\infty \). Furthermore, we can define the ℓ-form \(\hbar _{\Theta } \in D^{\prime} (\Theta,\bigwedge^{\ell }) \) by
for all \(\hbar \in L^{p}(\Theta,\bigwedge^{\ell }),1\leq p<\infty \).
A non-negative function \(w\in L^{1}_{\textrm{loc}}(\mathrm{d}x)\) is called a weight. We recall the definitions of the Muckenhoupt weights and the reverse Hölder condition (see [10]). For \(1< p<\infty \), we say that \(w\in \mathcal{A}_{p}\) if there exists a constant \(C>0\) such that, for every ball \(O\subset \mathbb{R}^{n}\),
For the case \(p=1\), \(w\in \mathcal{A}_{1}\) if there exists a constant \(C>0\) such that, for every ball \(O\subset \mathbb{R}^{n}\),
Also \(\mathcal{A}_{\infty }=\bigcup _{p\geq 1}\mathcal{A}_{p}\). It is well known that \(\mathcal{A}_{p}\subset \mathcal{A}_{q}\) for all \(1\leq p\leq q\leq \infty \), and also that for \(1< p\leq \infty \), if \(w \in \mathcal{A}_{p}\), then there exists \(\varepsilon >0\) such that \(w\in \mathcal{A}_{p-\varepsilon }\).
A function \(\varphi : [0,\infty )\rightarrow [0,\infty )\) is a Young function if it is continuous, convex, increasing and satisfies \(\varphi (0)=0\) and \(\varphi (t)\rightarrow \infty \) as \(t\rightarrow \infty \). Each Young function φ has an associated complementary Young function φ̄ satisfying
for all \(t>0\), where \(\varphi ^{-1}(t)\) is the inverse function of \(\varphi (t)\) (see [11]).
For each locally integrable function f and \(0 \leq \alpha < n\), the fractional maximal operator associated with the Young function φ is defined by
For \(\alpha =0\), we write \(M_{\varphi }\) instead of \(M_{0,\varphi }\). When \(\varphi (t)=t\), then \(M_{\alpha,\varphi }=M_{\alpha }\) is the classical fractional maximal operator. For \(\alpha =0\) and \(\varphi (t)=t\), we obtain \(M_{0,\varphi }=M\) is the Hardy–Littlewood maximal operator (see [8]).
2 The Coifman type inequalities for the fractional convolution operator
In [7], the inequality for the fractional convolution operator in function with the fractional maximal operator, that is, the Coifman type inequality, is proved.
Lemma 2.1
Let φ be a Young function on \([0,+\infty )\) and f be any n-tuple function on \(\mathbb{R}^{n}\) with \(f\in L^{\infty }_{c}\). Suppose that the fractional convolution operator \(F_{\alpha }=K_{\alpha }\ast f\) and its kernel satisfies \(K_{\alpha }\in S_{\alpha }\cap H_{\alpha,\varphi }\), where \(0<\alpha <n\). Then there exists a constant C such that
for any \(0< p<\infty \) and \(w\in A_{\infty }\).
Theorem 2.1
Let φ be a Young function on \([0,+\infty )\) and f, g be two functions defined on \(\mathbb{R}^{n}\) with \(\vert f(x) \vert \leq \vert g(x) \vert \) for all \(x\in \mathbb{R}^{n} \). Then for all cubes O and the Young functions φ,
Proof
Since φ is a Young function, it follows that
□
According to Theorem 2.1, we can get a similar conclusion to Lemma 2.1.
Theorem 2.2
Let φ be a Young function on \([0,+\infty )\), \(\hbar =\sum_{I}\hbar _{I}\,\mathrm{d}x_{I}\) be a differential form on \(\Theta \subset \mathbb{R}^{n}\), and let all the ordered ℓ-tuples I satisfy \(\hbar _{I}\in L^{\infty }_{c}\). Suppose that \(F_{\alpha }\) is a fractional convolution operator applied to differential forms and its kernel function \(K_{\alpha }\) satisfies \(K_{\alpha }\in S_{\alpha }\cap H_{\alpha,\varphi }\), where \(0<\alpha <n\). Then there exists a constant C such that
for any \(0< p<\infty \) and \(w\in A_{\infty }\).
Proof
By Lemma 2.1 and the following basic inequality
where \(s>0\) is any constant, it follows that
Then, by the definition of the fractional maximal operator, notice that for any I such that \(\vert \hbar _{I} \vert \leq \vert \hbar \vert \), we obtain that
Combining (2.6) and (2.7), we have
□
Theorem 2.3
Let φ be a Young function on \([0,+\infty )\), \(\hbar =\sum_{I}\hbar _{I}\,\mathrm{d}x_{I}\) be a differential form on \(\Theta \subset \mathbb{R}^{n}\), and for all the ordered ℓ-tuples,let I satisfy \(\hbar _{I}\in L^{\infty }_{c}\). Suppose that \(F_{\alpha }\) is a fractional convolution operator on differential forms and its kernel function \(K_{\alpha }\) satisfies \(K_{\alpha }\in S_{\alpha }\cap H_{\alpha,\varphi }\), where \(0<\alpha <n\). Then there exists a constant C such that
for any \(0< p<\infty \) and all the balls \(O\subset \mathbb{R}^{n}\).
Proof
By the definition of the \(\mathcal{A}_{\infty }\)-weight, there exist \(r_{0}\geq 1\) and a constant \(C<\infty \) such that, for all the balls \(O\subset \mathbb{R}^{n}\), it follows that
With the arbitrariness of the condition \(w\in \mathcal{A}_{\infty }\) of Theorem 2.2, now get any ball \(O_{0}\subset \mathbb{R}^{n}\) and let
It is easy to check that \(w(x)=\chi _{O_{0}}(x)\) satisfies (2.10). In fact, we have
Thus
□
If the kernel function \(K_{\alpha }\) and the coefficient functions \(\hbar _{I}\) of differential forms are subject to some conditions, the following more important conclusion will be obtained.
Theorem 2.4
Let φ be a Young function on \([0,+\infty )\), \(\hbar =\sum_{I}\hbar _{I}\,\mathrm{d}x_{I}\) be a differential form on \(\Theta \subset \mathbb{R}^{n}\), and let all the ordered ℓ-tuples I satisfy \(\hbar _{I}\in L^{\infty }_{c}\). Suppose that \(F_{\alpha }\) is a fractional convolution operator on differential forms and its kernel function \(K_{\alpha }\) satisfies \(K_{\alpha }\in S_{\alpha }\cap H_{\alpha,\varphi }\) and \(K_{\alpha }\in C^{\infty }_{0}(\Theta )\), where \(C^{\infty }_{0}(\Theta )\) stands for all the \(C^{\infty }\) functions with compactly supported sets in Θ and \(0<\alpha <n\). Then there exists a constant C such that
for any \(1< p<\infty \) and all the balls with \(O\subset \mathbb{R}^{n}\).
Proof
By the exterior derivative operator d and the fractional convolution operator \(F_{\alpha }\), we obtain that
and
where
According to (1.7)–(1.9), it follows that
Now we will give the \(L^{p}\)-norm estimation of \(d(F_{\alpha }\hbar )\). With \(K_{\alpha }\in C^{\infty }_{0}(\Theta )\) and considering the definition of the general partial derivative (see [12]), we obtain
that is
Combining (2.17) and (2.19), we obtain that
□
Since a new function is obtained when the differential form is taken as a model, we can get a global inequality in the \(L^{p}(m)\) domain with Theorem 2.4. Now recall the definition of the \(L^{p}(m)\) domain introduced by Staples (see [13]).
Definition 2.1
Let Θ be a real subdomain in \(\mathbb{R}^{n}\). If, for all the functions \(f\in L^{p}_{\textrm{loc}}(\Theta )\), there exists a constant C such that
then Θ is called an \(L^{p}(m)\)-average domain, where \(O_{0}\) is a fixed ball of Θ and \(p\geq 1\).
Theorem 2.5
Let φ be a Young function on \([0,+\infty )\), \(\hbar =\sum_{I}\hbar _{I}\,\mathrm{d}x_{I}\) be a differential form on \(\Theta \subset \mathbb{R}^{n}\), and let all the ordered ℓ-tuples I satisfy \(\hbar _{I}\in L^{\infty }_{c}\). Suppose that \(F_{\alpha }\) is a fractional convolution operator on differential forms and its kernel function \(K_{\alpha }\) satisfies \(K_{\alpha }\in S_{\alpha }\cap H_{\alpha,\varphi }\) and \(K_{\alpha }\in C^{\infty }_{0}(\Theta )\), where \(0<\alpha <n\). Then there exists a constant C such that
for any \(1< p<\infty \) and \(O_{0}\) is a fixed ball in Θ.
Proof
By the definition of the \(L^{p}(m)\)-average domain and noticing that \(1-1/p\geq 0\), we have
□
3 The Lipschitz and BMO norm inequalities for the fractional convolution operator
It is well known that Lipschitz and BMO norms are two kinds of important norms in differential forms, which can be found in [14]. Now we recall these definitions as follows. Let \(\hbar \in L^{1}_{\textrm{loc}}(\Theta,\bigwedge^{\ell }),\ell =0,1,\ldots,n\). We write \(\hbar \in \operatorname{locLip}_{k}(\Theta,\bigwedge^{\ell }),0\leq k \leq 1\), if
for some \(\rho \geq 1\).
Further, we write \(\operatorname{Lip}_{k}(\Theta,\bigwedge^{\ell })\) for those forms whose coefficients are in the usual Lipschitz space with exponent k and write \(\Vert \hbar \Vert _{\operatorname{Lip}_{k},\Theta }\) for this norm. Similarly, for \(\hbar \in L^{1}_{\textrm{loc}}(\Theta,\bigwedge^{\ell }),\ell =0,1,\ldots,n\), we write \(\hbar \in BMO(\Theta,\bigwedge^{\ell })\) if
for some \(\rho \geq 1\).
When ħ is a 0-form, Eq. (3.2) reduces to the classical definition of \(BMO(\Theta )\).
Lemma 3.1
(see [10])
Let \(0< p,q<\infty \) and \(1/s=1/p+1/q\). If f and g are two measurable functions on \(\mathbb{R}^{n}\), then
for any \(\Theta \subset \mathbb{R}^{n}\).
Theorem 3.1
Let φ be a Young function on \([0,+\infty )\), \(\hbar =\sum_{I}\hbar _{I}\,\mathrm{d}x_{I}\) be a differential form on \(\Theta \subset \mathbb{R}^{n}\), and let all the ordered ℓ-tuples I satisfy \(\hbar _{I}\in L^{\infty }_{c}\). Suppose that \(F_{\alpha }\) is a fractional convolution operator on differential forms and its kernel function \(K_{\alpha }\) satisfies \(K_{\alpha }\in S_{\alpha }\cap H_{\alpha,\varphi }\) and \(K_{\alpha }\in C^{\infty }_{0}(\Theta )\), where \(0<\alpha <n\). Then, for any \(1< p<\infty \), there exists a constant C such that
where k is a constant with \(0\leq k\leq 1\).
Proof
By Theorem 2.4, we obtain
By Lemma 3.1 with \(1=1/p+(p-1)/p\), for any ball with \(O(O\subset \Theta )\), we have
By the definition of the Lipschitz norm and \(2-1/p+1/n-1-k/n=1-1/p+1/n-k/n>0\), we obtain
□
Lemma 3.2
(see [14])
If the differential form \(\hbar \in \operatorname{locLip}_{k}(\Theta, \Lambda ^{\ell })\), \(\ell =0,1,\ldots,n\), \(0\leq k\leq 1\), is defined in a bounded convex domain Θ, then \(\hbar \in BMO(\Theta, \Lambda ^{\ell })\) and there exists a constant C such that
By Theorem 3.1 and Lemma 3.2, we get the following conclusion.
Theorem 3.2
Let φ be a Young function on \([0,+\infty )\), \(\hbar =\sum_{I}\hbar _{I}\,\mathrm{d}x_{I}\) be a differential form on \(\Theta \subset \mathbb{R}^{n}\), and let all the ordered ℓ-tuples I satisfy \(\hbar _{I}\in L^{\infty }_{c}\). Suppose that \(F_{\alpha }\) is a fractional convolution operator on differential forms and its kernel function \(K_{\alpha }\) satisfies \(K_{\alpha }\in S_{\alpha }\cap H_{\alpha,\varphi }\) and \(K_{\alpha }\in C^{\infty }_{0}(\Theta )\), where \(0<\alpha <n\). Then, for any \(1< p<\infty \), there exists a constant C such that
4 Applications
With regard to the applications of the fractional convolution operator, we will point out that Theorem 2.2 has different expression forms.
Definition 4.1
(see [7])
Let \(K_{\alpha }(x)\) be a function defined on \(\mathbb{R}^{n}\), if there exist two constants \(c\geq 1\) and \(C>0\) such that
then the kernel function \(K_{\alpha }\) is said to satisfy the \(H^{\ast }_{\alpha,\infty }\)-condition.
Lemma 4.1
(see [7])
Let φ be any Young function defined on \([0,+\infty )\), then \(H^{\ast }_{\alpha,\infty }\subset H_{\alpha, \varphi }\).
Theorem 4.1
Let \(K_{\alpha }(x)=\frac{{1}}{{\vert x \vert ^{n-\alpha }}}\) and \(0\leq \alpha < n\), then \(K_{\alpha }\in S_{\alpha }\cap H_{\alpha,\varphi }\).
Proof
Firstly prove that \(K_{\alpha }\in S_{\alpha }\). By the definition of \(K_{\alpha }\), we have
where \(\sigma _{n}\) is the volume of a unit sphere n in \(\mathbb{R}^{n}\). Thus \(K_{\alpha }\in S_{\alpha}\).
Secondly prove that \(K_{\alpha }\in H_{\alpha,\varphi }\). According to Lemma 4.1, we only need to prove that \(K_{\alpha }\in H^{\ast }_{\alpha,\infty }\). If we choose \(\vert x \vert >2\vert y \vert (c=2\geq 1)\) and \(y\neq O=(0,\ldots,0)\) (for \(y=O\), it is clearly established), it follows that
where \(x=(x_{1},\ldots,x_{n}),y=(y_{1},\ldots,y_{n})\). Considering that each component of x, y is greater than zero, other cases may be considered similarly. By Lagrange’s mean value theorem
where
Thus \(K_{\alpha }\in H^{\ast }_{\alpha,\infty }\). □
Theorems 2.2 and 4.1 yield the following.
Theorem 4.2
Let φ be any Young function defined on \([0,+\infty )\) and \(K_{\alpha }(x)=\frac{{1}}{{\vert x \vert ^{n-\alpha }}}\), then the fractional convolution operator \(F_{\alpha }\) in (1.1) becomes the classical Riesz potential operator
where \(\hbar =\sum_{I}\hbar _{I}\,\mathrm{d}x_{I}\) is a differential form in \(\mathbb{R}^{n}\) and such that \(\hbar _{I}\in L^{\infty }_{c}\) for all the ordered ℓ-tuples I. Then there exists a constant C such that
for any \(0< p<\infty \) and \(w\in A_{\infty }\).
Lemma 4.2
(see [7])
Denote by \(S^{n-1}\) the unit sphere of \(\mathbb{R}^{n}\), Ω is a homogeneous function defined on \(S^{n-1}\) with \(\Omega (x)=\Omega (x')\) and the kernel function \(K_{\alpha }(x)=\Omega (x)/\vert x \vert ^{n-\alpha }(x\neq 0)\), where \(x'=x/\vert x \vert (x\neq 0)\). Given a Young function φ, we define the \(\L^{\varphi }\)-modulus of continuity of Ω as
and write \(\Omega \in \L^{\varphi }(S^{n-1})\). If
then \(K_{\alpha }\in S_{\alpha }\cap H_{\alpha,\varphi }\).
By Theorem 2.2 and Lemma 4.2, we have the following.
Theorem 4.3
Let φ be a Young function, Ω be a homogeneous function in \(S^{n-1}\) with \(\Omega (x)=\Omega (x')\) and \(\Omega \in \L^{\varphi }(S^{n-1})\). Suppose that \(F_{\alpha }\) is the fractional convolution operator with its kernel function \(K_{\alpha }(x)=\Omega (x)/\vert x \vert ^{n-\alpha }\). Let \(\hbar =\sum_{I}\hbar _{I}\,\mathrm{d}x_{I}\) be a differential form in \(\mathbb{R}^{n}\) with \(\hbar _{I}\in L^{\infty }_{c}\) for all the ordered ℓ-tuples I. If \(\int ^{1}_{0}\varpi _{\varphi }(t)\frac{{\mathrm{d}t}}{t}<\infty \), then there exists a constant C such that
for any \(0< p<\infty \) and \(w\in A_{\infty }\).
References
Bi, H.: Weighted inequalities for potential operators on differential forms. J. Inequal. Appl. 2010, Article ID 713625 (2010). https://doi.org/10.1155/2010/713625
Tang, Z., Zhu, J.: Carathéodory operator of differential forms. J. Inequal. Appl. 2011, Article ID 88 (2011). https://doi.org/10.1186/1029-242X-2011-88
Tang, Z., Zhu, J.: Estimates for the composition of the Carathéodory and homotopy operators. J. Inequal. Appl. 2012, Article ID 188 (2012). https://doi.org/10.1186/1029-242X-2012-188
Dai, Z., Xing, Y., Ding, S., Wang, Y.: Inequalities for the composition of Green’s operator and the potential operator. J. Inequal. Appl. 2012, Article ID 271 (2012). https://doi.org/10.1186/1029-242X-2012-271
Dai, Z., Xing, Y., Ding, S.: BMO and Lipschitz norm estimates for the composition of Green’s operator and the potential operator. J. Inequal. Appl. 2013, Article ID 26 (2013). https://doi.org/10.1186/1029-242X-2013-26
Wang, Y., Xing, Y.: Inequalities for two type potential operators on differential forms. J. Math. Anal. Appl. 417, 774–786 (2014). https://doi.org/10.1016/j.jmaa.2014.03.048
Bernardis, A.L., Lorente, M., Riveros, M.S.: Weighted inequalities for fractional integral operators with kernel satisfying Hörmander type conditions. Math. Inequal. Appl. 14(4), 881–895 (2011). https://doi.org/10.7153/mia-14-73
Riveros, M.S.: Weighted inequalities for generalized fractional operators. Rev. Unión Mat. Argent. 49(2), 29–38 (2008)
Iwaniec, T., Lutoborski, A.: Integral estimates for null Lagrangians. Arch. Ration. Mech. Anal. 125, 25–79 (1993). https://doi.org/10.1007/BF00411477
Agarwal, R.P., Ding, S., Nolder, C.A.: Inequalities for Differential Forms. Springer, New York (2009). https://doi.org/10.1007/978-0-387-68417-8
Rao, M., Ren, Z.: Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146. Dekker, New York (1991)
Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1997). https://doi.org/10.1007/978-3-642-61798-0
Staples, S.G.: \(L^{p}\)-Averaging domains and the Poincaré inequality. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 14, 103–127 (1989)
Ding, S.: Lipschitz and BMO norm inequalities for operators. Nonlinear Anal., Theory Methods Appl. 71, e2350–e2357 (2009). https://doi.org/10.1016/j.na.2009.05.032
Funding
This work is supported by Xi’an Technological University president Fund Project (XAGDXJJ16019). The authors wish to thank the anonymous referees for their time and thoughtful suggestions.
Author information
Authors and Affiliations
Contributions
All results and investigations of this manuscript were due to the joint efforts of all authors. ZD finished the proof and the writing work. HL gave ZD some excellent advices in the proof and writing. QL took part in the original conceiving and discussion, and carefully checked the second amendment of the English writing and the proof in this article. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that there are no competing interests regarding the publication of this article.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Dai, Z., Li, H. & Li, Q. Inequalities for the fractional convolution operator on differential forms. J Inequal Appl 2018, 176 (2018). https://doi.org/10.1186/s13660-018-1768-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-018-1768-x
Keywords
- Fractional convolution operator
- Coifman type inequality
- BMO norm
- Lipschitz norm
- Differential form