- Research
- Open Access
- Published:
The closedness of shift invariant subspaces in \(L^{p,q} (\mathbb{R}^{d+1} )\)
Journal of Inequalities and Applications volume 2018, Article number: 166 (2018)
Abstract
In this paper, we consider the closedness of shift invariant subspaces in \(L^{p,q} (\mathbb{R}^{d+1} )\). We first define the shift invariant subspaces generated by the shifts of finite functions in \(L^{p,q} (\mathbb{R}^{d+1} )\). Then we give some necessary and sufficient conditions for the shift invariant subspaces in \(L^{p,q} (\mathbb{R}^{d+1} )\) to be closed. Our results improve some known results in (Aldroubi et al. in J. Fourier Anal. Appl. 7:1–21, 2001).
1 Introduction and main result
\(L^{p,q} (\mathbb{R}^{d+1} )\) (\(1< p,q <+\infty\)) are called mixed Lebesgue spaces which generalize Lebesgue spaces [2–6]. They are very important for the study of sampling and equation problems, since we can consider functions to be independent quantities with different properties [5–8]. Recently, Torres, Ward, Li, Liu and Zhang studied the sampling theorem on the shift invariant subspaces in \(L^{p,q} (\mathbb{R}^{d+1} )\) [6–8]. In this environment, we study the closedness of shift invariant subspaces in \(L^{p,q} (\mathbb{R}^{d+1} )\).
The closedness is an expected property for shift invariant subspaces, which is widely considered in the study of shift invariant subspaces. de Boor, DeVore, Ron, Bownik and Shen studied the closedness of shift invariant subspaces in \(L^{2} (\mathbb{R}^{d} )\) [9–11]. And Jia, Micchelli, Aldroubi, Sun and Tang discussed the closedness of shift invariant subspaces in \(L^{p} (\mathbb{R}^{d} )\) [1, 12, 13]. In this paper, we consider the closedness of shift invariant subspaces in \(L^{p,q} (\mathbb{R}^{d+1} )\).
In order to provide our main result which extends the result in [1], we introduce some definitions and notations.
The definition of \(L^{p,q} (\mathbb{R}^{d+1} )\) is as follows.
Definition 1.1
For \(1 < p,q <+\infty\). \(L^{p,q}=L^{p,q} (\Bbb {R}^{d+1} )\) is made up of all functions f satisfying
We define mixed sequence spaces \(\ell^{p,q} (\mathbb {Z}^{d+1} )\) as follows:
Given a function f, define
For \(1\leq p,q\leq\infty\), let \(\mathcal{L}^{p,q}=\mathcal{L}^{p,q} (\mathbb{R}^{d+1} )\) be the linear space of all functions f for which \(\Vert f \Vert _{\mathcal{L}^{p,q}}<\infty\). The norms are defined above and with usual modification in the case of \(p \mbox{ or } q=\infty\). \(\mathcal{L}^{p,q}\) is a generalization of \(\mathcal{L}^{p}\) (the definition of \(\mathcal{L}^{p}\) see [14, Sect. 1]). Clearly, for \(1\leq p,q \leq\infty\), one has \(\mathcal{L}^{\infty ,\infty}\subset\mathcal{L}^{\infty}\) and \(\mathcal{L}^{\infty,\infty}\subset\mathcal{L}^{p,q}\subset \mathcal{L}^{1,1}\).
Let \(\hat{f}(\omega)\) denote the Fourier transform of \(f\in L^{1} (\mathbb{R}^{d+1} )\):
For a given sequence c and a function ϕ, \(c\ast_{\mathrm {sd}}\phi=\sum_{k\in \mathbb{Z}^{d+1}}c(k)\phi(\cdot-k)\) is called semi-convolution of c and ϕ.
Assume that \(\mathcal{B}\) is a Banach space. \((\mathcal{B})^{(r)}\) denotes r copies \(\mathcal{B}\times\mathcal{B}\times\cdots\times \mathcal{B}\) of \(\mathcal{B}\). If \(C=(c_{1},c_{2},\ldots ,c_{r})^{T}\in(\mathcal{B})^{(r)}\), then one defines the norm of C by \(\Vert C \Vert_{(\mathcal{B})^{(r)}}=\sum_{j=1}^{r} \Vert c_{j} \Vert_{\mathcal{B}}\).
\(\mathcal{WC}^{p,q}\) (\(1\leq p,q\leq\infty\)) consists of all distributions whose Fourier coefficients belong to \(\ell^{p,q}\). When \(p=q=1\), \(\mathcal{WC}^{1,1}\) becomes the Wiener class \(\mathcal{WC}\).
Suppose that \(\Theta=(\theta_{1},\theta_{2},\ldots,\theta _{r})^{T}\) and \(\Psi=(\psi_{1},\psi_{2},\ldots,\psi_{s})^{T}\) are two vector functions which satisfy \(\widehat{\theta}_{j}(\omega )\overline{\widehat{\psi}_{j'}(\omega)}\) (\(1\leq j\leq r\), \(1\leq j'\leq s\)) are integrable. One defines
Remark 1.2
By [14, Theorem 3.1 and Theorem 3.2], \([\widehat{\Theta },\widehat{\Psi}](\omega)\in\mathcal{WC}\) for any \(\Theta,\Psi \in\mathcal{L}^{\infty,\infty}\subset\mathcal{L}^{\infty}\subset \mathcal{L}^{2}\). Therefore, for any \(\Theta\in\mathcal{L}^{\infty,\infty}\), using the continuity of \([\widehat{\Theta},\widehat{\Theta}](\omega)\) and \(\operatorname {rank}[\widehat{\Theta},\widehat{\Theta}](\omega)= \operatorname{rank} (\widehat{\Theta}(\omega+2k\pi) )_{k\in \mathbb{Z}^{d+1}}\), one obtains, for any \(n\geq0\), the set \(\Omega _{n}= \{\omega:\operatorname{rank} (\widehat{\Theta }(\omega+2k\pi) ) _{k\in \mathbb{Z}^{d+1}}>n \}\) is open.
The following proposition shows that the shift invariant subspaces in \(L^{p,q}\) (\(1< p,q<\infty\)) are well defined.
Proposition 1.3
([8, Lemma 2.2])
Let \(\theta\in\mathcal{L}^{p,q}\), where \(1< p,q<\infty\). Then, for any \(c\in\ell^{p,q}\),
Definition 1.4
For \(\Theta=(\theta_{1},\theta_{2},\ldots,\theta_{r})^{T}\in (\mathcal{L}^{\infty,\infty})^{(r)}\), the multiply generated shift invariant subspace in the mixed Lebesgue spaces \(L^{p,q}\) is defined by
The following is our main result.
Theorem 1.5
Assume \(\Theta=(\theta_{1},\theta_{2},\ldots,\theta_{r})^{T}\in (\mathcal{L}^{\infty,\infty})^{(r)}\) and \(1< p,q<\infty\). Then the following four conditions are equivalent.
-
(i)
\(V_{p,q}(\Theta)\) is closed in \(L^{p,q}\).
-
(ii)
There exist some positive constants \(C_{1}\) and \(C_{2}\) satisfying
$$C_{1}[\widehat{\Theta},\widehat{\Theta}](\omega)\leq[\widehat { \Theta},\widehat{\Theta}](\omega)\overline{[\widehat{\Theta },\widehat{\Theta}]( \omega)^{T}} \leq C_{2}[\widehat{\Theta},\widehat{\Theta}]( \omega),\quad \forall \omega\in[-\pi,\pi]^{d+1}. $$ -
(iii)
There exist constants \(B_{1}, B_{2}>0\) satisfying
$$B_{1} \Vert f \Vert _{L^{p,q}}\leq\inf_{f=\sum _{j=1}^{r}c_{j}*_{\mathrm{sd}}\phi_{j}} \sum_{j=1}^{r} \Vert c_{j} \Vert _{\ell^{p,q}} \leq B_{2} \Vert f \Vert _{L^{p,q}}, \quad\forall f\in V_{p,q}(\Theta). $$ -
(iv)
There is \(\Psi=(\psi_{1},\psi_{2},\ldots,\psi_{r})^{T}\in (\mathcal{L}^{\infty,\infty})^{(r)}\) satisfying
$$\begin{aligned} f =&\sum_{j=1}^{r}\sum _{k\in \mathbb{Z}^{d+1}}\bigl\langle f,\psi_{j}(\cdot -k)\bigr\rangle \theta_{j}(\cdot-k) \\ =&\sum_{j=1}^{r}\sum _{k\in \mathbb{Z}^{d+1}}\bigl\langle f,\theta_{j}(\cdot -k)\bigr\rangle \psi_{j}(\cdot-k),\quad\forall f\in V_{p,q}(\Theta). \end{aligned}$$
The paper is organized as follows. In the next section, we give some three useful lemmas and two propositions. In Sect. 3, we give the proof of Theorem 1.5. Finally, concluding remarks are presented in Sect. 4.
2 Some useful lemmas and propositions
In this section, we give three useful lemmas and two propositions which are needed in the proof of Theorem 1.5.
Proposition 2.1
([1, Lemma 1])
Let \(\Theta\in(\mathcal{L}^{2})^{(r)}\). Then the following are equivalent:
-
(i)
\(\operatorname{rank} (\widehat{\Theta}(\omega+2k\pi ) )_{k\in \mathbb{Z}^{d+1}}\) is a constant for any \(\omega\in \mathbb{R}^{d+1}\).
-
(ii)
There exist some positive constants \(C_{1}\) and \(C_{2}\) such that
$$C_{1}[\widehat{\Theta},\widehat{\Theta}](\omega)\leq[\widehat { \Theta},\widehat{\Theta}](\omega)\overline{[\widehat{\Theta },\widehat{\Theta}]( \omega)^{T}} \leq C_{2}[\widehat{\Theta},\widehat{\Theta}]( \omega),\quad \forall \omega\in[-\pi,\pi]^{d+1}. $$
Proposition 2.2
([1, Lemma 2])
Let \(\Phi\in(\mathcal{L}^{2})^{(r)}\) satisfy \(\operatorname {rank} (\widehat{\Phi}(\xi+2k\pi) ) _{k\in \mathbb{Z}^{d+1}}=k_{0} \geq1\) for all \(\xi\in \mathbb{R}^{d+1}\). Then there exists a finite index set Λ, \(\eta_{\lambda}\in[-\pi,\pi]^{d+1}\), \(0<\delta_{\lambda}<1/4\), nonsingular 2π-periodic \(r\times r\) matrix \(P_{\lambda}(\xi)\) with all entries in the Wiener class and \(K_{\lambda} \subset \mathbb{Z}^{d+1}\) with \(\operatorname{cardinality}(K_{\lambda})= k_{0}\) for all \(\lambda\in\Lambda\), having the following properties:
-
(i)
$$[-\pi,\pi]^{d+1}\subset\bigcup_{\lambda\in\Lambda}B(\delta _{\lambda}, \delta_{\lambda}/2), $$
where \(B(x_{0}, \delta)\) denotes the open ball in \(\mathbb{R}^{d+1}\) with center \(x_{0}\) and radius δ;
-
(ii)
where \(\Psi_{1,\lambda}\) and \(\Psi_{2,\lambda}\) are functions from \(\mathbb{R}^{d+1}\) to \(\mathbb{C}^{k_{0}}\) and \(\mathbb{C}^{r-k_{0}}\), respectively, satisfying
$$\operatorname{rank} \bigl(\widehat{\Psi}_{1,\lambda}(\xi+2\pi k) \bigr)_{k\in K_{\lambda} } =k_{0},\quad\forall \xi\in B(\delta _{\lambda},\delta_{\lambda}/2) $$and
$$\widehat{\Psi}_{2,\lambda}(\xi)=0,\quad\forall \xi\in B(\delta _{\lambda},8\delta_{\lambda}/5)+2\pi \mathbb{Z}^{d+1}. $$
Furthermore, there exist 2π-periodic \(\mathbb{C}^{\infty}\) functions \(h_{\lambda}(\xi)\), \(\lambda\in\Lambda\), on \(\mathbb{R}^{d+1}\) such that
and
The following lemma can be proved similarly to [7, Theorem 3.4]. And we leave the details to the interested reader.
Lemma 2.3
Assume that \(f\in L^{p,q}\) (\(1< p,q<\infty\)) and \(g\in\mathcal {L}^{\infty,\infty}\). Then
Lemma 2.4
Let \(c\in\ell^{1}\). Then one has:
-
(i)
If \(\theta\in\mathcal{L}^{p,q}\) (\(1< p,q< \infty\)), then
$$\Vert c*_{\mathrm{sd}}\theta \Vert _{\mathcal {L}^{p,q}}\leq \Vert c \Vert _{\ell^{1}} \Vert \theta \Vert _{\mathcal{L}^{p,q}}. $$ -
(ii)
If \(\theta\in\mathcal{L}^{\infty,\infty}\), then
$$\Vert c*_{\mathrm{sd}}\theta \Vert _{\mathcal{L}^{\infty ,\infty}}\leq \Vert c \Vert _{\ell^{1}} \Vert \theta \Vert _{\mathcal{L}^{\infty,\infty}}. $$
Proof
(i) By Young’s inequality and the triangle inequality, one has
The desired result (i) in Lemma 2.4 is obtained.
(ii) The desired result (ii) in Lemma 2.4 can be found in [8, Lemma 2.4]. □
Lemma 2.5
Assume that \(\theta\in\mathcal{L}^{p,q}\) (\(1< p,q<\infty\)) and \(\sum_{k\in \mathbb{Z}^{d+1}}\theta(\cdot-k)=0\). Then for any function h on \(\mathbb{R}^{d+1}\) satisfying
one has
Here D in (2.1) is a positive constant.
Proof
Since \(\theta\in\mathcal{L}^{p,q}\), for any \(\varepsilon> 0\), there is \(N_{0}\geq2\) satisfying
and
where \(E^{d}_{N_{0}}=\{(k_{1},\ldots,k_{d}): \mbox{ there exists some } 1\leq i_{0}\leq \,d \mbox{ such that } |k_{i_{0}}|>N_{0}\}\).
Set
where \(O_{N_{0}}=\bigcup_{|k_{i}|\leq N_{0}, 1\leq i\leq d+1} [(k_{1},\ldots,k_{d+1})+[0,1]^{d+1} ]\) and \(\chi_{S}\) is the characteristic function of S.
Thus \(\sum_{k\in \mathbb{Z}^{d+1}}\theta_{1}(\cdot-k)=\sum_{k\in \mathbb{Z}^{d+1}}\theta(\cdot-k)=0\) and \(\Vert\theta_{1}-\theta\Vert _{\mathcal{L}^{p,q}}<5\epsilon\). In fact
First of all, one treats \(I_{1}\): by (2.2) and (2.3), one has
Next, one treats \(I_{2}\):
Therefore, one has \(\Vert\theta_{1}-\theta\Vert_{\mathcal {L}^{p,q}}<5\epsilon\).
Using Lemma 2.4 and (2.1), there exists some positive constant C such that
Thus
Here \(C_{i}(N_{0})\) (\(i = 1,2\)) are positive constants depending only on \(N_{0}\) and d. This completes the proof. □
3 Proof of Theorem 1.5
In this section, we give the proof of Theorem 1.5. The main steps of the proof are as follows: \(\mbox{(iv)}\Rightarrow \mbox{(iii)}\Rightarrow\mbox{(i)}\Rightarrow\mbox{(ii)}\Rightarrow\mbox{(iv)}\).
\(\mbox{(iv)}\Rightarrow\mbox{(iii)}\):
Let \(f=\sum_{j=1}^{r}\sum_{k\in \mathbb{Z}^{d+1}}\langle f,\psi_{j}(\cdot -k)\rangle\theta_{j}(\cdot-k)\). Then, by Lemma 2.3, one has
Conversely, if \(f=\sum_{j=1}^{r}c_{j}*_{\mathrm{sd}}\theta_{j}\), then, by Proposition 1.3 and the triangle inequality
Taking the infimum for (3.1), one gets
Let \(B_{1}=1/\max_{1\leq j\leq r} \Vert\theta_{j} \Vert_{\mathcal {L}^{p,q}}\) and \(B_{2}=\sum_{j=1}^{r} \Vert\psi_{j} \Vert_{\mathcal {L}^{\infty,\infty}}\). Then one has
\(\mbox{(iii)}\Rightarrow\mbox{(i)}\):
For convenience, let \(T:(\ell^{p,q})^{(r)}\rightarrow V_{p,q}(\Theta )\) be a mapping which is defined by
and let \(\Vert f \Vert_{\mathrm{inf}}=\inf_{f=\sum _{j=1}^{r}c_{j}*_{\mathrm{sd}}\theta_{j}}\sum_{j=1}^{r} \Vert c_{j} \Vert_{\ell^{p,q}}\). Then, obviously, \(\Vert \cdot\Vert_{\mathrm {inf}}\) is a norm. Assume \(f_{n}\subset\operatorname{Ran}(T)\) (\(n\geq1\)) is a Cauchy sequence. Here \(\operatorname{Ran}(T)\) denotes the range of T. Without loss of generality, let \(\Vert f_{n}-f_{n-1} \Vert_{\mathrm {inf}}<2^{-n}\). Using the definition of \(\Vert\cdot\Vert_{\mathrm{inf}}\), there is \(C_{n}\in(\ell ^{p,q})^{(r)}\) (\(n\geq2\)) such that \(TC_{n}=f_{n}-f_{n-1}\) and \(\Vert C_{n} \Vert_{(\ell^{p,q})^{(r)}}<2^{-n}\) for any \(n\geq2\). By the completeness of \((\ell^{p,q})^{(r)}\) and \(\sum_{n=2}^{\infty} \Vert C_{n} \Vert_{(\ell^{p,q})^{(r)}}<\infty\), one has \(Z=\sum_{n=2}^{\infty}C_{n}\in(\ell^{p,q})^{(r)}\) and \(f_{1}+TZ\in \operatorname{Ran}(T)\). Note that \(\Vert TC \Vert_{\mathrm{inf}}\leq \Vert C \Vert_{(\ell ^{p,q})^{(r)}}\) for any \(C\in(\ell^{p,q})^{(r)}\). One has
when \(n\rightarrow\infty\). Therefore, \(\operatorname{Ran}(T)\) is closed. Since \(V_{p,q}(\Theta)=\operatorname{Ran}(T)\), one sees that \(V_{p,q}(\Theta)\) is closed.
\(\mbox{(i)}\Rightarrow\mbox{(ii)}\):
Similarly to [1, Proof of \(\mbox{(i)}\Rightarrow\mbox{(iii)}\)], one can prove \(\mbox{(i)}\Rightarrow\mbox{(ii)}\) by using \(\mathcal{L}^{\infty,\infty}\subset\mathcal {L}^{\infty}\), and substituting \(L^{p,q}\), \(\mathcal{L}^{\infty ,\infty}\), Proposition 2.1 and Lemma 2.5 for \(L^{p}\), \(\mathcal{L}^{\infty}\), Lemma 1 and Lemma 3 in [1], respectively.
\(\mbox{(ii)}\Rightarrow\mbox{(iv)}\):
Assume that \(h_{\lambda}(\omega)\), \(P_{\lambda}(\omega)\) and \(\widehat{\Psi}_{1,\lambda}(\omega)\) are as in Proposition 2.2. Define
Here \(H_{\lambda}(\omega)\) is a function with period 2π which satisfies \(\operatorname{supp}H_{\lambda}\subset B(\eta_{\lambda },\delta_{\lambda})+2\pi \mathbb{Z}^{d+1}\) and \(H_{\lambda}(\omega)=1\) on \(\operatorname{supp}h_{\lambda}\). Thus \(D_{\lambda}\in(\mathcal{WC})^{(r\times r)}\). Let \(\Psi=(\psi _{1},\psi_{2},\ldots,\psi_{r})^{T}\) be defined by
Then, by Lemma 2.4, one has \(\Psi\in\mathcal {L}^{\infty,\infty}\). For any \(f\in V_{p,q}(\Theta)\), using the definition of \(V_{p,q}(\Theta)\), there exists a distribution \(A(\omega )\in(\mathcal{WC}^{p,q})^{(r)}\) with period 2π which satisfies \(\hat{f}(\omega)=A(\omega)^{T}\widehat{\Theta}(\omega)\). Putting
By the periodicity of \(h_{\lambda}(\omega) \) and \(D_{\lambda}(\omega )\), (3.2), (3.3) and Proposition 2.2, one has
Thus \(\hat{f}(\omega)=\hat{g}(\omega)\). Therefore \(f=g\), namely
Similar arguments show that
4 Concluding remarks
In this paper, we study the closedness of shift invariant subspaces in \(L^{p,q} (\mathbb{R}^{d+1} )\). We first define the shift invariant subspaces generated by the shifts of finite functions in \(L^{p,q} (\mathbb{R}^{d+1} )\). Then we give some necessary and sufficient conditions for the shift invariant subspaces in \(L^{p,q} (\mathbb{R}^{d+1} )\) to be closed.
However, in this paper, we only consider the closedness of shift invariant subspace of \(L^{p,q} (\mathbb{R}^{d+1} )\). Studying the \(L^{p,q}\)-frames in a shift invariant subspace of mixed Lebesgue \(L^{p,q}(\mathbb{R}^{d})\) is the goal of future work.
References
Aldroubi, A., Sun, Q., Tang, W.: p-frames and shift invariant subspaces of \(L^{p}\). J. Fourier Anal. Appl. 7(1), 1–21 (2001)
Benedek, A., Panzone, R.: The space \(L^{p}\) with mixed norm. Duke Math. J. 28(3), 301–324 (1961)
Benedek, A., Calderón, A.P., Panzone, R.: Convolution operators on Banach space valued functions. Proc. Natl. Acad. Sci. USA 48(3), 356–365 (1962)
Francia, J.L., Ruiz, F.J., Torrea, J.L.: Calderón–Zygmund theory for operator-valued kernels. Adv. Math. 62(1), 7–48 (1986)
Fernandez, D.L.: Vector-valued singular integral operators on \(L^{p}\)-spaces with mixed norms and applications. Pac. J. Math. 129(2), 257–275 (1987)
Torres, R., Ward, E.: Leibniz’s rule, sampling and wavelets on mixed Lebesgue spaces. J. Fourier Anal. Appl. 21(5), 1053–1076 (2015)
Li, R., Liu, B., Liu, R., Zhang, Q.: Nonuniform sampling in principal shift-invariant subspaces of mixed Lebesgue spaces \(L^{p,q}(\mathbb{R}^{d+1})\). J. Math. Anal. Appl. 453(2), 928–941 (2017)
Li, R., Liu, B., Liu, R., Zhang, Q.: The \(L^{p,q}\)-stability of the shifts of finitely many functions in mixed Lebesgue space \(L^{p,q}(\mathbb{R}^{d+1})\). Acta Math. Sin. (2018). https://doi.org/10.1007/s10114-018-7333-1
de Boor, C., DeVore, R.A., Ron, A.: The structure of finitely generated shift-invariant spaces in \(L_{2}({\mathbb{R}}^{d})\). J. Funct. Anal. 119(1), 37–78 (1994)
Bownik, M.: The structure of shift-invariant subspaces of \(L_{2}({\mathbb {R}}^{n})\). J. Funct. Anal. 177(2), 282–309 (2000)
Ron, A., Shen, Z.: Frames and stable bases for shift-invariant subspaces of \(L_{2}(\mathbb{R})\). Can. J. Math. 47(5), 1051–1094 (1995)
Jia, R.Q., Micchelli, C.A.: On linear independence for integer translates of a finite number of functions. Proc. Edinb. Math. Soc. 36(1), 69–85 (1992)
Jia, R.Q.: Stability of the shifts of a finite number of functions. J. Approx. Theory 95(2), 194–202 (1998)
Jia, R.Q., Micchelli, C.A.: Using the refinement equations for the construction of pre-wavelets II: powers of two. In: Laurent, P.-J., Le Méhauté, A., Schumaker, L.L. (eds.) Curves and Surfaces, pp. 209–246. Academic Press, New York (1991)
Funding
This work was supported partially by the National Natural Science Foundation of China under Grants Nos. 11371200, 11326094 and 11401435. This work was also partially supported by the Program for Visiting Scholars at the Chern Institute of Mathematics.
Author information
Authors and Affiliations
Contributions
QZ provided the questions and gave the proof for the main result. He read and approved the manuscript.
Corresponding author
Ethics declarations
Competing interests
The author declares that he has no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Zhang, Q. The closedness of shift invariant subspaces in \(L^{p,q} (\mathbb{R}^{d+1} )\). J Inequal Appl 2018, 166 (2018). https://doi.org/10.1186/s13660-018-1755-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-018-1755-2
MSC
- 42C15
- 42C40
- 41A58
Keywords
- Mixed Lebesgue spaces \(L^{p,q} (\mathbb{R}^{d+1} )\)
- Closedness of shift invariant subspaces
- Shift invariant subspaces