- Research
- Open access
- Published:
Some new k-Riemann–Liouville fractional integral inequalities associated with the strongly η-quasiconvex functions with modulus \(\mu\geq0\)
Journal of Inequalities and Applications volume 2018, Article number: 139 (2018)
Abstract
A new class of quasiconvexity called strongly η-quasiconvex function was introduced in (Awan et al. in Filomat 31(18):5783–5790, 2017). In this paper, we obtain some new k-Riemann–Liouville fractional integral inequalities associated with this class of functions. For specific values of the associated parameters, we recover results due to Dragomir and Pearce (Bull. Aust. Math. Soc. 57:377–385, 1998), Ion (Ann. Univ. Craiova, Math. Sci. Ser. 34:82–87, 2007), and Alomari et al. (RGMIA Res. Rep. Collect. 12(Supplement):Article ID 14, 2009).
1 Introduction
Let \(I\subset \mathbb{R}\) be an interval, and let \(I^{\circ }\) denote the interior of I. We say that a function \(g:I\rightarrow \mathbb{R}\) is quasiconvex if
for all \(x, y\in I\) and \(t\in [0, 1]\).
For functions that are quasiconvex on \([a, b]\), Dragomir and Pearce [5] established the following inequality of the Hermite–Hadamard type.
Theorem 1
Let \(g:[a, b]\rightarrow \mathbb{R}\) be a quasiconvex positive function. If \(g\in L_{1}([a,b])\), then we have the following succeeding inequality:
Ion [8] obtained the following two results in the same direction.
Theorem 2
Let \(g:[a, b]\rightarrow \mathbb{R}\) be a differentiable function on \((a, b)\). If, in addition, the absolute value function \(\vert g' \vert \) is quasiconvex on \([a, b]\), then we have the following succeeding inequality:
Theorem 3
Let \(g:[a, b]\rightarrow \mathbb{R}\) be a differentiable function on \((a, b)\). If, in addition, the absolute value function \(\vert g' \vert ^{ \frac{p}{p-1}}\) is quasiconvex on \([a, b]\) with \(p>1\), then we have the following succeeding inequality:
Subsequently, Alomari et al. [2] obtained the following generalization of Theorem 2.
Theorem 4
Let \(g:I\rightarrow \mathbb{R}\) be a differentiable function on \(I^{\circ }\) with \(a, b\in I^{\circ }\) and \(a< b\). If, in addition, the absolute value function \(\vert g' \vert ^{q}\) is quasiconvex on \([a, b]\), \(q\geq 1\), then we have the following succeeding inequality:
Recently, Gordji et al. [6] introduced a new class of functions, called the η-quasiconvex functions. We present the definition for completeness.
Definition 5
A function \(g:I\subset \mathbb{R}\rightarrow \mathbb{R}\) is said to be an η-quasiconvex function with respect to \(\eta :\mathbb{R} \times \mathbb{R}\rightarrow \mathbb{R}\) if
for all \(x, y\in I\) and \(t\in [0, 1]\).
For some results concerning the η-convex functions and related results, we refer the interested reader to the papers [4, 7, 9, 10, 12, 13, 15–17] and the references therein. Recently, Awan et al. [3] proposed the following definition, which gives a further generalization of Definition 5.
Definition 6
A function \(g:I\subset \mathbb{R}\rightarrow \mathbb{R}\) is said to be a strongly η-quasiconvex function with respect to \(\eta : \mathbb{R}\times \mathbb{R}\rightarrow \mathbb{R}\) and modulus \(\mu \geq 0\) if
for all \(x, y\in I\) and \(t\in [0, 1]\).
Example 7
The function \(g(x)=x^{2}\) is strongly η-quasiconvex with respect to the bifunction \(\eta (x, y)=2x+y\) and modulus \(\mu =1\). To see this, let \(t\in [0, 1]\). Then
Remark 8
If g is strongly η-quasiconvex with respect to \(\eta (x, y)=x-y\) and modulus \(\mu =0\), then Definition 6 reduces to the classical definition of the quasiconvexity.
Our purpose in this paper is to prove analogues of inequalities (1)–(4) for the strongly η-quasiconvex functions via the k-Riemann–Liouville fractional integral operators. We recapture these inequalities as particular cases of our results (see Remark 20).
We close this section by presenting the definition of the k-Riemann–Liouville fractional integral operators.
Definition 9
(See [11])
The left- and right-sided k-Riemann–Liouville fractional integral operators \({}_{k}{\mathbf{{J}}}_{a^{+}}^{\alpha }\) and \({}_{k}{\mathbf{{J}}}_{b^{-}} ^{\alpha }\) of order \(\alpha >0\), for a real-valued continuous function \(g(x)\), are defined as
and
where \(k>0\), and \(\Gamma_{k}\) is the k-gamma function given by
with the properties \(\Gamma_{k}(x+k)=x\Gamma_{k}(x)\) and \(\Gamma_{k}(k)=1\).
This paper is made up of two sections. In Sect. 2, our main results are framed and justified. Some new inequalities are also obtained as corollaries of the main results.
2 Main results
In what follows, we will use the following notation (where convenient): for \(g:[a, b]\rightarrow \mathbb{R}\) and \(\eta :\mathbb{R}\times \mathbb{R}\rightarrow \mathbb{R}\), we define
and
We now state and prove our first result of this paper.
Theorem 10
Let \(\alpha , k>0\), and let \(g:[a, b]\rightarrow \mathbb{R}\) be a positive strongly η-quasiconvex function with modulus \(\mu \geq 0\). If \(g\in L_{1}([a, b])\), then we have the following inequality:
Proof
The function g is strongly η-quasiconvex on \([a, b]\) with \(\mu \geq 0\). This implies that
and
for all \(t\in [0, 1]\).
By adding (7) and (8) we obtain
Now, multiplying both sides of (9) by \(t^{\frac{\alpha }{k}-1}\) and thereafter integrating the outcome with respect to t over the interval \([0, 1]\) give
Using the substitutions \(x=ta+(1-t)b\) and \(y=(1-t)a+tb\) in the definition of the k-Riemann–Liouville fractional integrals, we obtain
and
Employing (11) and (12) in (10), we get
Hence the intended inequality is reached. □
Setting \(\mu =0\) in Theorem 10, we get the following corollary.
Corollary 11
Let \(\alpha , k>0\), and let \(g:[a, b]\rightarrow \mathbb{R}\) be a positive strongly η-quasiconvex function with modulus 0. If \(g\in L_{1}([a, b])\), then we have the following inequality:
The following lemmas will be useful in the proof of the remaining results of this paper.
Lemma 12
Let \(\alpha , k>0\), and let \(g:[a, b]\rightarrow \mathbb{R}\) be a differentiable function on the interval \((a, b)\). If \(g'\in L_{1}([a, b])\), then we have the following equality for the k-fractional integral:
Proof
The identity is achieved by setting \(s=0\) in [1, Lemma 2.1]. □
Lemma 13
If \(\sigma \in (0, 1]\) and \(0\leq x< y\), then
Theorem 14
Let \(\alpha , k>0\), and let \(g:[a, b]\rightarrow \mathbb{R}\) be a differentiable function on \((a,b)\). If \(\vert g' \vert \) is strongly η-quasiconvex on \([a, b]\) with modulus \(\mu \geq 0\) and \(g'\in L_{1}([a, b])\), then we have the following inequality:
Proof
We start by making the following observations: for \(t\in [0, 1]\), we obtain
and
Using a similar line of arguments (as previously), we obtain
Now, using the fact that \(\vert g' \vert \) is strongly η-quasiconvex with \(\mu \geq 0\) and then applying Lemma 12, the properties of the modulus, and identities (15) and (16), we obtain:
Hence the result follows. □
Putting \(\mu =0\) in Theorem 14, we obtain the following result.
Corollary 15
Let \(\alpha , k>0\), and let \(g:[a, b]\rightarrow \mathbb{R}\) be a differentiable function on \((a,b)\). If \(\vert g' \vert \) is strongly η-quasiconvex on \([a, b]\) with modulus 0 and \(g'\in L_{1}([a, b])\), then we have the following inequality:
Theorem 16
Let \(\alpha , k>0\), \(q>1\), and let \(g:[a, b]\rightarrow \mathbb{R}\) be a differentiable function on \((a,b)\). If \(\vert g' \vert ^{q}\) is strongly η-quasiconvex on \([a, b]\) with modulus \(\mu \geq 0\) and \(g'\in L_{1}([a, b])\), then we have the following inequality:
where \(\frac{1}{p}+\frac{1}{q}=1\) and \(\frac{\alpha }{k}\in (0, 1]\).
Proof
As a consequence of Lemma 13, we have that
for all \(x,y\in [0, 1]\) with \(\frac{\alpha }{k}\in (0, 1]\). Using the above information, we make the following computations:
Since the function \(\vert g' \vert ^{q}\) is strongly η-quasiconvex on \([a, b]\) with modulus \(\mu \geq 0\), we have
Now, applying Lemma 12, the Hölder inequality, the properties of absolute values, and inequalities (18) and (19), we obtain
This completes the proof. □
Taking \(\mu =0\) in Theorem 16, we get the following:
Corollary 17
Let \(\alpha , k>0\), \(q>1\), and let \(g:[a, b]\rightarrow \mathbb{R}\) be a differentiable function on \((a,b)\). If \(\vert g' \vert ^{q}\) is strongly η-quasiconvex on \([a, b]\) with modulus 0 and \(g'\in L_{1}([a, b])\), then we have the following inequality:
where \(\frac{1}{p}+\frac{1}{q}=1\) and \(\frac{\alpha }{k}\in (0, 1]\).
Finally, we present the following result.
Theorem 18
Let \(\alpha , k>0\), \(q\geq 1\), and let \(g:[a, b]\rightarrow \mathbb{R}\) be a differentiable function on \((a,b)\). If \(\vert g' \vert ^{q}\) is strongly η-quasiconvex on \([a, b]\) with modulus \(\mu \geq 0\) and \(g'\in L_{1}([a, b])\), then we have the following inequality:
where
and
Proof
We follow similar arguments as in the proof of the previous theorem. For this, we use again Lemma 12, the Hölder inequality, and the properties of the absolute values to obtain
The desired inequality follows by appealing to identities (15) and (16). □
Taking \(\mu =0\) in Theorem 18, we get the succeeding corollary.
Corollary 19
Let \(\alpha , k>0\), \(q\geq 1\), and let \(g:[a, b]\rightarrow \mathbb{R}\) be a differentiable function on \((a,b)\). If \(\vert g' \vert ^{q}\) is strongly η-quasiconvex on \([a, b]\) with modulus 0 and \(g'\in L_{1}([a, b])\), then we have the following inequality:
where
Remark 20
Substituting \(\eta (x,y)=x-y\) and \(\alpha =k=1\) into (13), (17), (20), and (21), we recover (1), (2), (3), and (4), respectively.
3 Conclusion
Four main results of the Hermite–Hadamard kind for functions that are strongly η-quasiconvex with modulus \(\mu \geq 0\) are hereby established. We recover known results in the literature by setting \(\eta (x,y)=x-y\), \(\alpha =k=1\), and \(\mu =0\) in Theorems 10, 14, 16, and 18. More results can be obtained by choosing different bifunction η and then μ.
References
Agarwal, P., Jleli, M., Tomar, M.: Certain Hermite–Hadamard type inequalities via generalized k-fractional integrals. J. Inequal. Appl. 2017, 55 (2017)
Alomari, M., Darus, M., Dragomir, S.S.: Inequalities of Hermite–Hadamard’s type for functions whose derivatives absolute values are quasi-convex. RGMIA Res. Rep. Collect. 12(Supplement), Article ID 14 (2009)
Awan, M.U., Noorb, M.A., Noorb, K.I., Safdarb, F.: On strongly generalized convex functions. Filomat 31(18), 5783–5790 (2017)
Delavar, M.R., De La Sen, D.: Some generalizations of Hermite–Hadamard type inequalities. SpringerPlus 5, 1661 (2016)
Dragomir, S.S., Pearce, C.E.M.: Quasi-convex functions and Hadamard’s inequality. Bull. Aust. Math. Soc. 57, 377–385 (1998)
Gordji, M.E., Delavar, M.R., De La Sen, M.: On φ-convex functions. J. Math. Inequal. 10(1), 173–183 (2016)
Gordji, M.E., Dragomir, S.S., Delavar, M.R.: An inequality related to η-convex functions (II). Int. J. Nonlinear Anal. Appl. 6(2), 26–32 (2015)
Ion, D.A.: Some estimates on the Hermite–Hadamard inequality through quasi-convex functions. Ann. Univ. Craiova, Math. Sci. Ser. 34, 82–87 (2007)
Jleli, M., Regan, D.O., Samet, B.: On Hermite–Hadamard type inequalities via generalized fractional integrals. Turk. J. Math. 40, 1221–1230 (2016)
Khan, M.A., Khurshid, Y., Ali, T.: Hermite–Hadamard inequality for fractional integrals via η-convex functions. Acta Math. Univ. Comen. LXXXVI(1), 153–164 (2017)
Mubeen, S., Habibullah, G.M.: k-Fractional integrals and applications. Int. J. Contemp. Math. Sci. 7(2), 89–94 (2012)
Nwaeze, E.R.: Inequalities of the Hermite–Hadamard type for quasi-convex functions via the \((k,s)\)-Riemann–Liouville fractional integrals. Fract. Differ. Calc. (in press)
Nwaeze, E.R., Torres, D.F.M.: Novel results on the Hermite–Hadamard kind inequality for η-convex functions by means of the \((k,r)\)-fractional integral operators. arXiv:1802.05619v1
Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integral and series. In: Elementary Functions, vol. 1. Nauka, Moscow (1981)
Sarikaya, M.Z., Dahmani, Z., Kiris, M.E., Ahmad, F.: \((k,s)\)-Riemann–Liouville fractional integral and applications. Hacet. J. Math. Stat. 45(1), 77–89 (2016)
Set, E., Tomar, M., Sarikaya, M.Z.: On generalized Grüss type inequalities via k-Riemann–Liouville fractional integral. Appl. Math. Comput. 269, 29–34 (2015)
Tomar, M., Mubeen, S., Choi, J.: Certain inequalities associated with Hadamard k-fractional integral operators. J. Inequal. Appl. 2016, 234 (2016)
Wang, J., Zhu, C., Zhou, Y.: New generalized Hermite–Hadamard type inequalities and applications to special means. J. Inequal. Appl. 2013, 325 (2013)
Acknowledgements
Many thanks to the two anonymous referees for their suggestions and comments.
Funding
There is no funding to report at this point in time.
Author information
Authors and Affiliations
Contributions
All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare that there are no competing interests.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Nwaeze, E.R., Kermausuor, S. & Tameru, A.M. Some new k-Riemann–Liouville fractional integral inequalities associated with the strongly η-quasiconvex functions with modulus \(\mu\geq0\). J Inequal Appl 2018, 139 (2018). https://doi.org/10.1186/s13660-018-1736-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-018-1736-5