Skip to main content

Ostrowski type inequalities involving conformable fractional integrals

Abstract

In the article, we establish several Ostrowski type inequalities involving the conformable fractional integrals. As applications, we find new inequalities for the arithmetic and generalized logarithmic means.

1 Introduction

Let \(I\subseteq\mathbb{R}\) be an interval and \(I^{\circ}\) the interior of I. Then the classical Ostrowski inequality [1] states that a real-valued function \(f: I\rightarrow\mathbb{R}\) satisfies the inequality

$$ \biggl\vert f(x)-\frac{1}{a_{2}-a_{1}} \int_{a_{1}}^{a_{2}}f(x)\,dx \biggr\vert \leq \biggl[ \frac{1}{4}+\frac{ (x-\frac{a_{1}+a_{2}}{2} )^{2}}{(a_{2}-a_{1})^{2}} \biggr] (a_{2}-a_{1})\big\| f^{\prime}\big\| _{\infty} $$

with the best possible constant \(1/4\) if \(a_{1}, a_{2}\in I^{\circ}\) with \(a_{1}< a_{2}\) and \(|f^{\prime}(x)|\leq M\) for all \(x\in[a_{1}, a_{2}]\).

Recently, the Ostrowski inequality has attracted the attention of many researchers, many remarkable generalizations, extensions, variants and applications can be found in the literature [224].

Let \(0<\alpha\leq1\) and g be a real-valued function defined on \([0, \infty)\). Then the (conformable) fractional derivative \(D_{\alpha }(g)(t)\) [23] of order α of g at \(t>0\) is defined by

$$ D_{\alpha}(g) (t)=\lim_{\epsilon\rightarrow0}\frac{g(t+\epsilon t^{1-\alpha})-g(t)}{\epsilon}. $$

g is said to be α-differentiable if the conformable fractional derivative of order α of g exists. In what follows, we write \(g^{\alpha}(t)\) or \(\frac{d_{\alpha}}{d_{\alpha}t}(g)\) for \(D_{\alpha }(g)(t)\) to denote the conformable fractional derivative of order α of g. The conformable fractional derivative at 0 is defined as \(g^{\alpha}(0)=\lim_{t\rightarrow0^{+}}g^{\alpha}(t)\).

Let \(\alpha\in(0, 1]\) and \(0\leq a< b\). Then the function \(h: [a, b]\rightarrow\mathbb{R}\) is said to be α-fractional integrable on \([a, b]\) if the integral

$$ \int_{a}^{b}h(x)\,d_{\alpha}x:= \int_{a}^{b}h(x)x^{\alpha-1}\,dx $$

exists and is finite. All α-fractional integrable functions on \([a, b]\) are denoted by \(L_{\alpha}^{1}([a, b])\).

Remark 1.1

Note that the relation between the Riemann integral and the conformable fractional integral is given by

$$ I_{\alpha}^{a}(h) (t)=I_{1}^{a} \bigl(t^{\alpha-1}h\bigr)= \int_{a}^{t}\frac {h(x)}{x^{1-\alpha}}\,dx. $$

Let \(\alpha\in(0, 1]\) and f, g be α-differentiable at \(t>0\). Then it is well known that

$$ (1) \quad\frac{d_{\alpha}}{d_{\alpha}t}\bigl(t^{n}\bigr)=nt^{n-\alpha} $$

for all \(n\in\mathbb{R}\);

$$ (2) \quad\frac{d_{\alpha}}{d_{\alpha}t}(c)=0 $$

for all constant \(c\in\mathbb{R}\);

$$ (3) \quad\frac{d_{\alpha}}{d_{\alpha}t}\bigl(af(t)+bg(t)\bigr)=a\frac{d_{\alpha }}{d_{\alpha}t}\bigl(f(t) \bigr)+b\frac{d_{\alpha}}{d_{\alpha}t}\bigl(g(t)\bigr) $$

for all \(a, b\in\mathbb{R}\);

$$\begin{gathered} (4) \quad\frac{d_{\alpha}}{d_{\alpha}t}\bigl(f(t)g(t)\bigr)=f(t)\frac{d_{\alpha }}{d_{\alpha}t}\bigl(g(t) \bigr)+g(t)\frac{d_{\alpha}}{d_{\alpha}t}\bigl(f(t)\bigr); \\ (5) \quad\frac{d_{\alpha}}{d_{\alpha}t} \biggl(\frac{f(t)}{g(t)} \biggr) =\frac{g(t)\frac{d_{\alpha}}{d_{\alpha}t}(f(t))-f(t)\frac{d_{\alpha }}{d_{\alpha}t}(g(t))}{g^{2}(t)}; \\(6) \quad\frac{d_{\alpha}}{d_{\alpha}t}\bigl(f\bigl(g(t)\bigr)\bigr)=f^{\prime} \bigl(g(t)\bigr)\frac {d_{\alpha}}{d_{\alpha}t}\bigl(g(t)\bigr),\end{gathered} $$

if f is differentiable at \(g(t)\).

The main purpose of the article is to find the Ostrowski type inequalities involving the conformable fractional integrals and give their applications in certain bivariate means.

2 Main results

Lemma 2.1

Let \(0<\alpha\leq1\), \(0\leq a_{1}< a_{2}\) and \(h: [a_{1}, a_{2}]\rightarrow\mathbb{R}\) be an α-fractional differentiable function. Then the identity

$$ \begin{aligned} h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s ={}&\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl[\bigl((1-t)a_{1}+tx \bigr)^{2\alpha-1}-a_{1}^{\alpha}\bigl((1-t)a_{1}+tx \bigr)^{\alpha -1} \bigr] \\ &\times D_{\alpha}(h) \bigl((1-t)a_{1}+tx \bigr)t^{1-\alpha}\,d_{\alpha}t \\&+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl[\bigl((1-t)a_{2}+tx \bigr)^{2\alpha-1}-a_{2}^{\alpha}\bigl((1-t)a_{2}+tx \bigr)^{\alpha -1} \bigr] \\ &\times D_{\alpha}(h) \bigl((1-t)a_{2}+tx \bigr)t^{1-\alpha}\,d_{\alpha}t\end{aligned} $$

holds if \(D_{\alpha}(h)\in L_{\alpha}^{1}([a_{1}, a_{2}])\).

Proof

It follows from integration by parts that

$$\begin{gathered} \frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl[\bigl((1-t)a_{1}+tx \bigr)^{2\alpha-1}-a_{1}^{\alpha}\bigl((1-t)a_{1}+tx \bigr)^{\alpha -1} \bigr] D_{\alpha}(h) \bigl((1-t)a_{1}+tx \bigr)t^{1-\alpha}\,d_{\alpha}t \\\qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl[\bigl((1-t)a_{2}+tx \bigr)^{2\alpha-1}-a_{2}^{\alpha}\bigl((1-t)a_{2}+tx \bigr)^{\alpha -1} \bigr]\\ \qquad{}\times D_{\alpha}(h) \bigl((1-t)a_{2}+tx \bigr)t^{1-\alpha}\,d_{\alpha}t \\\quad=\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl[\bigl((1-t)a_{1}+tx \bigr)^{2\alpha-1}-a_{1}^{\alpha}\bigl((1-t)a_{1}+tx \bigr)^{\alpha -1} \bigr] D_{\alpha}(h) \bigl((1-t)a_{1}+tx \bigr)\,dt \\\qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl[\bigl((1-t)a_{2}+tx \bigr)^{2\alpha-1}-a_{2}^{\alpha}\bigl((1-t)a_{2}+tx \bigr)^{\alpha -1} \bigr]\\ \qquad{}\times D_{\alpha}(h) \bigl((1-t)a_{2}+tx \bigr)\,dt \\\quad=\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{0}^{1}\bigl[\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha}\bigr]h^{\prime} \bigl((1-t)a_{1}+tx\bigr)\,dt \\\qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{0}^{1}\bigl[\bigl((1-t)a_{2}+tx \bigr)^{\alpha}-a_{2}^{\alpha}\bigr]h^{\prime} \bigl((1-t)a_{2}+tx\bigr)\,dt \\\quad=\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \bigl(\bigl((1-t)a_{1}+tx\bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \frac{h((1-t)a_{1}+tx)}{x-a_{1}} \bigg|_{0}^{1} \\\qquad{}-\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1}\alpha \bigl((1-t)a_{1}+tx \bigr)^{\alpha-1}h\bigl((1-t)a_{1}+tx\bigr)\,dt \\\qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \bigl(\bigl((1-t)a_{2}+tx\bigr)^{\alpha}-a_{2}^{\alpha} \bigr) \frac{h((1-t)a_{2}+tx)}{x-a_{2}} \bigg|_{0}^{1} \\\qquad{}-\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1}\alpha \bigl((1-t)a_{2}+tx \bigr)^{\alpha-1}h\bigl((1-t)a_{2}+tx\bigr)\,dt \\\quad=\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \biggl(\frac{x^{\alpha }-a_{1}^{\alpha}}{x-a_{1}}h(x) -\frac{\alpha}{x-a_{1}} \int_{a_{1}}^{x}h(s)\,d_{\alpha}s \biggr) \\\qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \biggl(\frac{a_{2}^{\alpha }-x^{\alpha}}{a_{2}-x}h(x) -\frac{\alpha}{a_{2}-x} \int_{x}^{a_{2}}h(s)\,d_{\alpha}s \biggr) \\\quad=h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s.\end{gathered} $$

 □

Theorem 2.2

Let \(0<\alpha\leq1\), \(0\leq a_{1}< a_{2}\), \(h: [a_{1}, a_{2}]\rightarrow\mathbb{R}\) be an α-fractional differentiable function and \(D_{\alpha}(h)\in L_{\alpha}^{1}([a_{1}, a_{2}])\). Then the inequality

$$ \biggl\vert h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \biggr\vert \leq \frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}}\triangle_{1}+\frac {a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}}\triangle_{2} $$

holds if \(|h^{\prime}(x)|\) is convex, where

$$\begin{gathered}\begin{aligned} \triangle_{1}={}&\frac{1}{6}a_{1}^{\alpha-1}x\big|h^{\prime}(a_{1})\big| +\frac{1}{12}x^{\alpha-1}a_{1}\big|h^{\prime}(a_{1})\big|+ \frac {1}{12}x\big|h^{\prime}(a_{1})\big|-\frac{1}{4}a_{1}^{\alpha}\big|h^{\prime}(a_{1})\big| \\&+\frac{1}{12}a_{1}\big|h^{\prime}(x)\big|+\frac{1}{12}x^{\alpha -1}a_{1}\big|h^{\prime}(x)\big| +\frac{1}{4}x\big|h^{\prime}(x)\big|-\frac{1}{2}a_{1}^{\alpha}\big|h^{\prime}(x)\big|,\end{aligned} \\\triangle_{2}=\frac{1}{6}a_{2}^{\alpha}\big|h^{\prime}(a_{2})\big|- \frac {1}{6}x^{\alpha}\big|h^{\prime}(a_{2})\big|+ \frac{1}{3}a_{2}^{\alpha}\big|h^{\prime}(x)\big| - \frac{1}{3}x^{\alpha}\big|h^{\prime}(x)\big|.\end{gathered} $$

Proof

Let \(y>0\), \(\varphi_{1}(y)=y^{\alpha-1}\) and \(\varphi_{2}(y)=-y^{\alpha }\). Then we clearly see that the functions \(\varphi_{1}\) and \(\varphi _{2}\) both are convex. It follows from Lemma 2.1 and the convexity of \(\varphi_{1}\), \(\varphi_{2}\) and \(|h'|\) that

$$\begin{gathered} \biggl\vert h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \biggr\vert \\ \quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr)\big|h' \bigl((1-t)a_{1}+tx\bigr)\big|\,dt \\ \qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(a_{2}^{\alpha }- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr)\big|h' \bigl((1-t)a_{2}+tx\bigr)\big|\,dt \\ \quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha-1}\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\big|h'\bigl((1-t)a_{1}+tx\bigr)\big|\,dt \\ \qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(a_{2}^{\alpha }- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha}\bigr) \bigr)\big|h'\bigl((1-t)a_{2}+tx\bigr)\big|\,dt \\ \quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha-1} \bigr) \bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\big|h'\bigl((1-t)a_{1}+tx\bigr)\big|\,dt \\ \qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha} \bigr) \bigr)\big|h'\bigl((1-t)a_{2}+tx\bigr)\big|\,dt \\ \quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha-1} \bigr) \bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\\ \qquad{}\times \bigl[(1-t)\big|h'(a_{1})\big|+t\big|h'(x)\big| \bigr]\,dt \\ \qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha}\bigr) \bigr) \bigl[(1-t)\big|h'(a_{2})\big| +t\big|h'(x)\big| \bigr]\,dt \\ \quad=\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}}\triangle_{1}+\frac {a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \triangle_{2}.\end{gathered} $$

 □

Corollary 2.3

Let \(x=(a_{1}+a_{2})/2\). Then Theorem 2.2 leads to

$$\begin{gathered} \biggl\vert h \biggl(\frac{a_{1}+a_{2}}{2} \biggr)-\frac{\alpha}{a_{2}^{\alpha }-a_{1}^{\alpha}} \int_{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \biggr\vert \\ \quad\leq\frac{a_{2}-a_{1}}{2(a_{2}^{\alpha}-a_{1}^{\alpha})} \biggl[ \biggl(\frac {2a_{1}^{\alpha-1}a_{2}-10a_{1}^{\alpha}+a_{1} +a_{2}}{24} \biggr)\big|h'(a_{1})\big|+ \frac{a_{1}}{12} \biggl(\frac {a_{1}+a_{2}}{2} \biggr)^{\alpha-1}\big|h'(a_{1})\big| \\ \qquad{}+ \biggl(\frac{5a_{1}+3a_{2}-12a_{1}^{\alpha}}{24} \biggr) \bigg|h' \biggl(\frac {a_{1}+a_{2}}{2} \biggr) \bigg| +\frac{a_{1}}{12} \biggl(\frac{a_{1}+a_{2}}{2} \biggr)^{\alpha-1} \bigg|h' \biggl(\frac{a_{1}+a_{2}}{2} \biggr) \bigg| \\ \qquad{}+\frac{1}{6}a_{2}^{\alpha}\big|h'(a_{2})\big| -\frac{1}{6} \biggl(\frac{a_{1}+a_{2}}{2} \biggr)^{\alpha}\big|h'(a_{2})\big| \\ \qquad{}+\frac{a_{2}^{\alpha}}{3} \bigg|h' \biggl(\frac{a_{1}+a_{2}}{2} \biggr) \bigg| - \frac{1}{3} \biggl(\frac{a_{1}+a_{2}}{2} \biggr)^{\alpha} \bigg|h' \biggl(\frac {a_{1}+a_{2}}{2} \biggr) \bigg| \biggr].\end{gathered} $$

Remark 2.4

If \(\alpha=1\), then Corollary 2.3 becomes

$$ \begin{aligned} \biggl\vert h \biggl(\frac{a_{1}+a_{2}}{2} \biggr)-\frac{\alpha}{a_{2}^{\alpha }-a_{1}^{\alpha}} \int_{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \biggr\vert &\leq\frac{a_{2}-a_{1}}{24} \biggl(\big|h'(a_{1})\big|+4 \bigg|h' \biggl(\frac {a_{1}+a_{2}}{2} \biggr) \bigg|+\big|h'(a_{2})\big| \biggr) \\ &\leq\frac{a_{2}-a_{1}}{8} \bigl(\big|h'(a_{1})\big|+\big|h'(a_{2})\big| \bigr),\end{aligned} $$

where the second inequality is obtained by using the convexity of \(|h'|\).

Theorem 2.5

Let \(q>1\), \(M>0\), \(0<\alpha\leq1\), \(0\leq a_{1}< a_{2}\), \(h: [a_{1}, a_{2}]\rightarrow\mathbb{R}\) be an α-fractional differentiable function and \(D_{\alpha}(h)\in L_{\alpha}^{1}([a_{1}, a_{2}])\). Then the inequality

$$\begin{gathered} \bigg|h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \bigg| \\\quad\leq M\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \bigl(A_{1}(\alpha) \bigr)^{1-1/q} \bigl(A_{2}(\alpha)+A_{3}(\alpha ) \bigr)^{1/q} \\\qquad{}+M\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \bigl(B_{1}(\alpha) \bigr)^{1-1/q} \bigl(B_{2}(\alpha)+B_{3}(\alpha) \bigr)^{1/q}\end{gathered} $$

holds if \(|h^{\prime}|^{q}\) is convex on \([a_{1}, a_{2}]\) and \(|h^{\prime}(x)|^{q}\leq M\), where

$$\begin{gathered} A_{1}(\alpha)=\frac{x^{\alpha+1}-a_{1}^{\alpha+1}}{(\alpha +1)(x-a_{1})}-a_{1}^{\alpha}, \qquad B_{1}(\alpha)=a_{2}^{\alpha}-\frac {x^{\alpha+1}-a_{2}^{\alpha+1}}{(\alpha+1)(a_{2}-x)}, \\A_{2}(\alpha)=-\frac{a_{1}^{\alpha+1}}{(\alpha+1)(x-a_{1})}\frac{(\alpha +2)(x-a_{1})+a_{1}}{ (\alpha+2)(x-a_{1})}+ \frac{x^{\alpha+2}}{(\alpha+1)(x-a_{1})^{2}(\alpha +2)}-\frac{a_{1}^{\alpha}}{2}, \\B_{2}(\alpha)=\frac{a_{2}^{\alpha}}{2}+\frac{a_{2}^{\alpha+1}}{(\alpha +1)(a_{2}-x)}\frac{(\alpha+2)(a_{2}-x)+a_{2}}{ (\alpha+2)(a_{2}-x)}- \frac{x^{\alpha+2}}{(\alpha+1)(a_{2}-x)^{2}(\alpha+2)}, \\A_{3}(\alpha)=\frac{x^{\alpha+1}}{(\alpha+1)(x-a_{1})}\frac{(\alpha +2)(x-a_{1})-x}{(\alpha+2)(x-a_{1})} + \frac{a_{1}^{\alpha+2}}{(\alpha+1)(x-a_{1})^{2}(\alpha+2)}-\frac {a_{1}^{\alpha}}{2}, \\B_{3}(\alpha)=\frac{a_{2}^{\alpha}}{2}-\frac{x^{\alpha+1}}{(\alpha +1)(a_{2}-x)} \frac{(\alpha+2)(a_{2}-x)-x}{ (\alpha+2)(a_{2}-x)}-\frac{a_{2}^{\alpha+2}}{(\alpha +1)(a_{2}-x)^{2}(\alpha+2)}.\end{gathered} $$

Proof

From Lemma 2.1, power-mean inequality and the convexity of \(|h^{\prime }|^{q}\) together with the identities

$$ \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr)\,dt = \frac{x^{\alpha+1}-a_{1}^{\alpha+1}}{(\alpha+1)(x-a_{1})}-a_{1}^{\alpha} $$

and

$$ \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr)\,dt =a_{2}^{\alpha}- \frac{x^{\alpha+1}-a_{2}^{\alpha+1}}{(\alpha+1)(a_{2}-x)} $$

we clearly see that

$$\begin{aligned}& \begin{aligned}[t] &\biggl\vert h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \biggr\vert \\&\quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \big|h' \bigl((1-t)a_{1}+tx\bigr) \big|\,dt \\&\qquad+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr) \big|h' \bigl((1-t)a_{2}+tx\bigr) \big|\,dt,\end{aligned} \end{aligned}$$
(2.1)
$$\begin{aligned}& \begin{aligned}[t] &\int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \big|h' \bigl((1-t)a_{1}+tx\bigr) \big|\,dt \\&\quad\leq \biggl( \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr)\,dt \biggr)^{1-1/q}\\ &\qquad\times \biggl( \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \big|h' \bigl((1-t)a_{1}+tx\bigr) \big|^{q}\,dt \biggr)^{1/q},\end{aligned} \end{aligned}$$
(2.2)
$$\begin{aligned}& \begin{aligned}[t] &\int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr) \big|h' \bigl((1-t)a_{2}+tx\bigr) \big|\,dt \\&\quad\leq \biggl( \int_{0}^{1} \bigl( a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr)\,dt \biggr)^{1-1/q}\\ &\qquad\times \biggl( \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr) \bigl\vert h'\bigl((1-t)a_{2}+tx\bigr) \bigr\vert ^{q}\,dt \biggr)^{1/q},\end{aligned} \end{aligned}$$
(2.3)
$$\begin{aligned}& \begin{aligned}[t] &\int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \bigl\vert h'\bigl((1-t)a_{1}+tx\bigr) \bigr\vert ^{q}\,dt \\&\quad\leq \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \bigl[(1-t)\big|h'(a_{1})\big|^{q}+t\big|h'(x)\big|^{q} \bigr]\,dt \\&\quad=\big|h'(a)\big|^{q} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) (1-t)\,dt+\big|h'(x)\big|^{q} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr)t \,dt \\&\quad=\big|h'(a)\big|^{q} \biggl(-\frac{a_{1}^{\alpha+1}}{(\alpha+1)(x-a_{1})} \frac{(\alpha +2)(x-a_{1})+a_{1}}{ (\alpha+2)(x-a_{1})}+\frac{x^{\alpha+2}}{(\alpha+1)(x-a_{1})^{2}(\alpha +2)}-\frac{a_{1}^{\alpha}}{2} \biggr) \\&\qquad+\big|h'(x)\big|^{q} \biggl(\frac{x^{\alpha+1}}{(\alpha+1)(x-a_{1})} \frac{(\alpha +2)(x-a_{1})-x}{ (\alpha+2)(x-a_{1})}+\frac{a_{1}^{\alpha+2}}{(\alpha+1)(x-a_{1})^{2}(\alpha +2)}-\frac{a_{1}^{\alpha}}{2} \biggr) \\&\quad\leq M^{q} \biggl(-\frac{a_{1}^{\alpha+1}}{(\alpha+1)(x-a_{1})}\frac{(\alpha +2)(x-a_{1})+a_{1}}{(\alpha+2)(x-a_{1})} + \frac{x^{\alpha+2}}{(\alpha+1)(x-a_{1})^{2}(\alpha+2)}-\frac {a_{1}^{\alpha}}{2} \biggr) \\&\qquad+M^{q} \biggl(\frac{x^{\alpha+1}}{(\alpha+1)(x-a_{1})}\frac{(\alpha +2)(x-a_{1})-x}{(\alpha+2)(x-a_{1})} + \frac{a_{1}^{\alpha+2}}{(\alpha+1)(x-a_{1})^{2}(\alpha+2)}-\frac {a_{1}^{\alpha}}{2} \biggr),\end{aligned} \end{aligned}$$
(2.4)
$$\begin{aligned}& \begin{aligned}[t] &\int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr) \bigl\vert h'\bigl((1-t)a_{2}+tx\bigr) \bigr\vert ^{q}\,dt \\&\quad\leq \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr) \bigl[(1-t)\big|h'(a_{2})\big|^{q}+t\big|h'(x)\big|^{q} \bigr]\,dt \\&\quad=\big|h'(a_{2})\big|^{q} \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha } \bigr) (1-t)\,dt\\ &\qquad +\big|h'(x)\big|^{q} \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr)t \,dt \\&\quad=\big|h'(a_{2})\big|^{q} \biggl(\frac{a_{2}^{\alpha}}{2}+ \frac{a_{2}^{\alpha +1}}{(\alpha+1)(a_{2}-x)} \frac{(\alpha+2)(a_{2}-x)+a_{2}}{(\alpha+2)(a_{2}-x)}-\frac{x^{\alpha +2}}{(\alpha+1)(a_{2}-x)^{2}(\alpha+2)} \biggr) \\&\qquad+\big|h'(x)\big|^{q} \biggl(\frac{a_{2}^{\alpha}}{2}- \frac{x^{\alpha+1}}{(\alpha +1)(a_{2}-x)} \frac{(\alpha+2)(a_{2}-x)-x}{(\alpha+2)(a_{2}-x)}-\frac{a_{2}^{\alpha+2}}{ (\alpha+1)(a_{2}-x)^{2}(\alpha+2)} \biggr) \\&\quad\leq M^{q} \biggl(\frac{a_{2}^{\alpha}}{2}+\frac{a_{2}^{\alpha+1}}{(\alpha +1)(a_{2}-x)} \frac{(\alpha+2)(a_{2}-x)+a_{2}}{(\alpha+2)(a_{2}-x)}-\frac{x^{\alpha +2}}{(\alpha+1)(a_{2}-x)^{2}(\alpha+2)} \biggr) \\&\qquad+M^{q} \biggl(\frac{a_{2}^{\alpha}}{2}-\frac{x^{\alpha+1}}{(\alpha+1)(a_{2}-x)} \frac{(\alpha+2)(a_{2}-x)-x}{(\alpha+2)(a_{2}-x)}-\frac{a_{2}^{\alpha+2}}{ (\alpha+1)(a_{2}-x)^{2}(\alpha+2)} \biggr).\end{aligned} \end{aligned}$$
(2.5)

Therefore, Theorem 2.5 follows easily from (2.1)–(2.5). □

Remark 2.6

Let \(\alpha=1\). Then Theorem 2.5 leads to

$$\begin{aligned} \bigg|h(x)-\frac{1}{a_{2}-a_{1}} \int_{a_{1}}^{a_{2}}h(s)\,ds \bigg| \leq{}& M\frac{x-a_{1}}{a_{2}-a_{1}} \bigl(A_{1}(1) \bigr)^{1-1/q} \bigl[A_{2}(1)+ A_{3}(1) \bigr]^{1/q} \\&+M\frac{a_{2}-x}{a_{2}-a_{1}} \bigl(B_{1}(1) \bigr)^{1-1/q} \bigl[B_{2}(1)+B_{3}(1) \bigr]^{1/q},\end{aligned} $$

where

$$\begin{gathered} A_{1}(1)=\frac{x-a_{1}}{2}, \qquad B_{1}(1)= \frac{a_{2}-x}{2}, \\ A_{2}(1)=\frac {3a_{1}^{2}x+6a_{1}^{2}+x^{3}-3a_{1}x^{2}-3a_{1}^{3}}{6(x-a_{1})^{2}}, \qquad B_{2}(1)= \frac{7a_{2}^{3}+3a_{2}x^{2}-9a_{2}^{2}x-x^{3}}{6(a_{2}-x)^{2}}, \\ A_{3}(1)=\frac{2x^{3}-2a_{1}^{3}-6a_{1}x^{2}+6a_{1}^{2}x}{6(x-a_{1})^{2}}, \qquad B_{3}(1)= \frac{2a_{2}^{3}-6a_{2}x+2x^{3}}{6(a_{2}-x)^{2}}.\end{gathered} $$

Theorem 2.7

Let \(q>1\), \(M>0\), \(0<\alpha\leq1\), \(0\leq a_{1}< a_{2}\), \(h: [a_{1}, a_{2}]\rightarrow\mathbb{R}\) be an α-fractional differentiable function and \(D_{\alpha}(h)\in L_{\alpha}^{1}([a_{1}, a_{2}])\). Then the inequality

$$\begin{gathered} \bigg|h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \bigg| \\ \quad\leq M\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \bigl(A_{1}(\alpha) \bigr)^{1-1/q} \biggl(\frac{-8a_{1}^{\alpha }+2a_{1}^{\alpha-1}x+2x^{\alpha-1}a_{1}+4x^{\alpha}}{12} \biggr)^{1/q} \\ \qquad{}+M\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \bigl(B_{1}(\alpha) \bigr)^{1-1/q} \biggl(\frac{a_{2}^{\alpha}-x^{\alpha}}{2} \biggr)^{1/q}\end{gathered} $$

holds if \(|h^{\prime}|^{q}\) is convex on \([a_{1}, a_{2}]\) and \(|h^{\prime}(x)|^{q}\leq M\), where

$$ A_{1}(\alpha)=\frac{2a_{1}^{\alpha}+a_{1}^{\alpha-1}x+x^{\alpha -1}a_{1}+2x^{\alpha}-6a_{1}^{\alpha}}{6},\qquad B_{1}(\alpha)= \frac {a_{2}^{\alpha}-x^{\alpha}}{2}. $$

Proof

It follows from the proof of Theorem 2.2 that

$$ \begin{aligned}[t] &\biggl\vert h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \biggr\vert \\ &\quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha-1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\big|h'\bigl((1-t)a_{1}+tx\bigr)\big|\,dt \\ &\qquad+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha}\bigr) \bigr)\big|h'\bigl((1-t)a_{2}+tx\bigr)\big|\,dt.\end{aligned} $$
(2.6)

From the power-mean inequality and convexity of \(|h^{\prime}|^{q}\) together with the identities

$$\int^{1}_{0}\bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\,dt =\frac{2a_{1}^{\alpha}+a_{1}^{\alpha-1}x+x^{\alpha-1}a_{1}+2x^{\alpha }-6a_{1}^{\alpha}}{6}$$

and

$$ \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha}\bigr) \bigr)\,dt= \frac{a_{2}^{\alpha}-x^{\alpha}}{2} $$

we get

$$\begin{aligned}& \begin{aligned}[t] &\int_{0}^{1} \bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\big|h'\bigl((1-t)a_{1}+tx\bigr)\big|\,dt \\ &\quad\leq \biggl( \int_{0}^{1} \bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\,dt \biggr)^{1-1/q} \\ &\qquad\times \biggl( \int_{0}^{1} \bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\big|h'\bigl((1-t)a_{1}+tx\bigr)\big|^{q}\,dt \biggr)^{1/q}, \end{aligned} \end{aligned}$$
(2.7)
$$\begin{aligned}& \begin{aligned}[t] &\int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha}\bigr) \bigr) \big|h'\bigl((1-t)a_{2}+tx\bigr) \big|\,dt \\&\quad\leq \biggl( \int_{0}^{1} \bigl( a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha }+tx^{\alpha}\bigr) \bigr)\,dt \biggr)^{1-1/q} \\&\qquad\times \biggl( \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha }+tx^{\alpha}\bigr) \bigr) \bigl\vert h'\bigl((1-t)a_{2}+tx\bigr) \bigr\vert ^{q}\,dt \biggr)^{1/q},\end{aligned} \end{aligned}$$
(2.8)
$$\begin{aligned}& \begin{aligned}[t] &\int_{0}^{1} \bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\big|h'\bigl((1-t)a_{1}+tx\bigr)\big|^{q}\,dt \\&\quad\leq \int_{0}^{1} \bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr) \bigl[(1-t)\big|h'(a_{1})\big|^{q}+t\big|h'(x)\big|^{q} \bigr]\,dt \\&\quad=\big|h'(a_{1})\big|^{q} \int_{0}^{1}\bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr) (1-t)\,dt \\&\qquad+\big|h'(x)\big|^{q} \int_{0}^{1}\bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)t\,dt \\&\quad=\big|h'(a_{1})\big|^{q} \biggl( \frac{1}{4}a_{1}^{\alpha}+\frac{1}{12}a_{1}^{\alpha -1}x+ \frac{1}{12}x^{\alpha-1}a_{1}+\frac{1}{12}x^{\alpha}- \frac {1}{2}a_{1}^{\alpha} \biggr) \\&\qquad+\big|h'(x)\big|^{q} \biggl(\frac{1}{12}a_{1}^{\alpha}+ \frac{1}{12}a_{1}^{\alpha -1}x+\frac{1}{12}x^{\alpha-1}a_{1}+ \frac{1}{4}x^{\alpha}-\frac {1}{2}a_{1}^{\alpha} \biggr) \\&\quad\leq M^{q} \biggl(\frac{-8a_{1}^{\alpha}+2a_{1}^{\alpha-1}x+2x^{\alpha -1}a_{1}+4x^{\alpha}}{12} \biggr),\end{aligned} \end{aligned}$$
(2.9)
$$\begin{aligned}& \begin{aligned}[t] &\int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha}\bigr) \bigr) \bigl\vert h'\bigl((1-t)a_{2}+tx\bigr) \bigr\vert ^{q}\,dt \\&\quad\leq \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha }\bigr) \bigr) \bigl[(1-t)\big|h'(a_{2})\big|^{q}+t\big|h'(x)\big|^{q} \bigr]\,dt \\&\quad=\big|h'(a_{2})\big|^{q} \biggl(\frac{a_{2}^{\alpha}-x^{\alpha}}{6} \biggr)+\big|h'(x)\big|^{q} \biggl(\frac{a_{2}^{\alpha}-x^{\alpha}}{3} \biggr) \\&\quad\leq M^{q} \biggl(\frac{a_{2}^{\alpha}-x^{\alpha}}{2} \biggr).\end{aligned} \end{aligned}$$
(2.10)

Therefore, Theorem 2.7 follows easily from (2.6)–(2.10). □

Theorem 2.8

Let \(q>1\), \(0<\alpha\leq1\), \(0\leq a_{1}< a_{2}\), \(h: [a_{1}, a_{2}]\rightarrow\mathbb{R}\) be an α-fractional differentiable function and \(D_{\alpha}(h)\in L_{\alpha}^{1}([a_{1}, a_{2}])\). Then the inequality

$$\begin{gathered} \bigg|h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \bigg| \\\quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}}A_{1}(\alpha) \bigg|h' \biggl( \frac{C_{1}(\alpha)}{A_{1}(\alpha)} \biggr) \bigg| +\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}}B_{1}(\alpha) \bigg|h' \biggl(\frac{C_{2}(\alpha)}{B_{1}(\alpha)} \biggr) \bigg|\end{gathered} $$

holds if \(|h^{\prime}|^{q}\) is concave on \([a_{1}, a_{2}]\), where

$$\begin{aligned}& A_{1}(\alpha)=\frac{x^{\alpha+1}-a_{1}^{\alpha+1}}{(\alpha +1)(x-a_{1})}-a_{1}^{\alpha},\\& B_{1}(\alpha)=a_{2}^{\alpha}-\frac{x^{\alpha+1}-a_{2}^{\alpha +1}}{(\alpha+1)(a_{2}-x)}, \\& \begin{aligned}C_{1}(\alpha)={}&\frac{x^{\alpha+2}-a_{1}^{\alpha+2}}{(\alpha +1)(x-a_{1})}-\frac{x^{\alpha+3}+a_{1}^{\alpha+3}}{(\alpha +1)(x-a_{1})^{2}(\alpha+2)} \\&+\frac{a_{1}x}{(\alpha+1)(x-a_{1})^{2}(\alpha+2)} \bigl(x^{\alpha +1}+a_{1}^{\alpha+1} \bigr)-a_{1}^{\alpha}\frac{(a_{1}+x)}{2},\end{aligned} \\& \begin{aligned}C_{2}(\alpha)={}&a_{2}^{\alpha}\frac{(a_{2}+x)}{2}+ \frac{a_{2}^{\alpha +3}+x^{\alpha+3}}{(\alpha+1)(a_{2}-x)^{2}(\alpha+2)} \\&-\frac{a_{2}x}{(\alpha+1)(a_{2}-x)^{2}(\alpha+2)} \bigl(x^{\alpha +1}+a_{2}^{\alpha+1} \bigr)+\frac{a_{2}^{\alpha+2}-x^{\alpha+2}}{(\alpha +1)(a_{2}-x)}.\end{aligned} \end{aligned}$$

Proof

It is well known that \(|h^{\prime}|\) is concave due to \(|h^{\prime }|^{q}\) being concave. It follows from Lemma 2.1 that

$$\begin{gathered} \bigg|h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \bigg| \\\quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr)\big|h' \bigl((1-t)a_{1}+tx\bigr)\big|\,dt \\\qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr)\big|h' \bigl((1-t)a_{2}+tx\bigr)\big|\,dt.\end{gathered} $$

Making use of Jensen’s integral inequality, we have

$$\begin{gathered} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \bigl\vert h'\bigl((1-t)a_{1}+tx\bigr) \bigr\vert \,dt \\\quad\leq \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \bigg|h' \biggl(\frac{\int_{0}^{1} (((1-t)a_{1}+tx)^{\alpha}-a_{1}^{\alpha } )((1-t)a_{1}+tx)\,dt}{ \int_{0}^{1} (((1-t)a_{1}+tx)^{\alpha}-a_{1}^{\alpha} )\,dt} \biggr) \bigg|\,dt \\\quad=A_{1}(\alpha) \bigg|h' \biggl(\frac{C_{1}(\alpha)}{A_{1}(\alpha)} \biggr) \bigg|, \\\int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr) \bigl\vert h'\bigl((1-t)a_{2}+tx\bigr) \bigr\vert \,dt \\\quad\leq \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr) \bigg|h' \biggl( \frac{\int_{0}^{1} (a_{2}^{\alpha }-((1-t)a_{2}+tx)^{\alpha} )((1-t)a_{2}+tx)\,dt}{ \int_{0}^{1} (a_{2}^{\alpha}-((1-t)a_{2}+tx)^{\alpha} )\,dt} \biggr) \bigg|\,dt \\\quad=B_{1}(\alpha) \bigg|h' \biggl(\frac{C_{2}(\alpha)}{B_{1}(\alpha)} \biggr)\bigg|,\end{gathered} $$

where we have used the identities

$$\begin{gathered} \int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr)\,dt=A_{1}( \alpha ), \\ \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}+tx\bigr)^{\alpha} \bigr)\,dt =B_{1}( \alpha), \\\int_{0}^{1} \bigl(\bigl((1-t)a_{1}+tx \bigr)^{\alpha}-a_{1}^{\alpha} \bigr) \bigl((1-t)a_{1}+tx \bigr)\,dt=C_{1}(\alpha), \\\int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)x+ta_{2}\bigr)^{\alpha} \bigr) \bigl((1-t)a_{2}+tx \bigr)\,dt=C_{2}(\alpha).\end{gathered} $$

 □

Remark 2.9

If \(\alpha=1\), then Theorem 2.8 becomes

$$\begin{gathered} \bigg|h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \bigg| \\\quad\leq\frac{(x-a_{1})^{2}}{2(a_{2}-a_{1})} \bigg|h' \biggl(\frac {2x^{4}-5a_{1}x^{3}+3a_{1}^{2}x^{2}+xa_{1}^{3}-a_{1}^{4}}{3(x-a_{1})} \biggr) \bigg| \\\qquad{}+\frac{(a_{2}-x)^{2}}{2(a_{2}-a_{1})} \bigg|h' \biggl(\frac {4x^{4}-a_{2}x^{3}-3x^{2}a_{2}^{2}-7a_{2}^{3}x+7a_{2}^{4}}{3(a_{2}-x)} \biggr) \bigg|.\end{gathered} $$

Theorem 2.10

Let \(q>1\), \(0<\alpha\leq1\), \(0\leq a_{1}< a_{2}\), \(h: [a_{1}, a_{2}]\rightarrow\mathbb{R}\) be an α-fractional differentiable function and \(D_{\alpha}(h)\in L_{\alpha}^{1}([a_{1}, a_{2}])\). Then the inequality

$$\begin{gathered} \bigg|h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \bigg| \\\quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}}A_{1}(\alpha) \bigg|h' \biggl( \frac{C_{1}(\alpha)}{A_{1}(\alpha)} \biggr) \bigg| +\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}}B_{1}(\alpha) \bigg|h' \biggl(\frac{C_{2}(\alpha)}{B_{1}(\alpha)} \biggr) \bigg|\end{gathered} $$

holds if \(|h^{\prime}|^{q}\) is concave on \([a_{1}, a_{2}]\), where

$$\begin{gathered} A_{1}(\alpha)=\frac{2a_{1}^{\alpha}+a_{1}^{\alpha-1}x+x^{\alpha -1}a_{1}+2x^{\alpha}-6a_{1}^{\alpha}}{6},\qquad B_{1}(\alpha)= \frac {a_{2}^{\alpha}-x^{\alpha}}{2}, \\C_{1}(\alpha)=\frac{-3a_{1}^{\alpha+1}+x+x^{\alpha-1}a_{1}^{\alpha +1}+x^{\alpha}a_{1}-5xa_{1}^{\alpha}+x^{2}a_{1}^{\alpha-1}+x a_{1}+3x^{\alpha+1}}{12}, \\C_{2}(\alpha)=\frac{a_{2}^{\alpha+1}-x^{\alpha}a_{2}+2xa_{2}^{\alpha }-2x^{\alpha+1}}{6}.\end{gathered} $$

Proof

From the concavity of \(|h^{\prime}|^{q}\) we know that \(|h^{\prime}|\) is also concave, then from Lemma 2.1 we have

$$\begin{gathered} \biggl\vert h(x)-\frac{\alpha}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{a_{1}}^{a_{2}}h(s)\,d_{\alpha}s \biggr\vert \\\quad\leq\frac{x-a_{1}}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int _{0}^{1}\bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha-1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha } \bigr)\big|h'\bigl((1-t)a_{1}+tx\bigr)\big|\,dt \\\qquad{}+\frac{a_{2}-x}{a_{2}^{\alpha}-a_{1}^{\alpha}} \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha}\bigr) \bigr)\big|h'\bigl((1-t)a_{2}+tx\bigr)\big|\,dt.\end{gathered} $$

It follows from the Jensen integral inequality that

$$\begin{aligned}& \int_{0}^{1}\bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr)\big|h'\bigl((1-t)a_{1}+tx\bigr)\big|\,dt \\& \quad\leq \int_{0}^{1}\bigl((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1} \bigr) \bigl(\bigl((1-t)a_{1}+tx\bigr)-a_{1}^{\alpha} \bigr) \\& \qquad{}\times \bigg|h' \biggl(\frac{\int_{0}^{1}((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1})(((1-t)a_{1}+tx)-a_{1}^{\alpha})((1-t)a_{1}+tx)\,dt}{ \int_{0}^{1}((1-t)a_{1}^{\alpha-1}+tx^{\alpha -1})(((1-t)a_{1}+tx)-a_{1}^{\alpha})\,dt} \biggr)\bigg|\,dt \\& \quad=A_{1}(\alpha)h' \biggl(\frac{C_{1}(\alpha)}{A_{1}(\alpha)} \biggr), \\& \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha}\bigr) \bigr) \bigl\vert h'\bigl((1-t)a_{2}+tx\bigr) \bigr\vert \,dt \\& \quad\leq \int_{0}^{1} \bigl(a_{2}^{\alpha}- \bigl((1-t)a_{2}^{\alpha}+tx^{\alpha }\bigr) \bigr) \bigg|h' \biggl(\frac{\int_{0}^{1} (a_{2}^{\alpha}-((1-t)a_{2}^{\alpha }+tx^{\alpha}) )((1-t)a_{2}+tx)\,dt}{ \int_{0}^{1} (a_{2}^{\alpha}-((1-t)a_{2}^{\alpha}+tx^{\alpha }) )\,dt} \biggr) \bigg| \\& \quad=B_{1}(\alpha)h' \biggl(\frac{C_{2}(\alpha)}{B_{1}(\alpha)} \biggr). \end{aligned}$$

 □

Remark 2.11

If \(\alpha=1\), then Theorem 2.10 leads to

$$\begin{gathered} \bigg|h(x)-\frac{1}{a_{2}-a_{1}} \int_{a_{1}}^{a_{2}}h(s)\,ds \bigg| \\\quad\leq\frac{(x-a_{1})^{2}}{2(a_{2}-a_{1})} \bigg|h' \biggl(\frac {2x^{2}-a_{1}x-a_{1}^{2}}{3(x-a_{1})} \biggr) \bigg| + \frac{(a_{2}-x)^{2}}{2(a_{2}-a_{1})} \bigg|h' \biggl(\frac {a_{2}^{2}+a_{2}x-2x^{2}}{3(a_{2}-x)} \biggr) \bigg|.\end{gathered} $$

Remark 2.12

If \(\alpha=1\) and \(x=(a_{1}+a_{2})/2\), then Theorem 2.10 becomes

$$ \bigg|h(x)-\frac{1}{a_{2}-a_{1}} \int_{a_{1}}^{a_{2}}h(s)\,ds \bigg| \leq\frac{a_{2}-a_{1}}{8} \biggl[ \bigg|h' \biggl(\frac{2a_{1}+a_{2}}{3} \biggr) \bigg| + \bigg|h' \biggl(\frac{a_{1}+2a_{2}}{3} \biggr) \bigg| \biggr]. $$

3 Applications to means

Let \(a, b>0\) with \(a\neq b\). Then the arithmetic mean \(A(a, b)\), logarithmic mean \(L(a,b)\) and generalized logarithmic mean \(L_{(\alpha, r)}(a,b)\) of a and b are defined by

$$ A(a,b)=\frac{a+b}{2}, \qquad L(a,b)=\frac{b-a}{\log b-\log a}, \qquad L_{(\alpha, r)}(a,b)= \biggl[\frac{\alpha (b^{r+\alpha}-a^{r+\alpha } )}{(r+\alpha)(b^{\alpha}-a^{\alpha})} \biggr]^{1/r}, $$

respectively.

Recently, the bivariate means have been the subject of intensive research, many remarkable inequalities for the bivariate means can be found in the literature [2560].

Let \(h(x)=x^{r}\) and \(h(x)=1/x\). Then Corollary 2.3 immediately leads to Theorems 3.1 and 3.2.

Theorem 3.1

Let \(r>1\) and \(\alpha\in(0, 1]\). Then the inequality

$$\begin{gathered} \big|A^{r}(a_{1},a_{2})-L^{r}_{(\alpha,r)}(a_{1},a_{2})\big| \\\quad\leq\frac{r(a_{2}-a_{1})}{2(a_{2}^{\alpha}-a_{1}^{\alpha})} \biggl[ \biggl(\frac {2a_{1}^{\alpha-1}a_{2}-10a_{1}^{\alpha}+a_{1} +a_{2}}{24} \biggr)|a_{1}|^{r-1}+ \frac{a_{1}}{12} \biggl(\frac {a_{1}+a_{2}}{2} \biggr)^{\alpha-1}|a_{1}|^{r-1} \\\qquad{}+ \biggl(\frac{5a_{1}+3a_{2}-12a_{1}^{\alpha}}{24} \biggr) \bigg|\frac {a_{1}+a_{2}}{2} \bigg|^{r-1}+ \frac{a_{1}}{12} \biggl(\frac{a_{1}+a_{2}}{2} \biggr)^{\alpha-1} \bigg| \frac{a_{1}+a_{2}}{2} \bigg|^{r-1} \\\qquad{}+\frac{1}{6}a_{2}^{\alpha}|a_{2}|^{r-1}- \frac{1}{6} \biggl(\frac {a_{1}+a_{2}}{2} \biggr)^{\alpha}|a_{2}|^{r-1}+ \frac{a_{2}^{\alpha}}{3} \bigg|\frac{a_{1}+a_{2}}{2} \bigg|^{r-1} \\\qquad{}-\frac{1}{3} \biggl(\frac{a_{1}+a_{2}}{2} \biggr)^{\alpha} \bigg| \frac {a_{1}+a_{2}}{2} \bigg|^{r-1} \biggr]\end{gathered} $$

holds for all \(a_{1}, a_{2}>0\).

Theorem 3.2

Let \(r>1\) and \(\alpha\in(0, 1]\). Then the inequality

$$\begin{gathered} \big|A^{r}(a_{1},a_{2})-L^{r}_{(\alpha,r)}(a_{1},a_{2})\big| \\\quad\leq\frac{(a_{2}-a_{1})}{2(a_{2}^{\alpha}-a_{1}^{\alpha})} \biggl[ \biggl(\frac {2a_{1}^{\alpha-1}b-10a_{1}^{\alpha}+a_{1} +a_{2}}{24} \biggr)|a_{1}|^{-2}+ \frac{a_{1}}{12} \biggl(\frac {a_{1}+a_{2}}{2} \biggr)^{\alpha-1}|a_{1}|^{-2} \\\qquad{}+ \biggl(\frac{5a_{1}+3a_{2}-12a_{1}^{\alpha}}{24} \biggr) \bigg|\frac {a_{1}+a_{2}}{2} \bigg|^{-2}+ \frac{a_{1}}{12} \biggl(\frac{a_{1}+a_{2}}{2} \biggr)^{\alpha-1} \bigg| \frac {a_{1}+a_{2}}{2} \bigg|^{-2} \\\qquad{}+\frac{1}{6}a_{2}^{\alpha}|a_{2}|^{-2}- \frac{1}{6} \biggl(\frac {a_{1}+a_{2}}{2} \biggr)^{\alpha}|a_{2}|^{-2}+ \frac{a_{2}^{\alpha}}{3} \bigg|\frac{a_{1}+a_{2}}{2} \bigg|^{-2}\\ \qquad{}-\frac{1}{3} \biggl(\frac{a_{1}+a_{2}}{2} \biggr)^{\alpha} \bigg|\frac {a_{1}+a_{2}}{2} \bigg|^{-2} \biggr]\end{gathered} $$

holds for all \(a_{1}, a_{2}>0\).

4 Results and discussion

There are many results devoted to the well-known Ostrowski inequality. This inequality has many applications in the area of numerical analysis. In this paper, we give results for Ostrowski inequality containing conformable fractional integrals and their applications for means. First, we prove an identity associated with the Ostrowski inequality for conformable fractional integrals. By using this identity and convexity of different classes of functions and some well-known inequalities, we obtain several results for the inequality. The inequalities derived here are also pointed out to correspond to some known results, being special cases. At the end, we also present applications for means. The presented idea may stimulate further research in the theory of conformable fractional integrals.

5 Conclusion

In this paper, we prove an identity associated with the Ostrowski inequality for conformable fractional integral, present several Ostrowski type inequalities involving the conformable fractional integrals, and provide the applications in bivariate means theory. The idea and results presented are novel and interesting.

References

  1. Ostrowski, A.: Über die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert. Comment. Math. Helv. 10(1), 226–227 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dragomir, S.S.: The Ostrowski integral inequality for mappings of bounded variation. Bull. Aust. Math. Soc. 60(3), 495–508 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cerone, P., Cheung, W.S., Dragomir, S.S.: On Ostrowski type inequalities for Stieltjes intergals with absolutely continuous integrands and integrators of bounded variation. Comput. Math. Appl. 54(2), 183–191 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dragomir, S.S.: Refinements of the generalised trapezoid and Ostrowski inequalities for functions of bounded variation. Arch. Math. 91(5), 450–460 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alomari, M., Darus, M., Dragomir, S.S., Cerone, P.: Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense. Appl. Math. Lett. 23(9), 1071–1076 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alomari, M.W., Latif, M.A.: A weighted companion for the Ostrowski and the generalized trapezoid inequalities for mappings of bounded variation (2011). https://www.researchgate.net/publication/265179542

  7. Alomari, M.W.: A generalization of weighted companion of Ostrowski integral inequality for mappings of bounded variation (2011). https://www.researchgate.net/publication/228451771

  8. Tseng, K.-L.: Improvements of the Ostrowski integral inequality for mappings of bounded variation II. Appl. Math. Comput. 218(10), 5841–5847 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Alomari, M.W.: A companion of Dragomir’s generalization of the Ostrowski inequality and applications to numerical integration. Ukr. Math. J. 64(4), 491–510 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dragomir, S.S.: A companion of Ostrowski’s inequality for functions of bounded variation and applications. Int. J. Nonlinear Anal. Appl. 5(1), 89–97 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Budak, H., Sarikaya, M.Z.: A new generalization of Ostrowski type inequality for mappings of bounded variation (2015). https://www.researchgate.net/publication/279874744

  12. Budak, H., Sarikaya, M.Z.: New weighted Ostrowski type inequalities for mappings with first derivatives of bounded variation. Transylv. J. Math. Mech. 8(1), 21–27 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Qayyum, A., Shoaib, M., Faye, I.: A companion of Ostrowski type integral inequality using 5-step kernel with some applications. Filomat 30(13), 3601–3614 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chu, Y.-M., Adil Khan, M., Khan, T.U., Ali, T.: Generalizations of Hermite–Hadamard type inequalities for MT-convex functions. J. Nonlinear Sci. Appl. 9(6), 4305–4316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wang, M.-K., Chu, Y.-M.: Landen inequalities for a class of hypergeometric functions with applications. Math. Inequal. Appl. 21(2), 521–537 (2018)

    MathSciNet  Google Scholar 

  16. Adil Khan, M., Chu, Y.-M., Khan, T.U., Khan, J.: Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 15, 1414–1430 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Yang, Z.-H., Zhang, W., Chu, Y.-M.: Sharp Gautschi inequality for parameter \(0< p<1\) with applications. Math. Inequal. Appl. 20(4), 1107–1120 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Yang, Z.-H., Qian, W.-M., Chu, Y.-M.: On rational bounds for the gamma function. J. Inequal. Appl. 2017, Article ID 210 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, Z.-H., Chu, Y.-M.: A monotonicity property involving the generalized elliptic integral of the first kind. Math. Inequal. Appl. 20(3), 729–735 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Monotonicity rule for the quotient of two functions and its applications. J. Inequal. Appl. 2017, Article ID 106 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018)

    Article  MathSciNet  Google Scholar 

  22. Budak, H., Sarikaya, M.Z.: On generalization of weighted Ostrowski type inequalities for functions of bounded variation. Asian-Eur. J. Math. (2018, to appear). https://doi.org/10.1142/S1793557118500493

    MATH  Google Scholar 

  23. Wang, M.-K., Li, Y.-M., Chu, Y.-M.: Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J. (2018, to appear). https://doi.org/10.1007/s11139-017-9888-3

    Google Scholar 

  24. Khalil, R., Al Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chu, Y.-M., Zhang, X.-M.: Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave. J. Math. Kyoto Univ. 48(1), 229–238 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chu, Y.-M., Zhang, X.-M., Wang, G.-D.: The Schur geometrical convexity of the extended mean values. J. Convex Anal. 15(4), 707–718 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Shi, M.-Y., Chu, Y.-M., Jiang, Y.-P.: Optimal inequalities among various means of two arguments. Abstr. Appl. Anal. 2009, Article ID 694394 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, M.-K., Qiu, S.-L., Chu, Y.-M.: Infinite series formula for Hübner upper bound function with applications to Hersch–Pfluger distortion function. Math. Inequal. Appl. 21(3), 629–648 (2018)

    Google Scholar 

  29. Zhang, X.-H., Wang, G.-D., Chu, Y.-M.: Convex with respect to Hölder mean involving zero-balanced hypergeometric functions. J. Math. Anal. Appl. 353(1), 256–259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Chu, Y.-M., Xia, W.-F.: Two sharp inequalities for power mean, geometric mean, and harmonic mean. J. Inequal. Appl. 2009, Article ID 741923 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Chu, Y.-M., Xia, W.-F.: Two optimal double inequalities between power mean and logarithmic mean. Comput. Math. Appl. 60(1), 83–89 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xia, W.-F., Chu, Y.-M., Wang, G.-D.: The optimal upper and lower power mean bounds for a convex combination of the arithmetic and logarithmic means. Abstr. Appl. Anal. 2010, Article ID 604804 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Chu, Y.-M., Qiu, Y.-F., Wang, M.-K.: Sharp power mean bounds for the combination of Seiffert and geometric means. Abstr. Appl. Anal. 2010, Article ID 108920 (2010)

    MathSciNet  MATH  Google Scholar 

  34. Chu, Y.-M., Qiu, Y.-F., Wang, M.-K., Wang, G.-D.: The optimal convex combination bounds of arithmetic and harmonic means for the Seiffert’s mean. J. Inequal. Appl. 2010, Article ID 436457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Chu, Y.-M., Wang, M.-K., Qiu, Y.-F.: An optimal double inequality between power-type Heron and Seiffert means. J. Inequal. Appl. 2010, Article ID 146945 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, M.-K., Qiu, Y.-F., Chu, Y.-M.: Sharp bounds for Seiffert means in terms of Lehmer means. J. Math. Inequal. 4(4), 581–586 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chu, Y.-M., Long, B.-Y.: Best possible inequalities between generalized logarithmic mean and classical means. Abstr. Appl. Anal. 2010, Article ID 303286 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Long, B.-Y., Chu, Y.-M.: Optimal inequalities for generalized logarithmic, arithmetic, and geometric means. J. Inequal. Appl. 2010, Article ID 806825 (2010)

    MathSciNet  MATH  Google Scholar 

  39. Wang, M.-K., Chu, Y.-M., Qiu, Y.-F., Qiu, S.-L.: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887–890 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Chu, Y.-M., Zong, C., Wang, G.-D.: Optimal convex combination bounds of Seiffert and geometric means for the arithmetic mean. J. Math. Inequal. 5(3), 429–434 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011, Article ID 605259 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Chu, Y.-M., Wang, M.-K., Gong, W.-M.: Two sharp double inequalities for Seiffert mean. J. Inequal. Appl. 2011, Article ID 44 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Qiu, Y.-F., Wang, M.-K., Chu, Y.-M., Wang, G.-D.: Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean. J. Math. Inequal. 5(3), 301–306 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Chu, Y.-M., Wang, M.-K., Wang, Z.-K.: Best possible inequalities among harmonic, geometric, logarithmic and Seiffert means. Math. Inequal. Appl. 15(2), 415–422 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Chu, Y.-M., Hou, S.-W.: Sharp bounds for Seiffert mean in terms of contraharmonic mean. Abstr. Appl. Anal. 2012, Article ID 425175 (2012)

    MathSciNet  MATH  Google Scholar 

  46. Wang, M.-K., Wang, Z.-K., Chu, Y.-M.: An optimal double inequality between geometric and identric means. Appl. Math. Lett. 25(3), 471–475 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Li, Y.-M., Long, B.-Y., Chu, Y.-M.: Sharp bounds for the Neuman–Sándor mean in terms of generalized logarithmic mean. J. Math. Inequal. 6(4), 567–577 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wang, M.-K., Chu, Y.-M., Qiu, S.-L., Jiang, Y.-P.: Convexity of the complete elliptic integrals of the first kind with respect to Hölder means. J. Math. Anal. Appl. 388(2), 1141–1146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhao, T.-H., Chu, Y.-M., Liu, B.-Y.: Optimal bounds for Neuman–Sándor mean in terms of the convex combinations of harmonic, geometric, quadratic, and contraharmonic means. Abstr. Appl. Anal. 2012, Article ID 302635 (2012)

    MATH  Google Scholar 

  51. Chu, Y.-M., Wang, M.-K.: Optimal Lehmer mean bounds for the Toader mean. Results Math. 61(3–4), 223–229 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Wang, M.-K., Wang, Z.-K., Chu, Y.-M.: Inequalities between arithmetic–geometric, Gini, and Toader means. Abstr. Appl. Anal. 2012, Article ID 830585 (2012)

    MathSciNet  MATH  Google Scholar 

  53. Chu, Y.-M., Long, B.-Y., Gong, W.-M., Song, Y.-Q.: Sharp bounds for Seiffert and Neuman–Sándor means in terms of generalized logarithmic means. J. Inequal. Appl. 2013, Article ID 10 (2013)

    Article  MATH  Google Scholar 

  54. Chu, Y.-M., Wang, M.-K., Ma, X.-Y.: Sharp bounds for Toader mean in terms of contraharmonic mean with applications. J. Math. Inequal. 7(2), 161–166 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Chu, Y.-M., Long, B.-Y.: Bounds of the Neuman–Sándor mean using power and identric means. Abstr. Appl. Anal. 2013, Article ID 832591 (2013)

    MATH  Google Scholar 

  56. Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the error function. Math. Inequal. Appl. 21(2), 469–479 (2018)

    MathSciNet  Google Scholar 

  57. Wang, M.-K., Chu, Y.-M., Qiu, S.-L.: Sharp bounds for generalized elliptic integrals of the first kind. J. Math. Anal. Appl. 429(2), 744–757 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  58. Wang, M.-K., Chu, Y.-M., Song, Y.-Q.: Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 276, 44–60 (2016)

    MathSciNet  Google Scholar 

  59. Wang, M.-K., Chu, Y.-M., Jiang, Y.-P.: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 46(2), 679–691 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Qian, W.-M., Chu, Y.-M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017, Article ID 274 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by the Natural Science Foundation of China (Grants Nos. 61673169, 61374086, 11371125, 11401191), the Tianyuan Special Funds of the National Natural Science Foundation of China (Grant No. 11626101) and the Natural Science Foundation of the Department of Education of Zhejiang Province (Grant No. Y201635325).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu-Ming Chu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adil Khan, M., Begum, S., Khurshid, Y. et al. Ostrowski type inequalities involving conformable fractional integrals. J Inequal Appl 2018, 70 (2018). https://doi.org/10.1186/s13660-018-1664-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-018-1664-4

MSC

Keywords