Skip to content

Advertisement

  • Research
  • Open Access

An accurate approximation formula for gamma function

Journal of Inequalities and Applications20182018:56

https://doi.org/10.1186/s13660-018-1646-6

  • Received: 12 December 2017
  • Accepted: 23 February 2018
  • Published:

Abstract

In this paper, we present a very accurate approximation for the gamma function:
$$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2}\exp \biggl( \frac{7}{324}\frac{1}{x^{3} ( 35x^{2}+33 ) } \biggr) =W_{2} ( x ) $$
as \(x\rightarrow\infty\), and we prove that the function \(x\mapsto\ln \Gamma ( x+1 ) -\ln W_{2} ( x ) \) is strictly decreasing and convex from \(( 1,\infty ) \) onto \(( 0,\beta ) \), where
$$ \beta=\frac{22{,}025}{22{,}032}-\ln\sqrt{2\pi\sinh1}\approx0.00002407. $$

Keywords

  • Gamma function
  • Monotonicity
  • Convexity
  • Approximation

MSC

  • 33B15
  • 26D15
  • 26A48
  • 26A51

1 Introduction

The Stirling formula states that
$$ n!\thicksim\sqrt{2\pi n}n^{n}e^{-n} $$
(1.1)
for \(n\in\mathbb{N}\). The gamma function \(\Gamma ( x ) =\int_{0}^{\infty}t^{x-1}e^{-t}\,dt\) for \(x>0\) is a generalization of the factorial function n! and has important applications in various branches of mathematics; see, for example, [16] and the references cited therein.

There are many refinements for the Stirling formula; see, for example, Burnside’s [7], Gosper [8], Batir [9], Mortici [10]. Many authors pay attention to find various better approximations for the gamma function, for instance, Ramanujan [11, P. 339], Smith [12, Eq. (42)], [13], Mortici [14], Nemes [15, Corollary 4.1], Yang and Chu [16, Propositions 4 and 5], Chen [17].

More results involving the approximation formulas for the factorial or gamma function can be found in [16, 1827] and the references cited therein. Several nice inequalities between gamma function and the truncations of its asymptotic series can be found in [28, 29].

Now let us focus on the Windschitl approximation formula (see [12, Eq. (42)], [13]) defined by
$$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2}:=W_{0} ( x )\quad \text{as }x\rightarrow\infty. $$
(1.2)
As shown in [17], the rate of Windschitl’s approximation \(W_{0} ( x ) \) converging to \(\Gamma ( x+1 ) \) is like \(x^{-5}\) as \(x\rightarrow\infty\), and it is faster on replacing \(W_{0} ( x ) \) by
$$ W_{1} ( x ) =\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x}+\frac{1}{810x^{6}} \biggr) ^{x/2} $$
(1.3)
(see [13]). These results show that \(W_{0} ( x ) \) and \(W_{1} ( x ) \) are excellent approximations for the gamma function.
In 2009, Alzer [30] proved that, for all \(x>0\),
$$\begin{aligned} &\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh \frac{1}{x} \biggr) ^{x/2} \biggl( 1+\frac{\alpha}{x^{5}} \biggr) \\ &\quad< \Gamma( x+1 ) =\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2} \biggl( 1+ \frac{\beta}{x^{5}} \biggr) \end{aligned}$$
(1.4)
with the best possible constants \(\alpha=0\) and \(\beta=1/1620\). Lu, Song and Ma [31] extended Windschitl’s formula to
$$ \Gamma( n+1 ) \thicksim\sqrt{2\pi n} \biggl( \frac{n}{e} \biggr) ^{n} \biggl[ n\sinh\biggl( \frac{1}{n}+\frac{a_{7}}{n^{7}}+ \frac{a_{9}}{n^{9}}+\frac{a_{11}}{n^{11}}+\cdots\biggr) \biggr] ^{n/2} $$
with \(a_{7}=1/810,a_{9}=-67/42{,}525,a_{11}=19/8505,\ldots \) . An explicit formula for determining the coefficients of \(n^{-k}\) (\(n\in\mathbb{N}\)) was given in [32, Theorem 1] by Chen. Another asymptotic expansion
$$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2+\sum_{j=0}^{\infty }r_{j}x^{-j}}, \quad x\rightarrow\infty $$
(1.5)
was presented in the same reference [32, Theorem 2].
Motivated by the above comments, the aim of this paper is to provide a more accurate Windschitl type approximation:
$$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2}\exp \biggl( \frac{7}{324}\frac{1}{x^{3} ( 35x^{2}+33 ) } \biggr) =W_{2} ( x ) $$
(1.6)
as \(x\rightarrow\infty\). Our main result is the following theorem.

Theorem 1

The function
$$ f_{0} ( x ) =\ln\Gamma( x+1 ) -\ln\sqrt{2\pi}- \biggl( x+ \frac{1}{2} \biggr) \ln x+x-\frac{x}{2}\ln\biggl( x\sinh \frac{1}{x} \biggr) -\frac{7}{324}\frac{1}{x^{3} ( 35x^{2}+33 ) } $$
is strictly decreasing and convex from \(( 1,\infty ) \) onto \(( 0,f_{0} ( 1 ) ) \), where
$$ f_{0} ( 1 ) =\frac{22{,}025}{22{,}032}-\ln\sqrt{2\pi\sinh1}\approx 0.00002407. $$

2 Lemmas

An important research subject in analyzing inequality is to convert an univariate into the monotonicity of functions [3335]. Since the function \(f_{0} ( x ) \) contains gamma and hyperbolic functions, it is very hard to deal with its monotonicity and convexity by usual approaches. For this purpose, we need the following lemmas, which provide a new way to prove our result.

Lemma 1

The inequality
$$ \psi^{\prime} \biggl( x+\frac{1}{2} \biggr) >x\frac{x^{4}+\frac {227}{66}x^{2}+\frac{4237}{2640}}{x^{6}+\frac{155}{44}x^{4}+\frac{329}{176}x^{2}+\frac {375}{4928}} $$
holds for \(x>0\).

Proof

Let
$$ g_{1} ( x ) =\psi^{\prime} \biggl( x+\frac{1}{2} \biggr) -x\frac{x^{4}+\frac{227}{66}x^{2}+\frac{4237}{2640}}{x^{6}+\frac {155}{44}x^{4}+\frac{329}{176}x^{2}+\frac{375}{4928}}. $$
Then by the recurrence formula [36, p. 260, (6.4.6)]
$$ \psi^{\prime} ( x+1 ) -\psi^{\prime} ( x ) =-\frac{1}{x^{2}} $$
we have
$$\begin{aligned} &g_{1} ( x+1 ) -g_{1} ( x ) \\ &\quad=\psi^{\prime} \biggl( x+\frac{3}{2} \biggr) -\frac{ ( x+1 ) ( ( x+1 ) ^{4}+\frac{227}{66} ( x+1 ) ^{2}+\frac{4237}{2640} ) }{ ( x+1 ) ^{6}+\frac{155}{44} ( x+1 ) ^{4}+\frac{329}{176} ( x+1 ) ^{2}+\frac{375}{4928}} \\ &\qquad{}-\psi^{\prime} \biggl( x+\frac{1}{2} \biggr) +\frac{x ( x^{4}+\frac {227}{66}x^{2}+\frac{4237}{2640} ) }{x^{6}+\frac{155}{44}x^{4}+\frac{329}{176}x^{2}+\frac{375}{4928}} \\ &\quad =-58{,}982{,}400 ( 2x+1 ) ^{-2} \bigl( 4928x^{6}+17{,}360x^{4}+9212x^{2}+375 \bigr) ^{-1} \\ &\qquad{}\times \bigl( 4928x^{6}+29{,}568x^{5}+91{,}280x^{4}+168{,}000x^{3}+187{,}292x^{2}\\ &\qquad{}+117{,}432x+31 {,}875 \bigr) ^{-1}\\ &\quad< 0. \end{aligned}$$
It then follows that
$$ g_{1} ( x ) >g_{1} ( x+1 ) >\cdots>\lim_{n\rightarrow\infty }g_{1} ( x+n ) =0, $$
which proves the desired inequality, and the proof is done. □

Lemma 2

The inequalities
$$ \frac{t}{\sinh t}>1-\frac{1}{6}t^{2}+\frac{7}{360}t^{4}- \frac{31}{15{,}120}t^{6}+\frac{127}{604{,}800}t^{8}- \frac{73}{3{,}421{,}440}t^{10}>0 $$
(2.1)
hold for \(t\in(0,1]\).

Proof

It was proved in [29, Theorem 1] that, for integer \(n\geq0\), the double inequality
$$ -\sum_{i=0}^{2n+1}\frac{2 ( 2^{2i-1}-1 ) B_{2i}}{ ( 2i ) !}t^{2i-1}< \frac{1}{\sinh t}< -\sum_{i=0}^{2n} \frac{2 ( 2^{2i-1}-1 ) B_{2i}}{ ( 2i ) !}t^{2i-1} $$
(2.2)
holds for \(x>0\). Taking \(n=2\) yields
$$ \frac{1}{\sinh t}>\frac{1}{t}-\frac{1}{6}t+\frac{7}{360}t^{3}- \frac{31}{15{,}120}t^{5}+\frac{127}{604{,}800}t^{7}- \frac{73}{3{,}421{,}440}t^{9}:=\frac{h ( t ) }{t}, $$
which is equivalent to the first inequality of (2.1) for all \(t>0\).
Since \(x\in(0,1]\), making a change of variable \(t^{2}=1-x\in(0,1]\) we obtain
$$\begin{aligned} h ( t ) ={}&\frac{73}{3{,}421{,}440}x^{5}+\frac{12{,}371}{119{,}750{,}400}x^{4}+ \frac{85{,}243}{59{,}875{,}200}x^{3} \\ &{}+\frac{858{,}623}{59{,}875{,}200}x^{2}+\frac {15{,}950{,}191}{119{,}750{,}400}x+\frac{14{,}556{,}793}{17{,}107{,}200}>0, \end{aligned}$$
which proves the second one, and the proof is complete. □

The following lemma offers a simple criterion to determine the sign of a class of special polynomial on given interval contained in \(( 0,\infty ) \) without using Descartes’ rule of signs, which play an important role in studying certain special functions; see for example [37, 38]. A series version can be found in [39].

Lemma 3

([37, Lemma 7])

Let \(n\in\mathbb{N}\) and \(m\in\mathbb{N}\cup\{0\}\) with \(n>m\) and let \(P_{n} ( t ) \) be a polynomial of degree n defined by
$$ P_{n} ( t ) =\sum_{i=m+1}^{n}a_{i}t^{i}- \sum_{i=0}^{m}a_{i}t^{i}, $$
(2.3)
where \(a_{n},a_{m}>0\), \(a_{i}\geq0\) for \(0\leq i\leq n-1\) with \(i\neq m\). Then there is a unique number \(t_{m+1}\in ( 0,\infty ) \) satisfying \(P_{n} ( t ) =0\) such that \(P_{n} ( t ) <0\) for \(t\in ( 0,t_{m+1} ) \) and \(P_{n} ( t ) >0\) for \(t\in ( t_{m+1},\infty ) \).

Consequently, for given \(t_{0}>0\), if \(P_{n} ( t_{0} ) >0\) then \(P_{n} ( t ) >0\) for \(t\in ( t_{0},\infty ) \) and if \(P_{n} ( t_{0} ) <0\) then \(P_{n} ( t ) <0\) for \(t\in ( 0,t_{0} ) \).

3 Proof of Theorem 1

With the aid of the lemmas in Sect. 2, we can prove Theorem 1.

Proof of Theorem 1

Differentiation yields
$$\begin{aligned} &f_{0}^{\prime} ( x ) =\psi( x+1 ) -\frac{1}{2}\ln \biggl( x\sinh\frac{1}{x} \biggr) +\frac{1}{2x}\coth \frac{1}{x} \\ &\phantom{f_{0}^{\prime} ( x )=}{}-\ln x-\frac{1}{2x}-\frac{1}{2}+\frac{7}{324} \frac{175x^{2}+99}{x^{4} ( 35x^{2}+33 ) ^{2}}, \\ &f_{0}^{\prime\prime} ( x ) =\psi^{\prime} ( x+1 ) +\frac{1}{2x^{3}}\frac{1}{\sinh^{2} ( 1/x ) } \\ &\phantom{f_{0}^{\prime\prime} ( x ) =}{}-\frac{3}{2x}+\frac{1}{2x^{2}}-\frac{7}{54}\frac {6125x^{4}+6545x^{2}+2178}{x^{5} ( 35x^{2}+33 ) ^{3}}. \end{aligned}$$
Since \(\lim_{x\rightarrow\infty}f_{0} ( x ) =\lim_{x\rightarrow \infty}f_{0}^{\prime} ( x ) =0\), it suffices to prove \(f_{0}^{\prime\prime} ( x ) >0\) for \(x\geq1\). Replacing x by \(( x+1/2 ) \) in Lemma 1 leads to
$$ \psi^{\prime} ( x+1 ) >\frac{7}{30}\frac{ ( 2x+1 ) ( 165x^{4}+330x^{3}+815x^{2}+650x+417 ) }{77x^{6}+231x^{5}+560x^{4}+735x^{3}+623x^{2}+294x+60}, $$
which indicates that
$$\begin{aligned} f_{0}^{\prime\prime} ( x ) >{}&\frac{7}{30}\frac{ ( 2x+1 ) ( 165x^{4}+330x^{3}+815x^{2}+650x+417 ) }{77x^{6}+231x^{5}+560x^{4}+735x^{3}+623x^{2}+294x+60}+ \frac{1}{2x^{3}}\frac{1}{\sinh^{2} ( 1/x ) } \\ &{}-\frac{3}{2x}+\frac{1}{2x^{2}}-\frac{7}{54}\frac {6125x^{4}+6545x^{2}+2178}{x^{5} ( 35x^{2}+33 ) ^{3}}:=f_{01} \biggl( \frac{1}{x} \biggr). \end{aligned}$$
Arranging gives
$$\begin{aligned} f_{01} ( t ) ={}&\frac{t}{2} \biggl( \frac{t}{\sinh t} \biggr) ^{2}+\frac{7}{30}\frac{t ( t+2 ) ( 417t^{4}+650t^{3}+815t^{2}+330t+165 ) }{60t^{6}+294t^{5}+623t^{4}+735t^{3}+560t^{2}+231t+77} \\ &{}-\frac{3}{2}t+\frac{1}{2}t^{2}-\frac{7}{54}t^{7} \frac{2178t^{4}+6545t^{2}+6125}{ ( 33t^{2}+35 ) ^{3}}, \end{aligned}$$
where \(t=1/x\in ( 0,1 ) \). Applying the first inequality of (2.1) we have
$$\begin{aligned} f_{01} ( t ) >{}&\frac{t}{2} \biggl( 1-\frac{1}{6}t^{2}+ \frac{7}{360}t^{4}-\frac{31}{15{,}120}t^{6}+ \frac{127}{604{,}800}t^{8}-\frac{73}{3{,}421{,}440}t^{10} \biggr) ^{2} \\ &{}+\frac{7}{30}\frac{t ( t+2 ) ( 417t^{4}+650t^{3}+815t^{2}+330t+165 ) }{60t^{6}+294t^{5}+623t^{4}+735t^{3}+560t^{2}+231t+77} \\ &{}-\frac{3}{2}t+\frac{1}{2}t^{2}-\frac{7}{54}t^{7} \frac{2178t^{4}+6545t^{2}+6125}{ ( 33t^{2}+35 ) ^{3}} \\ ={}&\frac{t^{11}\times p_{22} ( t ) }{ ( 33t^{2}+35 ) ^{3} ( 60t^{6}+294t^{5}+623t^{4}+735t^{3}+560t^{2}+231t+77 ) }, \end{aligned}$$
where \(p_{22} ( t ) =\sum_{k=0}^{22}a_{k}t^{k}\) with \(a_{0}=\frac{2{,}341{,}955}{27}\), \(a_{1}=\frac{2{,}341{,}955}{9}\), \(a_{2}= \frac{4{,}592{,}761{,}525{,}177}{41{,}057{,}280}\), \(a_{3}= \frac {3{,}740{,}791{,}861{,}177}{13{,}685{,}760}\), \(a_{4}= -\frac{21{,}774{,}907{,}040{,}747}{615{,}859{,}200}\), \(a_{5}=\frac {1{,}776{,}198{,}096{,}757}{51{,}321{,}600}\), \(a_{6}=-\frac{2{,}348{,}474{,}362{,}865{,}491}{59{,}122{,}483{,}200} \), \(a_{7}=-\frac{444{,}392{,}576{,}792{,}851}{19{,}707{,}494{,}400}\), \(a_{8}= \frac {722{,}576{,}509{,}559{,}549}{344{,}881{,}152{,}000} \), \(a_{9}=\frac {734{,}284{,}235{,}570{,}623}{229{,}920{,}768{,}000}\), \(a_{10}=-\frac {27{,}685{,}269{,}148{,}007{,}477}{74{,}494{,}328{,}832{,}000}\), \(a_{11}=-\frac {13{,}202{,}571{,}814{,}150{,}457}{24{,}831{,}442{,}944{,}000}\), \(a_{12}=\frac{1{,}859{,}898{,}503{,}651{,}431}{585{,}312{,}583{,}680{,}000}\), \(a_{13}=\frac{40{,}990{,}762{,}057{,}313{,}921}{682{,}864{,}680{,}960{,}000}\), \(a_{14}=\frac{1{,}227{,}464{,}630{,}525{,}327}{573{,}606{,}332{,}006{,}400}\), \(a_{15}=-\frac{107{,}829{,}513{,}340{,}517}{19{,}510{,}419{,}456{,}000}\), \(a_{16}=-\frac{1{,}469{,}516{,}232{,}022{,}339}{4{,}780{,}052{,}766{,}720{,}000}\), \(a_{17}=\frac{224{,}320{,}158{,}179}{492{,}687{,}360{,}000}\), \(a_{18}=\frac{214{,}165{,}238{,}137}{6{,}437{,}781{,}504{,}000}\), \(a_{19}=-\frac{402{,}182{,}039}{11{,}943{,}936{,}000}\), \(a_{20}=-\frac{150{,}639{,}953}{50{,}164{,}531{,}200}\), \(a_{21}= \frac{2{,}872{,}331}{1{,}194{,}393{,}600}\), \(a_{22}=\frac{58{,}619}{119{,}439{,}360}\).
It remains to prove \(p_{22} ( t ) =\sum_{k=0}^{22}a_{k}t^{k}>0\) for \(t\in(0,1]\). Since \(a_{k}>0\) for \(k=0\), 1, 2, 3, 8, 9, 12, 13, 14, 17, 18, 21, 22 and \(a_{k}<0\) for \(k=4\), 6, 7, 10, 11, 15, 16, 19, 20, we have
$$ p_{22} ( t ) =\sum_{k=0}^{22}a_{k}t^{k}= \sum_{a_{k}>0}a_{k}t^{k}+\sum_{a_{k}< 0}a_{k}t^{k}>\sum _{k=4,6,7,10,11,15,16,19,20}a_{k}t^{k}+\sum _{k=0}^{3}a_{k}t^{k}:=p_{20} ( t ). $$
Clearly, the coefficients of the polynomial \(-p_{20} ( t ) \) satisfy the conditions in Lemma 3, and
$$ -p_{20} ( 1 ) =\sum_{k=4,6,7,10,11,15,16,19,20} ( -a_{k} ) -\sum_{k=0}^{3}a_{k}=- \frac{1{,}135{,}768{,}202{,}621{,}781{,}774{,}901}{1{,}792{,}519{,}787{,}520{,}000}< 0. $$
It then follows that \(p_{20} ( t ) >0\) for \(t\in(0,1]\), and so is \(p_{22} ( t ) \), which implies \(f_{01} ( t ) >0\) for \(t\in (0,1]\). Consequently, \(f_{0}^{\prime\prime} ( x ) >0\) for all \(x\geq1\). This completes the proof. □

As a direct consequence of Theorem 1, we immediately get the following.

Corollary 1

For \(n\in\mathbb{N}\), the double inequality
$$ \exp\frac{7}{324n^{3} ( 35n^{2}+33 ) }< \frac{n!}{\sqrt{2\pi n}( n/e ) ^{n} ( n\sinh n^{-1} ) ^{n/2}}< \lambda\exp\frac{7}{324n^{3} ( 35n^{2}+33 ) } $$
holds with the best constant
$$ \lambda=\exp f_{0} ( 1 ) =\frac{1}{\sqrt{2\pi\sinh1}}\exp\frac{22{,}025}{22{,}032} \approx1.000024067. $$
Set
$$ D_{0} ( y ) =y-\ln( 1+y ),\quad y=\frac{7}{324x^{3} ( 35x^{2}+33 ) }. $$
Then it is easy to check that, for \(x>1\),
$$\begin{aligned} &\frac{dD_{0} ( y ) }{dx}=-\frac{49}{324}\frac{175x^{2}+99}{x^{4} ( 35x^{2}+33 ) ^{2} ( 11{,}340x^{5}+10{,}692x^{3}+7 ) }< 0, \\ &\frac{d^{2}D_{0} ( y ) }{dx^{2}}=\frac{343}{54}\frac{ ( 18{,}191{,}250x^{9}+37{,}110{,}150x^{7}+24{,}992{,}550x^{5}+6125x^{4}+5{,}821 {,}794x^{3}+6545x^{2}+2178 ) }{x^{5} ( 35x^{2}+33 ) ^{3} ( 11{,}340x^{5}+10{,}692x^{3}+7 ) ^{2}}\\ &\phantom{\frac{d^{2}D_{0} ( y ) }{dx^{2}}}>0. \end{aligned}$$
That is to say, \(x\mapsto D_{0} ( y ) \) is decreasing and convex on \(( 1,\infty ) \), and so is the function \(f_{0}^{\ast} ( x ):=f_{0} ( x ) +D_{0} ( y ) \) by Theorem 1.

Corollary 2

The function
$$\begin{aligned} f_{0}^{\ast} ( x ) ={}&\ln\Gamma( x+1 ) -\ln\sqrt{2\pi }- \biggl( x+\frac{1}{2} \biggr) \ln x+x-\frac{x}{2}\ln \biggl( x\sinh\frac{1}{x}\biggr) \\ &{}-\ln\biggl( 1+ \frac{7}{324x^{3} ( 35x^{2}+33 ) } \biggr) \end{aligned}$$
is strictly decreasing and convex from \(( 1,\infty ) \) onto \(( 0,f_{0}^{\ast} ( 1 ) ) \), where
$$ f_{0}^{\ast} ( 1 ) =1-\ln\frac{22{,}039}{22{,}032}-\ln\sqrt{2\pi \sinh1}\approx0.00002412. $$

Remark 1

Corollary 2 offers another approximation formula
$$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x} \biggr) ^{x/2} \biggl( 1+ \frac{7}{324}\frac{1}{x^{3} ( 35x^{2}+33 ) } \biggr) =W_{2}^{\ast} ( x ) . $$
(3.1)
Also, for \(n\in\mathbb{N}\),
$$\begin{aligned} 1+\frac{7}{324n^{3} ( 35n^{2}+33 ) }< \frac{n!}{\sqrt{2\pi n} ( n/e ) ^{n} ( n\sinh n^{-1} ) ^{n/2}}< \lambda^{\ast} \biggl( 1+\frac{7}{324n^{3} ( 35n^{2}+33 ) } \biggr) \end{aligned}$$
with the best constant
$$ \lambda^{\ast}=\exp f_{0}^{\ast} ( 1 ) = \frac{22{,}032}{22{,}039}\frac{e}{\sqrt{2\pi\sinh1}}\approx1.000024117. $$

4 Numerical comparisons

It is well known that an excellent approximation for the gamma function is fairly accurate but relatively simple. In this section, we list some known approximation formulas for the gamma function and compare them with \(W_{1} ( x ) \) given by (1.3) and our new one \(W_{2} ( x ) \) defined by (1.6).

It has been shown in [17] that, as \(x\rightarrow \infty\), Ramanujan’s [11, P. 339] approximation formula holds,
$$ \Gamma( x+1 ) \thicksim\sqrt{\pi} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( 8x^{3}+4x^{2}+x+\frac{1}{30} \biggr) ^{1/6} \biggl( 1+O \biggl( \frac{1}{x^{4}} \biggr) \biggr) :=R ( x ), $$
and Smith’s one [12, Eq. (42)],
$$ \Gamma\biggl( x+\frac{1}{2} \biggr) \thicksim\sqrt{2\pi} \biggl( \frac{x}{e}\biggr) ^{x} \biggl( 2x\tanh \frac{1}{2x} \biggr) ^{x/2} \biggl( 1+O \biggl( \frac{1}{x^{5}} \biggr) \biggr):=S ( x ), $$
Nemes’ one [15, Corollary 4.1],
$$ \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( 1+\frac{1}{12x^{2}-1/10} \biggr) ^{x} \biggl( 1+O \biggl( \frac{1}{x^{5}} \biggr) \biggr) =:N_{1} ( x ), $$
and Chen’s one [17],
$$\begin{aligned} \Gamma(x+1)&\thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( 1+\frac{1}{12x^{3}+24x/7-1/2} \biggr) ^{x^{2}+53/210} \biggl( 1+O \biggl( \frac{1}{x^{7}} \biggr) \biggr) \\ &:=C ( x ). \end{aligned}$$
(4.1)
Moreover, it is easy to check that Nemes’ result [13] is another one,
$$\begin{aligned} \Gamma( x+1 ) \thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x}\exp\biggl( \frac{210x^{2}+53}{360x ( 7x^{2}+2 ) } \biggr) \biggl( 1+O \biggl( \frac{1}{x^{7}} \biggr) \biggr):=N_{2} ( x ), \end{aligned}$$
(4.2)
and so are Yang and Chu’s [16, Propositions 4 and 5] ones,
$$\begin{aligned} &\Gamma\biggl( x+\frac{1}{2} \biggr) =\sqrt{2\pi} \biggl( \frac{x}{e}\biggr) ^{x}\exp\biggl( - \frac{1}{24}\frac{x}{x^{2}+7/120} \biggr) \biggl( 1+O \biggl( \frac{1}{x^{5}} \biggr) \biggr):=Y_{1} ( x ), \\ &\Gamma\biggl( x+\frac{1}{2} \biggr) =\sqrt{2\pi} \biggl( \frac{x}{e}\biggr) ^{x}\exp\biggl( - \frac{1}{24x}+\frac{7}{2880x}\frac{1}{x^{2}+31/98}\biggr) \biggl( 1+O \biggl( \frac{1}{x^{7}} \biggr) \biggr):=Y_{2} ( x ), \end{aligned}$$
and we have Windschitl one [13],
$$\begin{aligned} \Gamma(x+1)\thicksim\sqrt{2\pi x} \biggl( \frac{x}{e} \biggr) ^{x} \biggl( x\sinh\frac{1}{x}+\frac{1}{810x^{6}} \biggr) ^{x/2} \biggl( 1+O \biggl( \frac{1}{x^{7}} \biggr) \biggr) =W_{1} ( x ). \end{aligned}$$
For our new ones \(W_{2} ( x ) \) given in (1.6) and its counterpart \(W_{2}^{\ast} ( x ) \) given in (3.1), we easily check that
$$ \lim_{x\rightarrow\infty}\frac{\ln\Gamma ( x+1 ) -\ln W_{2} ( x ) }{x^{-9}}=\lim_{x\rightarrow\infty} \frac{\ln\Gamma ( x+1 ) -\ln W_{2}^{\ast} ( x ) }{x^{-9}}=\frac{869}{2{,}976{,}750}, $$
which show that the rates of \(W_{2} ( x ) \) and \(W_{2}^{\ast } ( x ) \) converging to \(\Gamma ( x+1 ) \) are both as \(x^{-9}\).
From these, we see that our new Windschitl type approximation formulas \(W_{2} ( x ) \) and \(W_{2}^{\ast} ( x ) \) are best among those listed above, which can also be seen from Table 1.
Table 1

Comparison among \(N_{2}\) (4.2), C (4.1), \(W_{1}\) (1.3) and \(W_{2}\) (1.6)

x

\(\vert \frac{N_{2} ( x ) -\Gamma ( x+1 ) }{\Gamma ( x+1 ) } \vert \)

\(\vert \frac{C ( x ) -\Gamma ( x+1 ) }{\Gamma ( x+1 ) } \vert \)

\(\vert \frac{W_{1} ( x ) -\Gamma ( x+1 ) }{\Gamma ( x+1 ) } \vert \)

\(\vert \frac{W_{2} ( x ) -\Gamma ( x+1 ) }{\Gamma ( x+1 ) } \vert \)

1

1.114 × 10−4

1.398 × 10−4

1.832 × 10−4

2.407 × 10−5

2

1.900 × 10−6

2.222 × 10−6

2.668 × 10−6

2.308 × 10−7

5

4.353 × 10−9

4.956 × 10−9

5.743 × 10−9

1.249 × 10−10

10

3.609 × 10−11

4.088 × 10−11

4.710 × 10−11

2.785 × 10−13

20

2.864 × 10−13

3.240 × 10−13

3.727 × 10−13

5.634 × 10−16

50

4.713 × 10−16

5.330 × 10−16

6.129 × 10−16

1.492 × 10−19

100

3.684 × 10−18

4.166 × 10−18

4.791 × 10−18

2.918 × 10−22

Declarations

Acknowledgements

The authors would like to express their sincere thanks to the editors and reviewers for their great efforts to improve this paper. This work was supported by the Fundamental Research Funds for the Central Universities (No. 2015ZD29) and the Higher School Science Research Funds of Hebei Province of China (No. Z2015137).

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
College of Science and Technology, North China Electric Power University, Baoding, P.R. China
(2)
Department of Science and Technology, State Grid Zhejiang Electric Power Company Research Institute, Hangzhou, China

References

  1. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997) MATHGoogle Scholar
  2. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Topics in special functions II. Conform. Geom. Dyn. 11, 250–270 (2007) MathSciNetView ArticleMATHGoogle Scholar
  3. Wang, M.K., Chu, Y.M., Song, Y.Q.: Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 276, 44–60 (2016) MathSciNetGoogle Scholar
  4. Wang, M.K., Li, Y.M., Chu, Y.M.: Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J. (2017). https://doi.org/10.1007/s11139-0176-9888-3
  5. Wang, M.K., Chu, Y.M., Jiang, Y.P.: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 46(2), 679–691 (2016) MathSciNetView ArticleMATHGoogle Scholar
  6. Wang, M.K., Chu, Y.M.: Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math. Sci. Ser. B Engl. Ed. 37(3), 607–622 (2017) MathSciNetView ArticleGoogle Scholar
  7. Burnside, W.: A rapidly convergent series for \(\log N!\). Messenger Math. 46, 157–159 (1917) Google Scholar
  8. Gosper, R.W.: Decision procedure for indefinite hypergeometric summation. Proc. Natl. Acad. Sci. USA 75, 40–42 (1978) MathSciNetView ArticleMATHGoogle Scholar
  9. Batir, N.: Sharp inequalities for factorial n. Proyecciones 27(1), 97–102 (2008) MathSciNetView ArticleMATHGoogle Scholar
  10. Mortici, C.: On the generalized Stirling formula. Creative Math. Inform. 19(1), 53–56 (2010) MathSciNetMATHGoogle Scholar
  11. Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Springer, Berlin (1988) MATHGoogle Scholar
  12. Smith, W.D.: The gamma function revisited (2006). http://schule.bayernport.com/gamma/gamma05.pdf
  13. http://www.rskey.org/CMS/the-library/11
  14. Mortici, C.: A new fast asymptotic series for the gamma function. Ramanujan J. 38(3), 549–559 (2015) MathSciNetView ArticleMATHGoogle Scholar
  15. Nemes, G.: New asymptotic expansion for the gamma function. Arch. Math. (Basel) 95, 161–169 (2010) MathSciNetView ArticleMATHGoogle Scholar
  16. Yang, Z.-H., Chu, Y.-M.: Asymptotic formulas for gamma function with applications. Appl. Math. Comput. 270, 665–680 (2015) MathSciNetGoogle Scholar
  17. Chen, C.-P.: A more accurate approximation for the gamma function. J. Number Theory 164, 417–428 (2016) MathSciNetView ArticleMATHGoogle Scholar
  18. Batir, N.: Inequalities for the gamma function. Arch. Math. 91, 554–563 (2008) MathSciNetView ArticleMATHGoogle Scholar
  19. Mortici, C.: An ultimate extremely accurate formula for approximation of the factorial function. Arch. Math. 93(1), 37–45 (2009) MathSciNetView ArticleMATHGoogle Scholar
  20. Mortici, C.: New sharp inequalities for approximating the factorial function and the digamma functions. Miskolc Math. Notes 11(1), 79–86 (2010) MathSciNetMATHGoogle Scholar
  21. Mortici, C.: Improved asymptotic formulas for the gamma function. Comput. Math. Appl. 61, 3364–3369 (2011) MathSciNetView ArticleMATHGoogle Scholar
  22. Zhao, J.-L., Guo, B.-N., Qi, F.: A refinement of a double inequality for the gamma function. Publ. Math. (Debr.) 80(3–4), 333–342 (2012) MathSciNetView ArticleMATHGoogle Scholar
  23. Mortici, C.: Further improvements of some double inequalities for bounding the gamma function. Math. Comput. Model. 57, 1360–1363 (2013) MathSciNetView ArticleGoogle Scholar
  24. Qi, F.: Integral representations and complete monotonicity related to the remainder of Burnside’s formula for the gamma function. J. Comput. Appl. Math. 268, 155–167 (2014) MathSciNetView ArticleMATHGoogle Scholar
  25. Lu, D.: A new sharp approximation for the gamma function related to Burnside’s formula. Ramanujan J. 35(1), 121–129 (2014) MathSciNetView ArticleMATHGoogle Scholar
  26. Lu, D., Song, L., Ma, C.: Some new asymptotic approximations of the gamma function based on Nemes’ formula, Ramanujan’s formula and Burnside’s formula. Appl. Math. Comput. 253, 1–7 (2015) MathSciNetMATHGoogle Scholar
  27. Yang, Z.-H., Tian, J.F.: Monotonicity and inequalities for the gamma function. J. Inequal. Appl. 2017, 317 (2017). https://doi.org/10.1186/s13660-017-1591-9 MathSciNetView ArticleMATHGoogle Scholar
  28. Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66(217), 373–389 (1997) MathSciNetView ArticleMATHGoogle Scholar
  29. Yang, Z.-H.: Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function. J. Math. Anal. Appl. 441, 549–564 (2016) MathSciNetView ArticleMATHGoogle Scholar
  30. Alzer, H.: Sharp upper and lower bounds for the gamma function. Proc. R. Soc. Edinb. 139A, 709–718 (2009) MathSciNetView ArticleMATHGoogle Scholar
  31. Lu, D., Song, L., Ma, C.: A generated approximation of the gamma function related to Windschitl’s formula. J. Number Theory 140, 215–225 (2014) MathSciNetView ArticleMATHGoogle Scholar
  32. Chen, C.-P.: Asymptotic expansions of the gamma function related to Windschitl’s formula. Appl. Math. Comput. 245, 174–180 (2014) MathSciNetMATHGoogle Scholar
  33. Qi, F., Cerone, P., Dragomir, S.S., Srivastava, H.M.: Alternative proofs for monotonic and logarithmically convex properties of one-parameter mean values. Appl. Math. Comput. 208(1), 129–133 (2009) MathSciNetMATHGoogle Scholar
  34. Tian, J.F., Ha, M.H.: Properties of generalized sharp Hölder’s inequalities. J. Math. Inequal. 11(2), 511–525 (2017) MathSciNetView ArticleMATHGoogle Scholar
  35. Tian, J.F., Ha, M.H.: Properties and refinements of Aczél-type inequalities. J. Math. Inequal. 12(1), 175–189 (2018) Google Scholar
  36. Abramowttz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover, New York (1972) Google Scholar
  37. Yang, Z.-H., Chu, Y.-M., Tao, X.-J.: A double inequality for the trigamma function and its applications. Abstr. Appl. Anal. 2014, Article ID 702718 (2014) MathSciNetGoogle Scholar
  38. Yang, Z.-H., Tian, J.: Monotonicity and sharp inequalities related to gamma function. J. Math. Inequal. 12(1), 1–22 (2018) Google Scholar
  39. Yang, Z.-H., Tian, J.: Convexity and monotonicity for the elliptic integrals of the first kind and applications. arXiv:1705.05703 [math.CA]

Copyright

© The Author(s) 2018

Advertisement