Skip to main content

Table 4 The smallest eigenvalue solved by Algorithm 1 and Algorithm 2

From: Adaptive Morley element algorithms for the biharmonic eigenvalue problem

l \(N_{\mathrm{dof}}\) \(h_{l}\) \(\lambda_{1,h_{l}}\) CPU(s) \(N_{\mathrm{dof}}\) \(h_{l}\) \(\lambda_{1,h_{l}}^{R}\) CPU(s)
1 54,896 0.108 7547.686 8.25 54,896 0.108 7547.686 9.71
2 57,176 0.108 7612.980 16.5 57,176 0.108 7613.142 13.0
3 60,822 0.108 7678.863 25.6 60,822 0.108 7678.902 16.7
4 67,192 0.108 7736.644 35.1 67,192 0.108 7736.699 20.9
5 76,278 0.108 7802.128 46.5 76,316 0.108 7802.062 25.8
6 86,838 0.108 7871.038 58.6 86,905 0.108 7872.137 31.2
7 101,261 0.108 7949.987 73.8 101,368 0.108 7950.349 38.4
8 121,408 0.108 8001.974 92.4 121,563 0.108 8002.931 47.3
9 146,456 0.108 8041.421 118 146,215 0.108 8040.738 58.1
10 180,528 0.108 8082.211 155 180,203 0.108 8082.247 72.3
11 224,755 0.108 8108.734 211 224,288 0.108 8108.530 92.1
12 282,583 0.108 8141.177 295 281,953 0.108 8141.009 119
13 355,133 0.108 8174.424 414 354,598 0.108 8174.437 156
14 451,162 0.108 8199.573 583 450,739 0.108 8199.502 205
15 561,904 0.108 8220.566 847 561,090 0.108 8220.433 269
16 693,222 0.108 8240.310 2368 691,963 0.108 8240.129 354
17 863,420 0.108 8258.156 9957 861,795 0.108 8258.042 469
18 1,084,848 0.108 8272.888 624
19 1,357,830 0.108 8281.060 851
20 1,730,050 0.108 8290.011 1206