Skip to main content

An inequality for generalized complete elliptic integral

Abstract

In this paper, we show an elegant inequality involving the ratio of generalized complete elliptic integrals of the first kind and generalize an interesting result of Alzer.

Introduction

The generalized complete elliptic integral of the first kind is defined for \(r\in(0,1)\) by

$$ K_{p} (r) = \int_{0}^{\frac{\pi_{p}}{2}} \frac{d\theta}{(1-r^{p}\sin _{p}^{p}\theta)^{1-\frac{1}{p}}}= \int_{0}^{1}\frac{dt}{(1-t^{p})^{\frac {1}{p}}(1-r^{p}t^{p})^{1-\frac{1}{p}}}, $$

where \(\sin_{p}\theta\) is the generalized trigonometric function and

$$\pi_{p}=2 \int_{0}^{1}\frac{dt}{(1-t^{p})^{\frac{1}{p}}}=\frac{2}{p}B \biggl(\frac{1}{p}, 1-\frac{1}{p} \biggr). $$

The function \(\sin_{p}\theta\) and the number \(\pi_{p}\) play important roles in expressing the solutions of inhomogeneous eigenvalue problem of p-Laplacian \(-(|u'|^{p-2}u')'=\lambda|u|^{p-2}u\) with a boundary condition. These functions have some applications in the quasi-conformal theory, geometric function theory and the theory of Ramanujan modular equation. Báricz [1] established some Turán type inequalities for a Gauss hypergeometric function and for a generalized complete elliptic integral and showed a sharp bound for the generalized complete elliptic integral of the first kind in 2007. In 2012, Bhayo and Vuorinen [2] dealt with generalized elliptic integrals and generalized modular functions. Several new inequalities are given for these and related functions.

For more details on monotonicity, inequalities and convexity and concavity of these functions, the reader may refer to [35] and [6] and the references therein.

In 1990, Anderson et al. [7] presented the following inequality:

$$ \frac{K(r)}{K(\sqrt{r})} > \frac{1}{1+r}\quad \mbox{for } r\in(0,1). $$
(1.1)

Inspired by this work, Alzer and Richards [6] gave the refinement of (1.1): for all \(r\in(0,1)\), the following inequality

$$ \frac{K(r)}{K(\sqrt{r})} > \frac{1}{1+\frac{r}{4}} $$
(1.2)

holds true.

It is natural how inequality (1.2) is generalized to \(K_{p} (r)\). Our main result reads as follows.

Theorem 1.1

For \(r\in(0,1)\) and \(p\in[1,2]\), we have

$$ \frac{1}{1+\lambda_{p}r} < \frac{K_{p}(r)}{K_{p}(\sqrt{r})} < \frac{1}{1+u_{p}r}, $$
(1.3)

where the constants \(\lambda_{p}=\frac{1}{p}(1-\frac{1}{p})\) and \(u_{p}=0\) are the best possible.

Lemmas

Lemma 2.1

The function \(\Delta(x)=\frac{1+ax}{1+bx}\) (\(1+bx\neq0\)) is strictly increasing (decreasing) in \((0, \infty)\) if and only if \(a-b>0\) (\(a-b<0\)).

Proof

Simple computation yields

$$\frac{d}{dx} \biggl(\frac{1+ax}{1+bx} \biggr)=\frac{a-b}{(1+bx)^{2}}. $$

The proof is complete. □

Lemma 2.2

(Lemma 2.1 in [8])

The psi function \(\psi(x)=\frac{\Gamma'(x)}{\Gamma(x)}\) is strictly concave on \((0,\infty)\) and satisfies the duplication formula

$$ \psi(2x)=\frac{1}{2}\psi(x)+\frac{1}{2}\psi\biggl(x+ \frac{1}{2}\biggr)+\log2 $$
(2.1)

for \(x>0\).

Lemma 2.3

(Lemma 3 in [9])

For \(x>0\), we have

$$ \ln x-\frac{1}{x} < \psi(x) < \ln x -\frac{1}{2x}. $$
(2.2)

Lemma 2.4

For \(x>0\) and \(p\in[1,2]\), we have

$$ \psi\biggl(x+\frac{1}{p}\biggr)+\psi\biggl(x+1- \frac{1}{p}\biggr) > \psi\biggl(x+\frac {1}{2}-\frac{1}{2p} \biggr)+\psi\biggl(x+\frac{1}{2}+\frac{1}{2p}\biggr). $$
(2.3)

Proof

Using Lemma 2.3, we only need to prove the following inequality:

$$\ln \biggl[\frac{(x+\frac{1}{p})(x+1-\frac{1}{p})}{(x+\frac {1}{2}-\frac{1}{2p})(x+\frac{1}{2}+\frac{1}{2p})} \biggr]+\frac {1}{x+1-\frac{1}{p}}-\frac{1}{x+\frac{1}{p}}>0. $$

For \(p\in[1,2]\), we easily obtain \(\frac{1}{p}\geq1-\frac{1}{p}\). So, we have

$$\frac{1}{x+1-\frac{1}{p}}-\frac{1}{x-\frac{1}{p}}>0. $$

On the other hand,

$$\begin{aligned}& \frac{(x+\frac{1}{p})(x+1-\frac{1}{p})}{(x+\frac{1}{2}-\frac {1}{2p})(x+\frac{1}{2}+\frac{1}{2p})} \geqslant1 \\& \quad \Leftrightarrow\quad \frac{1}{p} \biggl(1-\frac{1}{p} \biggr) \geqslant \frac{1}{4} \biggl(1-\frac{1}{p} \biggr) \biggl(1+ \frac{1}{p} \biggr) \\& \quad \Leftrightarrow\quad 3 \biggl(\frac{1}{p} \biggr)^{2}-4 \frac{1}{p}+1 \leqslant0. \end{aligned}$$

So, we complete the proof. □

Lemma 2.5

We have

$$ \lim_{r\rightarrow1}\frac{K_{p}(r)}{K_{p}(\sqrt[p]{r})}=1. $$
(2.4)

Proof

Applying the asymptotic formula ([10], equality (2))

$$ F(a,b;a+b;x)\sim-\frac{1}{B(a,b)}\log(1-x) \quad (x\rightarrow1) $$
(2.5)

and expression [10]

$$ {K_{p}(r)}=\frac{\pi_{p}}{2}F \biggl( \frac{1}{p},1-\frac {1}{p};1,r^{p} \biggr), $$
(2.6)

where \(F(a;b;c;z)\) and \(B(x,y)\) denote a classical hypergeometric function and a beta function, respectively, we obtain

$$ \lim_{r\rightarrow1}\frac{F(a,b;a+b;r^{p})}{F(a,b;a+b;r)}=1. $$
(2.7)

Putting \(a=\frac{1}{p}\) and \(b=1-\frac{1}{p}\), we complete the proof. □

Proof of Theorem 1.1

Define

$$f_{p}(r)=\frac{2}{\pi_{p}} \biggl[1+\frac{1}{p} \biggl(1- \frac {1}{p} \biggr)r \biggr] K_{p}(r) $$

and

$$g_{p}(r)=\frac{2}{\pi_{p}} K_{p}\bigl(\sqrt[p]{r}\bigr). $$

By applying (2.6), we get

$$f_{p}(r)=\sum_{n=0}^{\infty}(1+ \lambda_{p} r)r^{pn} $$

and

$$g_{p}(r)=\sum_{n=0}^{\infty}(a_{2n}+a_{2n+1} r)r^{2n}, $$

where \(a_{n}=\frac{(\frac{1}{p})_{n}(1-\frac{1}{p})_{n}}{(n!)^{2}}\) and \((r)_{n}=r(r+1)\cdots(r+n-1)\).

Because of \(1\leqslant p\leqslant2\), we have

$$\frac{f_{p}(r)}{g_{p}(r)}\geqslant\frac{\sum_{n=0}^{\infty}(1+\lambda _{p} r)a_{n} r^{pn}}{\sum_{n=0}^{\infty}(a_{2n}+a_{2n+1} r)r^{pn}}. $$

Let

$$\theta_{p,n}(r)=\frac{(1+\lambda_{p} r)a_{n}}{a_{2n}+a_{2n+1} r}. $$

Simple computation results in

$$\begin{aligned} \theta_{p,n}(r)&=\frac{ (1+\frac{1}{p}(1-\frac{1}{p}) r )}{1+\frac{(\frac{1}{p}+2n)(1-\frac{1}{p}+2n)}{(2n+1)^{2}}}\cdot\frac {a_{n}}{a_{2n}} \\ &\geqslant\frac{(1+\frac{1}{p}(1-\frac{1}{p}) r)}{1+\frac{(\frac {1}{p}+2n)(1-\frac{1}{p}+2n)}{(2n+1)^{2}}}\cdot\frac{a_{n}}{a_{2n}} \end{aligned}$$

by using Lemma 2.1.

(In fact, we easily know

$$\begin{aligned}& \frac{1}{p} \biggl(1-\frac{1}{p} \biggr)\leqslant\frac {1}{4} \leqslant\frac{(\frac{1}{p}+2n)(1-\frac{1}{p}+2n)}{(2n+1)^{2}} \\& \quad \Leftrightarrow\quad 4n^{2}+4n+1\leqslant4 \biggl( \frac{1}{p}+2n \biggr) \biggl(1-\frac{1}{p}+2n \biggr). \end{aligned}$$

Next, considering \(1\leqslant p\leqslant2\), we only need to prove \(12n^{2}+4n-1\leqslant0\). It is obvious.)

Setting

$$ Q_{p}(x)=\frac{\Gamma(\frac{1}{p}+x)\Gamma(1-\frac{1}{p}+x)\Gamma ^{2}(2x+1)}{\Gamma^{2}(x+1)\Gamma(\frac{1}{p}+2x)\Gamma(1-\frac{1}{p}+2x)}, $$

we have

$$\begin{aligned} \begin{aligned} \frac{Q'_{p}(x)}{Q_{p}(x)}={}&\psi \biggl(\frac{1}{p}+x \biggr)+\psi \biggl(1- \frac{1}{p}+x \biggr)+4\psi(2x+1)-2\psi(x+1) \\ &{}-2\psi \biggl(2x+ \frac{1}{2} \biggr)-2\psi \biggl(2x+1-\frac{1}{p} \biggr). \end{aligned} \end{aligned}$$

Using Lemma 2.2, we easily get

$$\begin{aligned} \frac{Q'_{p}(x)}{Q_{p}(x)} =&\psi \biggl(x+\frac{1}{p} \biggr)+\psi \biggl(x+1- \frac{1}{p} \biggr)+2\psi \biggl(x+\frac{1}{2} \biggr)-\psi \biggl(x+ \frac{1}{2p} \biggr) \\ &{}-\psi \biggl(x+\frac{1}{2}+\frac{1}{2p} \biggr)-\psi \biggl(x+ \frac{1}{2}-\frac{1}{2p} \biggr)-\psi \biggl(x+1-\frac {1}{2p} \biggr). \end{aligned}$$

Applying Lemma 2.2 again, we have

$$ \frac{1}{2} \biggl[\psi\biggl(x+\frac{1}{2p}\biggr)+ \psi\biggl(x+1-\frac{1}{2p}\biggr) \biggr]\leqslant\psi \biggl(x+ \frac{1}{2} \biggr). $$
(3.1)

Hence, we have

$$ \frac{Q'_{p}(x)}{Q_{p}(x)}>0. $$

It follows that the function \(Q_{p}(x)\) is increasing in \(x\in(0,\infty )\). So, we have

$$ \frac{a_{2n}}{a_{2n+1}}=Q_{p}(n)>Q_{p}(1)=\frac{4}{(\frac {1}{p}+1)(2-\frac{1}{p})} \geqslant\frac{16}{9}, $$

where we apply

$$ \biggl(\frac{1}{p}+1 \biggr) \biggl(2-\frac{1}{p} \biggr)\leqslant \biggl(\frac{\frac{1}{p}+1+2-\frac{1}{p}}{2} \biggr)^{2}= \biggl(\frac {3}{2} \biggr)^{2}=\frac{9}{4}. $$

Hence, we obtain

$$\begin{aligned} Q_{p,n}(r)&\geqslant\frac{16}{9}\frac{1+\frac{1}{p}(1-\frac {1}{p})}{1+\frac{(\frac{1}{p}+2n)(1-\frac{1}{p}+2n)}{(2n+1)^{2}}} \\ &\geqslant\frac{16}{9}\frac{1+\frac{1}{4}}{1+(\frac{4n+1}{4n+2})^{2}} \\ &=1+\frac{32n^{2}+104n+35}{9(32n^{2}+24n+5)} \\ &>1, \end{aligned}$$

and \(f_{p}(r)>g_{p}(r)\).

On the other hand, since the function \(K_{p}(r)\) is strictly increasing on \(r\in(0,1)\), we have

$$ \frac{K_{p}(r)}{K_{p}(\sqrt[p]{r})}< 1. $$

Hence, we rewrite formula (1.3) as

$$u< u_{p}(r)=\frac{\frac{K_{p}(\sqrt[p]{r})}{K_{p}(r)}-1}{r}< \lambda. $$

Simple calculation leads to

$$u_{p}(r)=\frac{1}{r} \biggl(\frac{\sum_{n=0}^{\infty}\frac{(\frac {1}{p})_{n}(1-\frac{1}{p})_{n}}{(1)_{n}}\frac{r^{n}}{n!}}{\sum_{n=0}^{\infty }\frac{(\frac{1}{p})_{n}(1-\frac{1}{p})_{n}}{(1)_{n}}\frac {r^{pn}}{n!}}-1 \biggr) $$

and

$$\begin{aligned}& \lim_{r\rightarrow0}u_{p}(r)=\frac{1}{p}\biggl(1- \frac{1}{p}\biggr), \\& \lim_{r\rightarrow1}u_{p}(r)=0. \end{aligned}$$

The proof is complete.

Conclusions

We show an elegant inequality involving the ratio of generalized complete elliptic integrals of the first kind and generalize an interesting result of Alzer.

References

  1. Baricz, Á: Turán type inequalities for generalized complete elliptic integrals. Math. Z. 256(4), 895-911 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  2. Bhayo, BA, Vuorinen, M: On generalized complete elliptic integrals and modular functions. Proc. Edinb. Math. Soc. 55, 591-611 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  3. Anderson, GD, Qiu, S-L, Vamanamurthy, MK, Vuorinen, M: Generalized elliptic integrals and modular equations. Pac. J. Math. 192, 1-37 (2000)

    MathSciNet  Article  Google Scholar 

  4. Neuman, E: Inequalities and bounds for generalized complete elliptic integrals. J. Math. Anal. Appl. 373, 203-213 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  5. Wang, G-D, Zhang, X-H, Chu, Y-M: Inequalities for the generalized elliptic integrals and modular functions. J. Math. Anal. Appl. 331, 1275-1283 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  6. Wang, G-D, Zhang, X-H, Chu, Y-M: Complete elliptic integrals and the Hersch-Pfluger distortion function. Acta Math. Sci. Ser. A Chin. Ed. 28, 731-734 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Functional inequalities for complete elliptic integrals and ratios. SIAM J. Math. Anal. 21, 536-549 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  8. Alzer, H, Richards, K: Inequalities for the ratio of complete elliptic integrals. Proc. Am. Math. Soc. 145(4), 1661-1670 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Qi, F, Guo, B-N: Two new proofs of the complete monotonicity of a function involving the psi function. Bull. Korean Math. Soc. 47(1), 103-111 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  10. Takeuchi, S: A new form of the generalized complete elliptic integrals. Kodai Math. J. 39(1), 202-226 (2016)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to anonymous referees for their careful corrections to and valuable comments on the original version of this paper. The authors were supported by NSFC 11401041, the Science Foundation of Binzhou University under grant number BZXYL1704, and by the Science and Technology Foundation of Shandong Province J16li52.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript and read and approved the final manuscript.

Corresponding author

Correspondence to Li Yin.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yin, L., Huang, LG., Wang, YL. et al. An inequality for generalized complete elliptic integral. J Inequal Appl 2017, 303 (2017). https://doi.org/10.1186/s13660-017-1578-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-017-1578-6

MSC

  • 33E05

Keywords

  • generalized complete elliptic integrals
  • psi function
  • hypergeometric function
  • inequality