Skip to main content

Explicit bounds of unknown function of some new weakly singular retarded integral inequalities for discontinuous functions and their applications

Abstract

The purpose of the present paper is to establish some new retarded weakly singular integral inequalities of Gronwall-Bellman type for discontinuous functions, which generalize some known weakly singular and impulsive integral inequalities. The inequalities given here can be used in the analysis of the qualitative properties of certain classes of singular differential equations and singular impulsive equations.

1 Introduction

Being an important tool in the study of qualitative properties of solutions of differential equations and integral equations, various generalizations of Gronwall-Bellman integral inequality and their applications have attracted great interest of many mathematicians (such as [111] and the references therein). Gronwall [11] and Bellman [5] established the integral inequality

$$ u(t)\leq c+ \int^{t}_{a} f(s)u(s)\,ds, \quad t\in[a, b], $$

for some constant \(c\geq0\), obtained the estimation of an unknown function,

$$\begin{aligned} u(t)\leq c\exp \biggl( \int^{t}_{a} f(s)\,ds \biggr), \quad t\in[a, b]. \end{aligned}$$

Abdeldaim [12] discussed the following nonlinear integral inequality:

$$\begin{aligned}& u(t) \le u_{0}+ \int_{0}^{\alpha(t)}f(s) \biggl[u^{2-p}(s)+ \int^{s}_{0}g(\tau )u^{q}(\tau)\,d\tau \biggr]^{p}\,ds,\quad p\in[0,1), \\& u(t) \le n(t)+ \int_{0}^{\alpha(t)}f(s) \biggl[u(s)+ \int^{s}_{0}g(\tau)u(\tau )\,d\tau \biggr]^{p}\,ds, \quad p\in[0,1). \end{aligned}$$

Usually, this type integral inequalities have regular or continuous integral kernels, but some problems of theory and practicality require us to solve integral inequalities with singular kernels. For example, to prove a global existence and an exponential decay result for a parabolic Cauchy problem. Henry [13] investigated the following linear singular integral inequality:

$$ u(t) \le a+b \int_{0}^{t}(t-s)^{\beta-1}u(s)\,ds. $$

Sano and Kunimatsu[14] generalized Henry’s type inequality to

$$ 0\le u(t) \le c_{1}+c_{2}t^{\alpha-1}+c_{3} \int_{0}^{t}u(s)\,ds+c_{4} \int _{0}^{t}(t-s)^{\beta-1}u(s)\,ds, $$

and gave a sufficient condition for stabilization of semilinear parabolic distributed systems. Ye et al. [15] discussed the linear singular integral inequality

$$ u(t) \le a(t)+b(t) \int_{0}^{t}(t-s)^{\beta-1}u(s)\,ds, $$

and they used it to study the dependence of the solution and the initial condition to a certain fractional differential equation with Riemann-Liouville fractional derivatives. All inequalities of this type are proved by an iteration argument and the estimation formulas are expressed by a complicated power series which is sometimes not very convenient for applications. To avoid the weakness, Medveď [16] presented a new method to solve integral inequalities of Henry-Gronwall type, then he got the explicit bounds with a quite simple formula, similar to the classic Gronwall-Bellman inequalities. Furthermore, he also obtained global solutions of the semilinear evolutions in [17]. In 2008, Ma and Pečarić [18] used the modification of Medveď’s method to study a new weakly singular integral inequality,

$$ u^{p}(t) \le a(t) +b(t) \int_{0}^{t}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma-1} s^{\xi -1}f(s)u^{q}(s)\,ds,\quad t\in[0, + \infty). $$

Besides the results mentioned above, various investigators have discovered many useful and new weakly singular integral inequalities, mainly inspired by their applications in various branches of fractional differential equations (see [14, 1627] and the references therein).

In analyzing the impulsive phenomenon of a physical system governed by certain differential and integral equations, by estimating the unknown function in the integral inequality of the discontinuous functions, Some properties of the solution of some impulsive differential equations can be studied. These inequalities and their various linear and nonlinear generalizations are crucial in the discussion of the existence, uniqueness, boundedness, stability, and other qualitative properties of solutions of differential and integral equations (see [10, 25, 2834] and the references therein). Tatar [25] discussed the following class of integral inequalities:

$$\begin{aligned}& u(t)\le a(t)+b(t) \int^{t}_{0}k_{1}(t,s)u^{m}(s) \,ds + c(t) \int ^{t}_{0}k_{2}(t,s)u^{n}(s- \tau)\,ds \\& \hphantom{u(t)\le{}}{}+d(t)\sum_{0< t_{k}< t}\eta_{k}u(t_{k}), \quad t\ge0, \\& u(t) \le \varphi(t), \quad t\in[-\tau,0], \tau>0, \end{aligned}$$

where \(k_{i}(t,s)=(t-s)^{\beta_{i}-1}s^{\gamma_{i}}F_{i}(s)\), \(i=1,2\). Iovane [28] studied the following discontinuous function integral inequality:

$$\begin{aligned} u(t) \le a(t) + \int_{t_{0}}^{t} f(s)u\bigl(\tau(s)\bigr)\,ds+\sum _{t_{0}< t_{i}< t}\beta_{i}u^{m}(t_{i}-0), \quad \forall t\ge t_{0}, \end{aligned}$$

where \(a(t)>0\), \(f(t)\ge0\), \(g(t)\ge0\), \(\beta_{i}\ge0\), \(m>0\). Gllo et al. [10] studied the impulsive integral inequality

$$ u(t) \le a(t) + g(t) \int_{t_{0}}^{t} q(s)u^{n}\bigl(\tau(s)\bigr) \,ds+p(t)\sum_{t_{0}< t_{i}< t}\beta_{i}u^{m}(t_{i}-0), \quad \forall t\ge t_{0}, $$

where \(a(t)\) is a nondecreasing function as \(t\ge t_{0}\), \(g(t)\ge 1\), \(p(t)\ge1\), \(q(s)\in C(\mathbf{R_{+}},\mathbf{R_{+}})\), \(\tau:\mathbf{R}\rightarrow\mathbf{R}\), \(\tau(s)\le s\), \(\lim_{|s|\rightarrow\infty}\tau(s)=\infty\), \(\beta_{i}\ge0 \), \(m>0\). Yan [32] discussed the impulsive integral inequality with delay

$$\begin{aligned} u(t) \le& a(t) + \int_{t_{0}}^{t} f(t,s)u\bigl(\tau(s)\bigr)\,ds+ \int_{t_{0}}^{t} f(t,s) \biggl( \int_{t_{0}}^{s} g(s,\theta )u\bigl(\tau(\theta)\bigr)d \theta \biggr)\,ds \\ &{}+q(t)\sum_{t_{0}< t_{i}< t}\beta_{i}u^{m}(t_{i}-0), \quad \forall t \ge t_{0}, \end{aligned}$$

where \(a(t)\in C(\mathbf{R_{+}},\mathbf{R_{+}})\), \(f,g\in C(\mathbf {R^{2}_{+}},\mathbf{R_{+}})\), \(\tau:\mathbf{R}\rightarrow\mathbf{R}\), \(\tau(s)\le s\), \(\lim_{|s|\rightarrow\infty}\tau(s)=\infty\), \(\beta_{i}\ge0 \), \(m>0\). Mi et al. [30] studied the integral inequality of complex functions with unknown function

$$\begin{aligned} u(t) \le& a(t) + \int_{t_{0}}^{t} f(t,s) \int_{t_{0}}^{s} g(s,\tau)w\bigl(u(\tau )\bigr)\,d\tau \,ds \\ &{}+q(t)\sum_{t_{0}< t_{i}< t}\beta_{i}u^{m}(t_{i}-0), \quad \forall t \ge t_{0}, \end{aligned}$$

where \(w(u)\) is monotone decreasing continuous function defined on \([0,\infty)\), and \(w(u)>0\) when \(u>0\). Liu et al. [29] investigated the impulsive integral inequality with delay

$$ u^{p}(t) \le a(t) + b(t) \int_{t_{0}}^{t} \bigl[f(s)u^{q}(s)+h(s)u^{r} \bigl(\sigma(s)\bigr)\bigr]\,ds+\sum_{t_{0}< t_{i}< t}\beta _{i}u^{m}(t_{i}-0), \quad \forall t\ge t_{0}, $$

where \(a(t),b(t)\ge1\) are both nondecreasing functions at \(t\ge t_{0}\), \(f(s),h(s)\in C(\mathbf{R_{+}},\mathbf{R_{+}})\), \(\sigma(s)\le s\), \(\lim_{|s|\rightarrow\infty}=\infty\), \(\beta_{i}\ge0\), \(m>0\), \(p\ge q\ge0\), \(p\ge r\ge0\). Zheng et al. [34] studied the following integral inequality for discontinuous function:

$$\begin{aligned} u^{p}(t) \le& a_{0}(t)+\frac{p}{p-1}\sum _{i=1}^{N} \int^{t}_{t_{0}} g_{i}(s)u^{q} \bigl(\phi_{i}(s)\bigr)\,ds +\sum^{L}_{j=1} \int^{t}_{t_{0}}b_{j}(s) \int^{s}_{t_{0}}c_{j}(\theta)u^{q} \bigl(w_{j}(\theta )\bigr)d\theta \,ds \\ &{}+\sum_{t_{0}< t_{i}< t}\beta_{i} u^{q}(t_{i}-0), \end{aligned}$$

where \(u(t)\), \(a(t)\) and \(g_{i}(t)\), \(b_{j}(t)\), \(c_{j}(t)\) (\(1\le i\le N\), \(1\le j\le L\)) are positive and continuous functions on \([t_{0},\infty)\), and \(c_{j}(t)\) are nondecreasing functions on \([t_{0},\infty)\), and \(\phi _{i}(t)\), \(w_{j}(t)\) are continuous functions on \([t_{0},\infty)\) and \(t_{0}\le\phi_{i}(t)\le t\), \(t_{0}\le w_{j}(t)\le t\).

However, in certain situations, such as some classes of delay impulsive differential equations and delay impulsive integral equations, it is desirable to find some new delay impulsive inequalities, in order to achieve a diversity of desired goals. In this paper, we discuss a class of retarded integral inequalities with weak singularity for discontinuous functions,

$$\begin{aligned}& u(t) \le a(t)+ \int_{0}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma -1} s^{\xi-1}f_{1}(s)u(s)\,ds \\& \hphantom{u(t) \le{}}{}+ \int_{0}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma-1} s^{\xi -1}f_{2}(s) \int^{s}_{0} f_{3}(\tau)u(\tau)\,d\tau \,ds, \quad t\in\mathbf{R}_{+}, \end{aligned}$$
(1)
$$\begin{aligned}& u(t) \le a(t)+ \int_{t_{0}}^{\alpha(t)}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma -1}f(s)u(s) \biggl[u^{2}(s)+ \int^{s}_{t_{0}}g(\tau)u(\tau)\,d\tau \biggr]^{p}\,ds \\& \hphantom{u(t) \le{}}{}+\sum_{t_{0}< t_{i}< t}\beta_{i}u(t_{i}-0), \end{aligned}$$
(2)
$$\begin{aligned}& u^{p}(t) \le a(t)+b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta } \bigr)^{\gamma-1} s^{\xi-1}f(s) \biggl[u^{m}(s)+ \int^{s}_{t_{0}}g(\tau)u^{n}(\tau )\,d\tau \biggr]^{q}\,ds \\& \hphantom{u^{p}(t) \le{}}{}+\sum_{t_{0}< t_{i}< t}\beta_{i}u^{p}(t_{i}-0), \end{aligned}$$
(3)

which generalize the inequality (2) in [12] to the weakly singular integral inequality, and (4) in [18] to the retarded inequality. We use the modification of Medveď’s method to obtain the explicit estimations of the unknown function in the inequality (1), and we use the analysis technique to get the explicit estimations of the unknown function in the inequalities (2) and (3). Finally, we give two examples to illustrate applications of our results.

2 Main results

Throughout this paper, R denotes the set of real numbers and \(\mathbf{R_{+}}=[0,\infty)\) is the given subset of R, and \(C(M,S)\) denotes the class of all continuous functions defined on set M with range in the set S.

The following lemmas are very useful in the procedures of our proof in our main results.

Lemma 1

Suppose that \(f(x)\) and \(g(x)\) are nonnegative and continuous functions on \([c,d]\). Let \(p>1\), \(\frac{1}{q}+\frac{1}{p}=1\). Then

$$ \int_{c}^{d}f(s)g(s)\,ds\le \biggl( \int_{c}^{d}f^{p}(s)\,ds \biggr)^{1/p} \biggl( \int _{c}^{d}g^{q}(s)\,ds \biggr)^{1/q}. $$
(4)

Let \(\alpha(t)\) be a continuous, differentiable and increasing function on \([t_{0},+\infty)\) with \(\alpha(t)\le t, \alpha(t_{0})= t_{0}\), then

$$ \int_{\alpha(t_{0})}^{\alpha(t)}f(s)g(s)\,ds \le \biggl( \int_{\alpha (t_{0})}^{\alpha(t)}f^{p}(s)\,ds \biggr)^{1/p} \biggl( \int_{\alpha(t_{0})}^{\alpha (t)} g^{q}(s) \,ds \biggr)^{1/q}. $$
(5)

Proof

We prove the inequality (5). Using the inequality (4), we obtain

$$\begin{aligned} \int_{\alpha(t_{0})}^{\alpha(t)}f(s)g(s)\,ds =& \int_{t_{0}}^{t}f\bigl(\alpha (s)\bigr)g\bigl( \alpha(s)\bigr)\alpha'(s)\,ds= \int_{t_{0}}^{t}f\bigl(\alpha(s)\bigr) \bigl(\alpha '(s)\bigr)^{1/p}g\bigl(\alpha(s)\bigr) \bigl( \alpha'(s)\bigr)^{1/q}\,ds \\ \le& \biggl( \int_{t_{0}}^{t}f^{p}\bigl(\alpha(s)\bigr) \alpha'(s)\,ds \biggr)^{1/p} \biggl( \int _{t_{0}}^{t}g^{q}\bigl(\alpha(s)\bigr) \alpha'(s)\,ds \biggr)^{1/q} \\ =& \biggl( \int_{\alpha(t_{0})}^{\alpha(t)}f^{p}(s)\,ds \biggr)^{1/p} \biggl( \int _{\alpha(t_{0})}^{\alpha(t)} g^{q}(s) \,ds \biggr)^{1/q}. \end{aligned}$$

 □

Lemma 2

([35])

Let \(a_{1}, a_{2},\ldots,a_{n}\) be nonnegative real numbers, \(m>1\) is a real number, and n is a natural number. Then

$$ (a_{1}+a_{2}+\cdots+a_{n})^{m} \le n^{m-1}\bigl(a_{1}^{m}+a_{2}^{m}+ \cdots+a_{n}^{m}\bigr). $$
(6)

Lemma 3

([18, 21])

Let β, γ, ξ and p be positive constants. Then

$$ \int_{0}^{t}\bigl(t^{\beta}-s^{\beta} \bigr)^{p(\gamma-1)} s^{p(\xi-1)}\,ds=\frac {t^{\theta}}{\beta}B \biggl[ \frac{p(\xi-1)+1}{\beta},p(\gamma-1)+1 \biggr],\quad t\in[0,+\infty). $$

Let \(\alpha(t)\) be a continuous, differentiable and increasing function on \([t_{0},+\infty)\) with \(\alpha(t)\le t\), \(\alpha(t_{0})= t_{0}\), then

$$ \int_{\alpha(t_{0})}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{p(\gamma -1)} s^{p(\xi-1)}\,ds\le\frac{\alpha^{\theta}(t)}{\beta}B \biggl[ \frac{p(\xi -1)+1}{\beta},p(\gamma-1)+1 \biggr],\quad t\in[0,+\infty), $$

where \(B[x,y]=\int^{1}_{0} s^{ x-1}(1-s)^{y-1}\,ds\) (\(x>0\), \(y>0\)) is the well-known beta-function and \(\theta=p[\beta(\gamma-1)+\xi-1]+1\). Suppose that the positive constants β, γ, ξ, \(p_{1}\) and \(p_{2}\) satisfy conditions:

  1. (1)

    if \(\beta\in(0,1],\gamma\in(1/2,1)\) and \(\xi\ge3/2-\gamma ,p_{1}=1/\gamma\);

  2. (2)

    if \(\beta\in(0,1],\gamma\in(0,1/2]\) and \(\xi> (1-2\gamma ^{2})/(1-\gamma^{2}), p_{2}=(1+4\gamma)/(1+3\gamma)\), then

    $$ B \biggl[\frac{p_{i}(\xi-1)+1}{\beta},p_{i}(\gamma-1)+1 \biggr]\in[0,+ \infty), $$

    and \(\theta_{i}=p_{i}[\beta(\gamma-1)+\xi-1]+1\ge0\) are valid for \(i=1,2\).

Lemma 4

Let \(u(t),a(t),b(t),h(t)\in C(\mathbf{R}_{+},\mathbf{R}_{+})\), \(\alpha(t)\) be a continuous, differentiable and increasing function on \({\mathbf{R}_{+}}\) with \(\alpha(t)\le t\), \(\alpha(0)= 0\). If \(u(t)\) satisfies the following inequality:

$$ u(t) \le a(t)+b(t) \int_{0}^{\alpha(t)}h(s)u(s)\,ds. $$
(7)

Then

$$ u(t) \le a(t)+\frac{b(t)}{e(\alpha(t))} \int_{0}^{\alpha(t)}h(s)a(s)e(s)\,ds, $$
(8)

where

$$ e(t) = \exp \biggl(- \int_{0}^{t}h(s)b(s)\,ds \biggr). $$
(9)

Proof

Define a function \(v(t)\) on \({\mathbf{R}_{+}}\) by

$$ v(t) = e\bigl(\alpha(t)\bigr) \int_{0}^{\alpha(t)}h(s)u(s)\,ds, $$
(10)

we have \(v(0)=0\). Differentiating \(v(t)\) with respect to t and using (7) and (9), we have

$$\begin{aligned} v'(t) =&\alpha'(t)h\bigl(\alpha(t)\bigr)u\bigl( \alpha(t)\bigr)e\bigl(\alpha(t)\bigr)-\alpha '(t)h\bigl(\alpha(t) \bigr)b\bigl(\alpha(t)\bigr)e\bigl(\alpha(t)\bigr) \int_{0}^{\alpha (t)}h(s)u(s)\,ds \\ \le&\alpha'(t)h\bigl(\alpha(t)\bigr)a\bigl(\alpha(t)\bigr)e\bigl( \alpha(t)\bigr)+\alpha'(t)h\bigl(\alpha (t)\bigr)e\bigl(\alpha(t) \bigr)b\bigl(\alpha(t)\bigr) \int_{0}^{\alpha(t)}h(s)u(s)\,ds \\ &{}-\alpha'(t)h\bigl(\alpha(t)\bigr)b\bigl(\alpha(t)\bigr)e\bigl( \alpha(t)\bigr) \int_{0}^{\alpha (t)}h(s)u(s)\,ds \\ \le&\alpha'(t)h\bigl(\alpha(t)\bigr)a\bigl(\alpha(t)\bigr)e\bigl( \alpha(t)\bigr). \end{aligned}$$
(11)

Integrating both sides of the inequality (11) from 0 to t, since \(v(0)=0\) we get

$$ v(t)\le \int^{t}_{0}\alpha'(s)h\bigl(\alpha(s) \bigr)a\bigl(\alpha(s)\bigr)e\bigl(\alpha(s)\bigr)\,ds= \int ^{\alpha(t)}_{0}h(s)a(s)e(s)\,ds. $$
(12)

From (10) and (12), we obtain

$$ \int_{0}^{\alpha(t)}h(s)u(s)\,ds \le \frac{1}{e(\alpha(t))} \int^{\alpha(t)}_{0}h(s)a(s)e(s)\,ds. $$
(13)

Substituting the inequality (13) into (7) we get the required estimation (8). The proof is completed. □

Lemma 5

Let \(a\ge0\), \(p\ge q\ge0\) and \(p\neq0\), then

$$ a^{\frac{q}{p}}\le\frac{q}{p}a+\frac{p-q}{p}. $$
(14)

Proof

If \(q=0\), the inequality above is obviously valid. On the other hand, if \(q>0\), let \(\delta=q/p\), then \(\delta\le1\), by [36], [18] (Lemma 2.1), we obtain

$$ a^{\frac{q}{p}}\le\frac{q}{p}K^{(q-p)/p}a+ \frac{p-q}{p}K^{q/p}, $$

for any \(K>0\). Let \(K=1\), we get (14). □

Theorem 1

Let \(a(t), f_{1} (t),f_{2}(t), f_{3}(t)\in C(\mathbf{R}_{+},\mathbf{R}_{+})\), and \(a(t)\) is a nondecreasing function, and let \(\alpha(t)\) be a continuous, differentiable and increasing function on \({\mathbf{R}_{+}}\) with \(\alpha(t)\le t\), \(\alpha(0)= 0\). Let \(\beta,\gamma,\xi\) be positive constants. Suppose that \(u(t)\) satisfies the inequality (1).

(1) If \(\beta\in(0,1]\), \(\gamma\in(1/2,1)\) and \(\xi\ge3/2-\gamma\), we have

$$ u(t)\le \biggl(\tilde{a}_{1}(t)+\frac{\tilde{b}_{1}(t)}{\tilde{e}_{1}(\alpha (t))} \int_{0}^{\alpha(t)}\tilde{h}_{1}(s) \tilde{a}_{1}(s)\tilde {e}_{1}(s)\,ds \biggr)^{1-\gamma}, \quad t\in{\mathbf{R}_{+}}, $$
(15)

where

$$\begin{aligned}& \tilde{a}_{1}(t) = 3^{\frac{\gamma}{1-\gamma}}a^{\frac{1}{1-\gamma}}(t), \\& \tilde{b}_{1}(t) = \bigl(3M_{1} \alpha^{\theta_{1}}(t) \bigr)^{\frac{\gamma }{1-\gamma}}, \\& \tilde{h}_{1}(t) = f_{1}^{\frac{1}{1-\gamma}}(t)+ \biggl(f_{2}(t) \int^{t}_{0}f_{3}(\tau )\,d\tau \biggr)^{\frac{1}{1-\gamma}}, \\& \tilde{e}_{1}(t) = \exp \biggl(- \int_{0}^{t}\tilde{h}_{1}(s)\tilde {b}_{1}(s)\,ds \biggr), \\& M_{1} = \frac{1}{\beta}B \biggl[\frac{\gamma+\xi-1}{\beta\gamma}, \frac {2\gamma-1}{\gamma} \biggr], \\& \theta_{1} = \frac{1}{\gamma}\bigl[\beta(\gamma-1)+\xi-1 \bigr]+1. \end{aligned}$$

(2) If \(\beta\in(0,1],\gamma\in(0,1/2]\) and \(\xi> (1-2\gamma ^{2})/(1-\gamma^{2})\), we have

$$\begin{aligned} w(t)\le \biggl(\tilde{a}_{2}(t)+\frac{\tilde{b}_{2}(t)}{\tilde{e}_{2}(\alpha (t))} \int_{0}^{\alpha(t)}\tilde{h}_{2}(s) \tilde{a}_{2}(s)\tilde {e}_{2}(s)\,ds \biggr)^{\frac{\gamma}{1+4\gamma}}, \quad t\in{\mathbf{R}_{+}}, \end{aligned}$$
(16)

where

$$\begin{aligned}& \tilde{a}_{2}(t) = 3^{\frac{1+3\gamma}{\gamma}}a^{\frac{1+4\gamma}{\gamma }}(t), \\& \tilde{b}_{2}(t) = \bigl(3M_{2} \alpha^{\theta_{2}}(t) \bigr)^{\frac{1+3\gamma }{\gamma}}, \\& \tilde{h}_{2}(t) = f_{1}^{\frac{1+4\gamma}{\gamma}}(s)+ \biggl(f_{2}(s) \int^{s}_{0} f_{3}(\tau)\,d\tau \biggr)^{\frac{1+4\gamma}{\gamma}}, \\& \tilde{e}_{2}(t) = \exp \biggl(- \int_{0}^{t}\tilde{h}_{2}(s)\tilde {b}_{2}(s)\,ds \biggr), \\& M_{2} = \frac{1}{\beta}B \biggl[\frac{\xi(1+4\gamma)-\gamma}{\beta(1+3\gamma )}, \frac{4\gamma^{2}}{1+3\gamma} \biggr], \\& \theta_{2} = \frac{1+4\gamma}{1+3\gamma}\bigl[\beta(\gamma-1)+\xi-1 \bigr]+1. \end{aligned}$$

Proof

If \(\beta\in(0,1]\), \(\gamma\in(1/2,1)\) and \(\xi\ge3/2-\gamma\), let

$$p_{1}=\frac{1}{\gamma},\qquad q_{1}=\frac{1}{(1-\gamma)}, $$

if \(\beta\in(0,1]\), \(\gamma\in(0,1/2]\) and \(\xi> (1-2\gamma^{2})/(1-\gamma^{2})\), let

$$p_{2}=\frac{(1+4\gamma)}{(1+3\gamma)},\qquad q_{2}=\frac{(1+4\gamma)}{\gamma}, $$

then

$$\frac{1}{p_{i}}+\frac{1}{q_{i}}=1, \quad i=1,2. $$

Using Hölder’s inequality in Lemma 1 applied to (1), we have

$$\begin{aligned} u(t) \le& a(t)+ \biggl[ \int_{0}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta } \bigr)^{p_{i}(\gamma-1)} s^{p_{i}(\xi-1)}\,ds \biggr]^{1/p_{i}} \biggl[ \int_{0}^{\alpha (t)}f_{1}^{q_{i}}(s)u^{q_{i}}(s) \,ds \biggr]^{1/q_{i}} \\ &{}+ \biggl[ \int_{0}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{p_{i}(\gamma -1)} s^{p_{i}(\xi-1)}\,ds \biggr]^{1/p_{i}} \\ &{}\times \biggl[ \int_{0}^{\alpha(t)} \biggl(f_{2}(s) \int^{s}_{0} f_{3}(\tau)u(\tau)\,d\tau \biggr)^{q_{i}} \,ds \biggr]^{1/q_{i}}. \end{aligned}$$

Set

$$\begin{aligned} z(t) =&a(t)+ \biggl[ \int_{0}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta } \bigr)^{p_{i}(\gamma-1)} s^{p_{i}(\xi-1)}\,ds \biggr]^{1/p_{i}} \biggl[ \int_{0}^{\alpha (t)}f_{1}^{q_{i}}(s)u^{q_{i}}(s) \,ds \biggr]^{1/q_{i}} \\ &{}+ \biggl[ \int_{0}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{p_{i}(\gamma -1)} s^{p_{i}(\xi-1)}\,ds \biggr]^{1/p_{i}} \\ &{}\times\biggl[ \int_{0}^{\alpha(t)} \biggl(f_{2}(s) \int^{s}_{0} f_{3}(\tau)u(\tau)\,d\tau \biggr)^{q_{i}} \,ds \biggr]^{1/q_{i}}. \end{aligned}$$
(17)

Then \(z(t)\) is a nondecreasing function, and \(u(t)\le z(t)\), from (17), we have

$$\begin{aligned} z(t) \le& a(t)+ \biggl[ \int_{0}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta } \bigr)^{p_{i}(\gamma-1)} s^{p_{i}(\xi-1)}\,ds \biggr]^{1/p_{i}} \biggl[ \int_{0}^{\alpha (t)}f_{1}^{q_{i}}(s)z^{q_{i}}(s) \,ds \biggr]^{1/q_{i}} \\ &{}+ \biggl[ \int_{0}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{p_{i}(\gamma -1)} s^{p_{i}(\xi-1)}\,ds \biggr]^{1/p_{i}} \biggl[ \int_{0}^{\alpha(t)} \biggl(f_{2}(s) \int^{s}_{0} f_{3}(\tau)z(\tau)\,d\tau \biggr)^{q_{i}} \,ds \biggr]^{1/q_{i}} \\ \le& a(t)+ \biggl[ \int_{0}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta } \bigr)^{p_{i}(\gamma-1)} s^{p_{i}(\xi-1)}\,ds \biggr]^{1/p_{i}} \biggl[ \int_{0}^{\alpha (t)}f_{1}^{q_{i}}(s)z^{q_{i}}(s) \,ds \biggr]^{1/q_{i}} \\ &{}+ \biggl[ \int_{0}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{p_{i}(\gamma -1)} s^{p_{i}(\xi-1)}\,ds \biggr]^{1/p_{i}} \\ &{}\times \biggl[ \int_{0}^{\alpha(t)} \biggl(f_{2}(s) \int^{s}_{0} f_{3}(\tau)\,d\tau \biggr)^{q_{i}} z^{q_{i}}(s)\,ds \biggr]^{1/q_{i}}. \end{aligned}$$

Using the discrete Jensen inequality (6) in Lemma 2 with \(n = 3\), \(m = q_{i}\), we obtain

$$\begin{aligned} z^{q_{i}}(t) \le&3^{q_{i}-1}a^{q_{i}}(t)+3^{q_{i}-1} \biggl[ \int_{0}^{\alpha (t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{p_{i}(\gamma-1)} s^{p_{i}(\xi-1)}\,ds \biggr]^{q_{i}/p_{i}} \int_{0}^{\alpha(t)}f_{1}^{q_{i}}(s)z^{q_{i}}(s) \,ds \\ &{}+3^{q_{i}-1} \biggl[ \int_{0}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta } \bigr)^{p_{i}(\gamma-1)} s^{p_{i}(\xi-1)}\,ds \biggr]^{q_{i}/p_{i}} \\ &{}\times \int_{0}^{\alpha(t)} \biggl(f_{2}(s) \int^{s}_{0}f_{3}(\tau)\,d\tau \biggr)^{q_{i}}z^{q_{i}}(s) \,ds. \end{aligned}$$
(18)

Using Lemma 3, the inequality (18) can be restated as

$$\begin{aligned} z^{q_{i}}(t) \le&3^{q_{i}-1}a^{q_{i}}(t)+3^{q_{i}-1} \bigl(M_{i}\alpha^{\theta _{i}}(t) \bigr)^{q_{i}/p_{i}} \\ &{}\times \int_{0}^{\alpha(t)} \biggl[f_{1}^{q_{i}}(s) + \biggl(f_{2}(s) \int^{s}_{0} f_{3}(\tau)\,d\tau \biggr)^{q_{i}} \biggr]z^{q_{i}}(s) \,ds, \end{aligned}$$
(19)

for \(t\in{\mathbf{R}_{+}}\), where

$$\begin{aligned}& M_{i} = \frac{1}{\beta}B \biggl[\frac{p_{i}(\xi-1)+1}{\beta},p_{i}( \gamma -1)+1 \biggr], \\& \theta_{i} = p_{i}\bigl[\beta(\gamma-1)+\xi-1 \bigr]+1\ge0, \end{aligned}$$

for \(i = 1, 2\). Applying Lemma 4 to (19), we obtain

$$ u^{q_{i}}(t)\le z^{q_{i}}(t) \le \tilde{a}_{i}(t)+\frac{\tilde{b}_{i}(t)}{\tilde{e}_{i}(\alpha(t))} \int _{0}^{\alpha(t)}\tilde{h}_{i}(s) \tilde{a}_{i}(s)\tilde{e}_{i}(s)\,ds,\quad i=1,2, t\in{ \mathbf{R}_{+}}, $$
(20)

where

$$\begin{aligned}& \tilde{a}_{i}(t) = 3^{q_{i}-1}a^{q_{i}}(t), \\& \tilde{b}_{i}(t) = 3^{q_{i}-1} \bigl(M_{i} \alpha^{\theta_{i}}(t) \bigr)^{q_{i}/p_{i}}, \\& \tilde{h}_{i}(t) = f_{1}^{q_{i}}(s)+ \biggl(f_{2}(s) \int^{s}_{0} f_{3}(\tau)\,d\tau \biggr)^{q_{i}}, \\& \tilde{e}_{i}(t) = \exp \biggl(- \int_{0}^{t}\tilde{h}_{i}(s)\tilde {b}_{i}(s)\,ds \biggr), \end{aligned}$$

for \(i=1,2\). Substituting \(p_{1}=1/\gamma,q_{1}=1/(1-\gamma)\) and \(p_{2}=(1+4\gamma )/(1+3\gamma)\), \(q_{2}=(1+4\gamma)/\gamma\) to (20), respectively, we can get the desired estimations (15) and (16). This completes the proof. □

Theorem 2

Let \(u(t) \) is a nonnegative piecewise continuous function with discontinuous of the first kind in the points \(t_{i}\) (\(t_{0}< t_{1}< t_{2}<\cdots\), \(\lim_{i\rightarrow\infty} t_{i}=\infty\)), \(a(t), f(t)\in C(\mathbf{R}_{+},\mathbf{R}_{+})\), \(a(t)\ge1 \), and let \(\alpha(t)\) be a continuous, differentiable and increasing function on \([t_{0},+\infty)\) with \(\alpha(t)\le t\), \(\alpha(t_{i})= t_{i}\), \(i=0,1,2,\ldots \) . Let p, β, γ be positive constants, \(\beta_{i}\in[0,\infty)\). If \(u(t)\) satisfies the inequality (2), then we have

$$ u(t) \le \biggl(\tilde{a}_{i}(t)+\frac{1}{\tilde{e}_{i}(\alpha(t))} \int _{t_{i}}^{\alpha(t)}\tilde{h}(s)\tilde{a}_{i}(s) \tilde{e}_{i}(s)\,ds \biggr)^{1-\gamma},\quad t \in[t_{i},t_{i+1}),i=0,1,2,\ldots, $$
(21)

where

$$\begin{aligned}& \tilde{a}_{i}(t) = A_{i}^{\frac{1}{1-\gamma}}(t), \quad t\in [t_{i},t_{i+1}),i=0,1,2,\ldots, \\& A_{i}(t) = a(t)+\sum_{j=1}^{i} \int_{t_{j-1}}^{\alpha(t_{j})}\bigl(t^{\beta }-s^{\beta} \bigr)^{\gamma-1}f(s)u(s) \biggl[u^{2}(s)+ \int^{s}_{t_{0}}g(\tau)u(\tau )\,d\tau \biggr]^{p}\,ds \\& \hphantom{A_{i}(t) ={}}{}+\sum_{j=1}^{i} \beta_{j}u(t_{j}-0),\quad i=0,1,2,\ldots, \\& \tilde{h}(t) = \bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma-1}f(t)\Omega\biggl(\frac{\alpha ^{-1}(s)}{\alpha'(s)}\biggr), \\& \tilde{e}_{i}(t) = \exp \biggl(- \int_{t_{i}}^{t}\tilde{h}(s)\,ds \biggr). \end{aligned}$$

Proof

Firstly, we consider the case \(t\in[t_{0},t_{1})\), denoting

$$ v(t)=a(t)+ \int_{t_{0}}^{\alpha(t)}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma -1}f(s)u(s) \biggl[u^{2}(s)+ \int^{s}_{t_{0}}g(\tau)u(\tau)\,d\tau \biggr]^{p}\,ds, $$
(22)

then \(v(t)\) is a nonnegative and nondecreasing continuous function, and

$$ u(t)\le v(t),\qquad v(t_{0})=a(t_{0}). $$
(23)

Differentiating (22) with respect to t, we have

$$\begin{aligned} v'(t) =&a'(t)+\alpha'(t) \bigl(t^{\beta}-\alpha^{\beta}(t)\bigr)^{\gamma-1}f\bigl(\alpha (t)\bigr)u\bigl(\alpha(t)\bigr) \biggl[u^{2}\bigl(\alpha(t)\bigr)+ \int^{\alpha(t)}_{t_{0}}g(s)u(s)\,ds \biggr]^{p} \\ \le& a'(t)+\alpha'(t) \bigl(t^{\beta}- \alpha^{\beta}(t)\bigr)^{\gamma-1}f\bigl(\alpha (t)\bigr)v\bigl( \alpha(t)\bigr) \biggl[v^{2}\bigl(\alpha(t)\bigr)+ \int^{\alpha(t)}_{t_{0}}g(s)v(s)\,ds \biggr]^{p}. \end{aligned}$$
(24)

Let

$$ \Gamma(t)=v^{2}\bigl(\alpha(t)\bigr)+ \int^{\alpha(t)}_{t_{0}} g(s)v(s)\,ds, $$
(25)

then \(\Gamma(t)\) is a nonnegative and nondecreasing function, and \(\Gamma(t_{0})= a^{2}(t_{0})\), since \(a(t)\ge1\), we can conclude that \(v(t)\le\Gamma(t)\), differentiating (25), from (24), we obtain

$$\begin{aligned} \Gamma'(t) =& 2v\bigl(\alpha(t)\bigr)v'\bigl( \alpha(t)\bigr)\alpha'(t)+\alpha'(t)g\bigl(\alpha (t) \bigr)v\bigl(\alpha(t)\bigr) \\ \le& 2\Gamma\bigl(\alpha(t)\bigr)\alpha'(t) \bigl(a'(t)+ \alpha'(t) \bigl(t^{\beta}-\alpha ^{\beta}(t) \bigr)^{\gamma-1}f\bigl(\alpha(t)\bigr)\Gamma\bigl(\alpha(t)\bigr) \Gamma^{p}(t) \bigr) \\ &{}+\alpha'(t)g\bigl(\alpha(t)\bigr)\Gamma\bigl(\alpha(t)\bigr) \\ \le& 2\Gamma(t)\alpha'(t) \bigl(a'(t)+ \alpha'(t) \bigl(t^{\beta}-\alpha^{\beta }(t) \bigr)^{\gamma-1}f\bigl(\alpha(t)\bigr)\Gamma(t)\Gamma^{p}(t) \bigr) \\ &{}+\alpha'(t)g\bigl(\alpha(t)\bigr)\Gamma(t). \end{aligned}$$
(26)

From (26), we have

$$\begin{aligned} \Gamma^{-(p+2)}\Gamma'(t) \le& \Gamma^{-(p+1)}(t) \bigl(2\alpha'(t)a'(t)+ \alpha'(t)g\bigl(\alpha(t)\bigr) \bigr) \\ &{}+2\bigl(\alpha'(t) \bigr)^{2}\bigl(t^{\beta}-\alpha^{\beta}(t) \bigr)^{\gamma-1}f\bigl(\alpha(t)\bigr). \end{aligned}$$
(27)

Let \(\eta(t)=\Gamma^{-(p+1)}(t)\), then \(\eta'(t)=-(p+1)\Gamma ^{-(p+2)}\Gamma'(t)\), (27) can be restated as

$$\begin{aligned}& \eta'(t)+(p+1)\eta(t) \bigl(2\alpha'(t)a'(t)+ \alpha'(t)g\bigl(\alpha(t)\bigr) \bigr) \\& \quad \ge-2(p+1) \bigl(\alpha'(t)\bigr)^{2} \bigl(t^{\beta}-\alpha^{\beta}(t)\bigr)^{\gamma -1}f\bigl( \alpha(t)\bigr). \end{aligned}$$
(28)

Multiplying by \(\exp ((p+1)\int_{t_{0}}^{\alpha(t)}(2a'(\alpha ^{-1}(s))+g(s))\,ds )\) on both sides of (28), we have

$$ \begin{aligned}[b] &\biggl[\eta(t)\exp \biggl((p+1) \int_{t_{0}}^{\alpha(t)}\bigl(2a'\bigl(\alpha ^{-1}(s)\bigr)+g(s)\bigr)\,ds \biggr) \biggr]' \\ &\quad \ge-2(p+1) \bigl(\alpha'(t)\bigr)^{2} \bigl(t^{\beta}-\alpha^{\beta}(t)\bigr)^{\gamma -1}f\bigl( \alpha(t)\bigr) \\ &\qquad {}\times\exp \biggl((p+1) \int_{t_{0}}^{\alpha(t)}\bigl(2a'\bigl( \alpha^{-1}(s)\bigr)+g(s)\bigr)\,ds \biggr), \end{aligned} $$
(29)

integrating both sides of (29) from \(t_{0}\) to t, we obtain

$$\begin{aligned}& \eta(t)\exp \biggl((p+1) \int_{t_{0}}^{\alpha(t)}\bigl(2a'\bigl(\alpha ^{-1}(s)\bigr)+g(s)\bigr)\,ds \biggr)-\eta(t_{0}) \\& \quad \ge-2(p+1) \bigl(\alpha'(t)\bigr)^{2} \bigl(t^{\beta}-\alpha^{\beta}(t)\bigr)^{\gamma -1}f\bigl( \alpha(t)\bigr) \\& \qquad {}\times\exp \biggl((p+1) \int_{t_{0}}^{\alpha(t)}\bigl(2a'\bigl( \alpha^{-1}(s)\bigr)+g(s)\bigr)\,ds \biggr) \\& \quad \ge \int^{\alpha(t)}_{t_{0}}-2(p+1) \bigl(t^{\beta}-s^{\beta}(t) \bigr)^{\gamma-1}f(s) \\& \qquad {}\times\exp \biggl((p+1) \int_{t_{0}}^{\alpha(s)}\bigl(2a'\bigl( \alpha^{-1}(\tau)\bigr)+g(\tau )\bigr)\,d\tau \biggr)\,ds, \end{aligned}$$
(30)

since \(\eta(t_{0})=\Gamma^{-(p+1)}(t_{0})=a^{-2(p+1)}(t_{0})\), denoting \(\Delta(t)=\exp ((p+1)\int_{t_{0}}^{\alpha(s)}(2a'(\alpha ^{-1}(\tau))+ g(\tau))\,d\tau )\), from (30), we have

$$ \eta(t)\ge \frac{1-2a^{2(p+1)(t_{0})}(p+1)\int^{\alpha(t)}_{t_{0}}(t^{\beta}-s^{\beta })^{\gamma-1}f(s) \Delta(s)}{ a^{2(p+1)}(t_{0})\Delta(t)}, $$
(31)

by \(\eta(t)=\Gamma^{-(p+1)}(t)\), from (31), we have

$$ \Gamma^{p}(t) \le \biggl[\frac{a^{2(p+1)}(t_{0})\Delta(t)}{ 1-2a^{2(p+1)}(t_{0})(p+1)\int^{\alpha(t)}_{t_{0}}(t^{\beta}-s^{\beta })^{\gamma-1}f(s) \Delta(s)\,ds} \biggr]^{\frac{p}{p+1}}, $$
(32)

where \(1-2a^{2(p+1)}(t_{0})(p+1)\int^{\alpha(t)}_{t_{0}}(t^{\beta}-s^{\beta })^{\gamma-1}f(s)\,ds>0\), setting

$$ \Omega(t) = \biggl[\frac{a^{2(p+1)}(t_{0})\Delta(t)}{ 1-2a^{2(p+1)}(t_{0})(p+1)\int^{\alpha(t)}_{t_{0}}(t^{\beta}-s^{\beta })^{\gamma-1}f(s)\Delta(s)\,ds} \biggr]^{\frac{p}{p+1}}, $$
(33)

from (24), (25), (32) and (33), we have

$$ v'(t) \le a'(t)+\alpha'(t) \bigl(t^{\beta}-\alpha^{\beta}(t)\bigr)^{\gamma-1}f\bigl(\alpha (t)\bigr)v\bigl(\alpha(t)\bigr)\Omega(t). $$
(34)

Integrating both side of (34) from \(t_{0}\) to t, we get

$$\begin{aligned} \begin{aligned}[b] v(t) &\le a(t)+ \int^{t}_{t_{0}}\alpha'(s) \bigl(t^{\beta}-\alpha^{\beta}(s)\bigr)^{\gamma -1}f\bigl( \alpha(s)\bigr)v\bigl(\alpha(s)\bigr)\Omega(s)\,ds \\ &= a(t)+ \int^{\alpha(t)}_{t_{0}}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma -1}f(s)v(s)\Omega \biggl(\frac{\alpha^{-1}(s)}{\alpha'(s)} \biggr) \,ds. \end{aligned} \end{aligned}$$
(35)

Equation (35) has the same form as Lemma 4, and the functions of (35) satisfy the conditions of Theorem 1. Consequently, by using a similar procedure to Lemma 4 and Theorem 1, we can get the desired estimations (21) for \(t\in[t_{0},t_{1})\).

Next, let us consider the interval \([t_{1},t_{2})\), when \(t\in[t_{1},t_{2})\), (2) can be restated as

$$\begin{aligned} u(t) \le& a(t)+ \int_{t_{0}}^{\alpha(t_{1})}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma -1}f(s)u(s) \biggl[u^{2}(s)+ \int^{s}_{t_{0}}g(\tau)u(\tau)\,d\tau \biggr]^{p}\,ds \\ &{}+ \int_{t_{1}}^{\alpha(t)}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma-1}f(s)u(s) \biggl[u^{2}(s)+ \int^{s}_{t_{1}}g(\tau)u(\tau)\,d\tau \biggr]^{p}\,ds+\beta_{1}u(t_{1}-0), \end{aligned}$$
(36)

setting

$$\begin{aligned}& A_{1}(t) = a(t)+ \int_{t_{0}}^{\alpha(t_{1})}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma -1}f(s)u(s) \biggl[u^{2}(s)+ \int^{s}_{t_{0}}g(\tau)u(\tau)\,d\tau \biggr]^{p}\,ds+\beta _{1}u(t_{1}-0), \\& \Psi(t) = a(t)+ \int_{t_{0}}^{\alpha(t_{1})}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma -1}f(s)u(s) \biggl[u^{2}(s)+ \int^{s}_{t_{0}}g(\tau)u(\tau)\,d\tau \biggr]^{p}\,ds \\& \hphantom{\Psi(t) ={}}{}+ \int_{t_{1}}^{\alpha(t)}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma-1}f(s)u(s) \biggl[u^{2}(s)+ \int^{s}_{t_{0}}g(\tau)u(\tau)\,d\tau \biggr]^{p}\,ds+\beta_{1}u(t_{1}-0), \end{aligned}$$
(37)

then \(\Psi(t)\) is a nonnegative and nondecreasing function, and

$$u(t)\le\Psi(t),\qquad u(t_{1})\le\Psi(t_{1})=A_{1}(t_{1}). $$

Differentiating with respect to t both sides of (37), we obtain

$$\begin{aligned} \Psi'(t) =& A_{1}'(t) + \alpha'(t) \bigl(t^{\beta}-\alpha(t)^{\beta} \bigr)^{\gamma-1}f\bigl(\alpha(t)\bigr)u\bigl(\alpha (t)\bigr) \biggl[u^{2}\bigl(\alpha(t)\bigr)+ \int^{\alpha(t)}_{t_{0}}g(s)u(s)\,ds \biggr]^{p} \\ \le& A_{1}'(t) +\alpha'(t) \bigl(t^{\beta}-\alpha(t)^{\beta}\bigr)^{\gamma-1}f\bigl( \alpha(t)\bigr)\Psi \bigl(\alpha(t)\bigr) \\ &{}\times \biggl[\Psi^{2}\bigl(\alpha(t) \bigr)+ \int^{\alpha(t)}_{t_{0}}g(s)\Psi(s)\,ds \biggr]^{p}, \end{aligned}$$
(38)

(38) has the same form of (24), and using a similar procedure for \(t\in[t_{1},t_{2})\), we can get the desired estimations (21) for \(t\in[t_{1},t_{2})\).

Consequently, by using a similar procedure for \(t\in[t_{i},t_{i+1})\), we can get the desired estimations (21) for \(t\in[t_{i},t_{i+1})\). Thus we complete the proof of Theorem 2. □

Theorem 3

Let \(u(t) \) is a nonnegative piecewise continuous function with discontinuous of the first kind in the points \(t_{i}\) (\(t_{0}< t_{1}< t_{2}<\cdots\), \(\lim_{i\rightarrow\infty} t_{i}=\infty\)), \(a(t), f(t)\in C(\mathbf{R}_{+},\mathbf{R}_{+})\), \(a(t)\ge1 \), and let \(\alpha(t)\) be a continuous, differentiable and increasing function on \([t_{0},+\infty)\) with \(\alpha(t)\le t\), \(\alpha(t_{i})= t_{i}\), \(i=0,1,2,\ldots \) . Let p, q, m, n, ξ, β, γ be positive constants with \(p\ge m\), \(p\ge n\), \(q \in[0,1]\), \(\beta_{i}\in[0,\infty)\). If \(u(t)\) satisfies the inequality (3).

(1) If \(\beta\in(0,1]\), \(\gamma\in(1/2,1)\) and \(\xi\ge3/2-\gamma\), we have

$$\begin{aligned}& u(t) \le \biggl[E_{i}(t)+ \biggl(\tilde{a}_{i}(t)+ \frac{\tilde{b}_{1}(t)}{ \tilde{e}_{i}(\alpha(t))} \int_{t_{i}}^{\alpha(t)}\tilde{h}_{i}(s)\tilde {a}_{i}(s)\tilde{e}_{i}(s)\,ds \biggr)^{1-\gamma} \biggr]^{1/p}, \\& \quad t\in[t_{i},t_{i+1}),i=0,1,2,\ldots, \end{aligned}$$
(39)

where \(M_{1}\), \(\theta_{1}\) are the same as in Theorem  1, and

$$\begin{aligned}& E_{0}(t) = a(t),\quad t\in[t_{0},t_{1}), \\& E_{i}(t) = a(t)+b(t)\sum_{j=0}^{i} \int_{t_{j}}^{\alpha(t_{i})}\bigl(\alpha^{\beta }(t)-s^{\beta} \bigr)^{\gamma-1} s^{\xi-1}f(s) \biggl[u^{m}(s)+ \int^{s}_{t_{j}}g(\tau )u^{n}(\tau)\,d\tau \biggr]^{q}\,ds \\& \hphantom{E_{i}(t) ={}}{}+\sum_{j=1}^{i} \beta_{j}u^{p}(t_{j}-0),\quad t \in[t_{i},t_{i+1}),i=1,2,\ldots, \\& \tilde{a}_{i}(t) = 3^{\frac{\gamma}{1-\gamma}}A_{i}^{\frac{1}{1-\gamma }}(t), \quad i=0,1,2,\ldots, \\& A_{i}(t) = b(t) \int_{t_{i}}^{\alpha(t)}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma-1} s^{\xi-1}B_{i}(s)\,ds,\quad i=0,1,2, \ldots, \\& B_{i}(t) = f(t) \biggl[(1-q) +q \biggl(\frac{m}{p}E_{i}(t)+ \frac{p-m}{p} \biggr) \biggr] \\& \hphantom{B_{i}(t) ={}}{}+q f(t) \int^{t}_{t_{i}}g(\tau) \biggl[\frac{n}{p}E_{i}( \tau)+\frac{p-n}{p} \biggr]\,d\tau,\quad i=0,1,2,\ldots, \\& \tilde{b}_{1}(t) = \bigl(3M_{1}\alpha^{\theta_{1}}(t) \bigr)^{\frac{\gamma}{1-\gamma }}b^{\frac{1}{1-\gamma}}(t), \\& \tilde{e}_{i}(t) = \exp \biggl(- \int_{t_{i}}^{t}\tilde{h}_{i}(s)\tilde {b}_{1}(s)\,ds \biggr),\quad i=0,1,2,\ldots, \\& \tilde{h}_{i}(t) = g_{1}^{\frac{1}{1-\gamma}}(t)+ \biggl(g_{2}(t) \int ^{t}_{t_{i}}g_{3}(\tau)\,d\tau \biggr)^{\frac{1}{1-\gamma}}, \\& g_{1}(t) = \frac{mq}{p} f(t),\qquad g_{2}(t)=q f(t), \qquad g_{3}(t)=\frac{n}{p}g(t). \end{aligned}$$

(2) If \(\beta\in(0,1]\), \(\gamma\in(0,1/2]\) and \(\xi> (1-2\gamma ^{2})/(1-\gamma^{2})\), we have

$$\begin{aligned}& u(t)\le \biggl[ E_{i}(t)+ \biggl(\tilde{a}_{i}(t)+ \frac{\tilde{b}_{2}(t)}{\tilde {e}_{i}(\alpha(t))} \int_{0}^{\alpha(t)} \tilde{h}_{i}(s) \tilde{a}_{i}(s)\tilde{e}_{i}(s)\,ds \biggr)^{\frac{\gamma }{1+4\gamma}} \biggr]^{1/p}, \\& \quad t\in[t_{i},t_{i+1}),i=0,1,2,\ldots, \end{aligned}$$
(40)

where \(M_{2}\), \(\theta_{2}\) are the same as in Theorem  1 and \(E_{i}\), \(A_{i}\), \(B_{i}\), \(h_{i}\), \(i=0,1,2,\ldots\) , are the same in (1) of Theorem  3,

$$\begin{aligned}& \tilde{a}_{i}(t) = 3^{\frac{1+3\gamma}{\gamma}}A_{i}^{\frac{1+4\gamma }{\gamma}}(t), \quad i=0,1,2,\ldots, \\& \tilde{b}_{2}(t) = \bigl(3M_{2}\alpha^{\theta_{2}}(t) \bigr)^{\frac{1+3\gamma}{\gamma }}b^{\frac{1+4\gamma}{\gamma}}(t), \\& \tilde{e}_{i}(t) = \exp \biggl(- \int_{t_{i}}^{t}\tilde{h}_{i}(s)\tilde {b}_{2}(s)\,ds \biggr),\quad i=0,1,2,\ldots. \end{aligned}$$

Proof

When \(t\in[t_{0},t_{1})\), (3) can be restated as

$$ u^{p}(t) \le a(t)+b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta } \bigr)^{\gamma-1} s^{\xi-1}f(s) \biggl[u^{m}(s)+ \int^{s}_{t_{0}}g(\tau)u^{n}(\tau )\,d\tau \biggr]^{q}\,ds, $$
(41)

by Lemma 5, we obtain

$$ \biggl[u^{m}(s)+ \int^{s}_{t_{0}}g(\tau)u^{n}(\tau)\,d\tau \biggr]^{q}\le q \biggl[u^{m}(s)+ \int^{s}_{t_{0}}g(\tau)u^{n}(\tau)\,d\tau \biggr]+(1-q). $$
(42)

Substituting (42) into (41), we have

$$\begin{aligned} u^{p}(t) \le& a(t)+b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta } \bigr)^{\gamma-1} s^{\xi-1}f(s) \\ &{}\times \biggl[q \biggl(u^{m}(s) + \int^{s}_{t_{0}}g(\tau)u^{n}(\tau)\,d\tau \biggr)+(1-q) \biggr]\,ds. \end{aligned}$$
(43)

Define a function \(w(t)\) by

$$\begin{aligned} w(t) =&b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma -1} s^{\xi-1}(1-q) f(s)\,ds \\ &{}+b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma-1} s^{\xi-1}q f(s)u^{m}(s)\,ds \\ &{}+b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma-1} s^{\xi-1}q f(s) \int^{s}_{t_{0}}g(\tau)u^{n}(\tau)\,d\tau \,ds, \end{aligned}$$
(44)

from (43) and (44), we have

$$ u^{p}(t) \le a(t)+w(t) \quad \mbox{or}\quad u(t)\le \bigl(a(t)+w(t) \bigr)^{1/p}. $$
(45)

By Lemma 5 and (45), we obtain

$$\begin{aligned}& u^{m}(t) \le \bigl(a(t)+w(t) \bigr)^{m/p}\le \frac{m}{p}\bigl(a(t)+w(t)\bigr)+\frac {p-m}{p}, \end{aligned}$$
(46)
$$\begin{aligned}& u^{n}(t) \le \bigl(a(t)+w(t) \bigr)^{n/p}\le \frac{n}{p}\bigl(a(t)+w(t)\bigr)+\frac{p-n}{p}. \end{aligned}$$
(47)

Substituting the inequality (46) and (47) into (44) we have

$$\begin{aligned} w(t) \le&b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma -1} s^{\xi-1}(1-q) f(s)\,ds \\ &{}+b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma-1} s^{\xi-1}q f(s) \biggl[\frac{m}{p} \bigl(a(s)+w(s)\bigr)+\frac{p-m}{p} \biggr]\,ds \\ &{}+b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma-1} s^{\xi-1}q f(s) \int^{s}_{t_{0}}g(\tau) \biggl[\frac{n}{p} \bigl(a(\tau)+w(\tau)\bigr)+\frac{p-n}{p} \biggr]\,d\tau \,ds \\ \le&b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma-1} s^{\xi-1}f(s) \biggl[(1-q) +q \biggl( \frac{m}{p}a(s)+\frac{p-m}{p} \biggr) \biggr]\,ds \\ &{}+b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma-1} s^{\xi-1}q f(s) \int^{s}_{t_{0}}g(\tau) \biggl[\frac{n}{p}a( \tau)+\frac {p-n}{p} \biggr]\,d\tau \,ds \\ &{}+b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma-1} s^{\xi-1}\frac{mq}{p}f(s)w(s)\,ds \\ &{}+b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma-1} s^{\xi-1}q f(s) \int^{s}_{t_{0}}\frac{n}{p}g(\tau)w(\tau)\,d\tau \,ds \\ \le&b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma-1} s^{\xi-1}B_{0}(s)\,ds+b(t) \int_{t_{0}}^{\alpha(t)}\bigl(t^{\beta}-s^{\beta } \bigr)^{\gamma-1} s^{\xi-1}g_{1}(s)w(s)\,ds \\ &{}+b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma-1} s^{\xi-1}g_{2}(s) \int^{s}_{t_{0}}g_{3}(\tau)w(\tau)\,d\tau \,ds, \\ =&A_{0}(t)+b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta } \bigr)^{\gamma-1} s^{\xi-1}g_{1}(s)w(s)\,ds \\ &{}+b(t) \int_{t_{0}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma-1} s^{\xi-1}g_{2}(s) \int^{s}_{t_{0}}g_{3}(\tau)w(\tau)\,d\tau \,ds, \end{aligned}$$
(48)

where

$$\begin{aligned}& A_{0}(t) = b(t) \int_{t_{0}}^{\alpha(t)}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma-1} s^{\xi-1}B_{0}(s)\,ds, \\& B_{0}(t) = f(t) \biggl[(1-q) +q \biggl(\frac{m}{p}a(t)+ \frac{p-m}{p} \biggr) \biggr] \\& \hphantom{B_{0}(t) = {}}{}+q f(t) \int^{t}_{t_{0}}g(\tau) \biggl[\frac{n}{p}a( \tau)+\frac{p-n}{p} \biggr]\,d\tau, \\& g_{1}(t) = \frac{mq}{p} f(t),\qquad g_{2}(t)=q f(t), \qquad g_{3}(t)=\frac {n}{p}g(t). \end{aligned}$$

Since (48) have the same form as (1) and the functions of (48) satisfy the conditions of Theorem 1, applying Theorem 1 to (48), considering equation (45), we can get the desired estimations (39) and (40) for \(t\in[t_{0},t_{1})\).

Then, when \(t\in[t_{1},t_{2})\), (3) can be restated as

$$\begin{aligned} u^{p}(t) \le&a(t)+b(t) \int_{t_{0}}^{\alpha(t_{1})}\bigl(\alpha^{\beta}(t)-s^{\beta } \bigr)^{\gamma-1} s^{\xi-1}f(s) \biggl[u^{m}(s)+ \int^{s}_{t_{0}}g(\tau)u^{n}(\tau )\,d\tau \biggr]^{q}\,ds \\ &{}+\beta_{1}u^{p}(t_{1}-0) +b(t) \int_{t_{1}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma-1} s^{\xi-1}f(s) \\ &{}\times \biggl[u^{m}(s)+ \int^{s}_{t_{1}}g(\tau)u^{n}(\tau)\,d\tau \biggr]^{q}\,ds. \end{aligned}$$

Let

$$\begin{aligned} E_{1}(t) =&a(t)+b(t) \int_{t_{0}}^{\alpha(t_{1})}\bigl(\alpha^{\beta}(t)-s^{\beta } \bigr)^{\gamma-1} s^{\xi-1}f(s) \biggl[u^{m}(s)+ \int^{s}_{t_{0}}g(\tau)u^{n}(\tau )\,d\tau \biggr]^{q}\,ds \\ &{}+\beta_{1}u^{p}(t_{1}-0), \end{aligned}$$

then we have

$$ u^{p}(t) \le E(t) +b(t) \int_{t_{1}}^{\alpha(t)}\bigl(\alpha^{\beta}(t)-s^{\beta} \bigr)^{\gamma-1} s^{\xi-1}f(s) \biggl[u^{m}(s)+ \int^{s}_{t_{1}}g(\tau)u^{n}(\tau)\,d\tau \biggr]^{q}\,ds. $$
(49)

From (49), we can conclude that the estimates (39)and (40) are valid for \(t\in[t_{1},t2)\). Consequently, by using a similar procedure for \(t\in[t_{i},t_{i+1})\), we complete the proof of theorem. □

3 Some applications

Example 1

Consider the following Volterra type retarded weakly singular integral equations:

$$ y^{p}(t)- \int^{\alpha(t)}_{t_{0}}\bigl(\alpha^{\beta}(t)-s^{\beta}\bigr)^{\gamma -1}s^{\beta(1+\delta)-1} \biggl[y(s)+ \int^{s}_{t_{0}}g(\tau)y(\tau)\,d\tau \biggr]^{q}\,ds=h(t), $$
(50)

which arises very often in various problems, especial describing physical processes with aftereffects. Ma and Pečarić [18] discussed the case \(\alpha(t)=t\), \(g(t)\equiv0\) in (50).

Theorem 4

Let \(y(t)\), \(g(t)\) and \(h(t)\) be continuous functions on \([0,+\infty)\), and let \(\alpha(t)\) be continuous, differentiable and increasing functions on \([0,+\infty)\) with \(\alpha(t)\le t\), \(\alpha(t_{0})= t_{0}\). Let p, q, β, γ, δ be positive constants with \(p\ge q\). Assume \(y(t)\) satisfies equation (50).

(1) If \(\beta\in(0,1]\), \(\gamma\in(1/2,1)\) and \(\beta(1+\delta)\ge 3/2-\gamma\), we have

$$ \bigl\vert y(t) \bigr\vert \le \biggl[ \bigl\vert h(t) \bigr\vert + \biggl(\tilde{a}_{1}(t)+\frac{\tilde{b}_{1}(t)}{\tilde {e}_{1}(\alpha(t))} \int_{t_{0}}^{\alpha(t)} \tilde{h}_{1}(s) \tilde{a}_{1}(s)\tilde{e}_{1}(s)\,ds \biggr)^{1-\gamma} \biggr]^{1/p},\quad t\in{\mathbf{R}_{+}}, $$
(51)

where

$$\begin{aligned}& \tilde{a}_{1}(t) = 3^{\frac{\gamma}{1-\gamma}} \int_{t_{0}}^{\alpha (t)}A_{1}^{\frac{1}{1-\gamma}}(s)\,ds, \\& \tilde{b}_{1}(t) = \bigl(3M_{1}\alpha^{\theta_{1}}(t) \bigr)^{\frac{\gamma }{1-\gamma}}, \\& \tilde{h}_{1}(t) = A_{2}^{\frac{1}{1-\gamma}}(t)+ \biggl(A_{3}(t) \int ^{t}_{t_{0}}A_{4}(\tau)\,d\tau \biggr)^{\frac{1}{1-\gamma}}, \\& \tilde{e}_{1}(t) = \exp \biggl(- \int_{0}^{t}\tilde{h}_{1}(s)\tilde {b}_{1}(s)\,ds \biggr), \\& M_{1} = \frac{1}{\beta}B \biggl[\frac{\gamma+\xi-1}{\beta\gamma}, \frac {2\gamma-1}{\gamma} \biggr], \\& \theta_{1} = \frac{1}{\gamma}\bigl[\beta(\gamma-1)+\xi-1\bigr]+1, \\& A_{1}(t) = (1-q) +q \biggl(\frac{1}{p} \bigl\vert h(t) \bigr\vert +\frac{p-1}{p} \biggr) \\& \hphantom{A_{1}(t) = {}}{} +q K^{q-1} \int^{t}_{0} \bigl\vert g(\tau) \bigr\vert \biggl[\frac{1}{p} \bigl\vert h(\tau) \bigr\vert +\frac{p-1}{p} \biggr]\,d\tau, \\& A_{2}(t) = \frac{q}{p} , \qquad A_{3}(t)=q K^{q-1},\qquad A_{4}(t)=\frac{1}{p} \bigl\vert g(t) \bigr\vert . \end{aligned}$$

(2) If \(\beta\in(0,1]\), \(\gamma\in(0,1/2]\) and \(\xi> (1-2\gamma ^{2})/(1-\gamma^{2})\), we have

$$ \bigl\vert y(t) \bigr\vert \le \biggl[ \bigl\vert h(t) \bigr\vert + \biggl(\tilde{a}_{2}(t)+\frac{\tilde{b}_{2}(t)}{\tilde {e}_{2}(\alpha(t))} \int_{t_{0}}^{\alpha(t)}\tilde{h}_{2}(s) \tilde{a}_{2}(s)\tilde{e}_{2}(s)\,ds \biggr)^{\frac{\gamma}{1+4\gamma}} \biggr]^{1/p},\quad t\in{\mathbf{R}_{+}}, $$
(52)

where

$$\begin{aligned}& \tilde{a}_{2}(t) = \bigl(3M_{2}\alpha^{\theta_{2}}(t) \bigr)^{\frac{1+3\gamma }{\gamma}} \int_{t_{0}}^{\alpha(t)}A_{1}^{\frac{1+4\gamma}{\gamma}}(s)\,ds, \\& \tilde{b}_{2}(t) = \bigl(3M_{2}\alpha^{\theta_{2}}(t) \bigr)^{\frac{1+3\gamma }{\gamma}}, \\& \tilde{h}_{2}(t) = A_{2}^{\frac{1+4\gamma}{\gamma}}(s)+ \biggl(A_{3}(s) \int ^{s}_{t_{0}}A_{4}(\tau)\,d\tau \biggr)^{\frac{1+4\gamma}{\gamma}}, \\& \tilde{e}_{2}(t) = \exp \biggl(- \int_{t_{0}}^{t}\tilde{h}_{2}(s)\tilde {b}_{2}(s)\,ds \biggr), \\& M_{2} = \frac{1}{\beta}B \biggl[\frac{\xi(1+4\gamma)-\gamma}{\beta(1+3\gamma )}, \frac{4\gamma^{2}}{1+3\gamma} \biggr], \\& \theta_{2} = \frac{1+4\gamma}{1+3\gamma}\bigl[\beta(\gamma-1)+\xi-1\bigr]+1. \end{aligned}$$

Proof

From (50), we have

$$ \bigl\vert y(t) \bigr\vert ^{p}\le \bigl\vert h(t) \bigr\vert + \int^{\alpha(t)}_{t_{0}}\bigl(\alpha^{\beta}(t)-s^{\beta}\bigr)^{\gamma-1}s^{\beta(1+\delta)-1} \biggl[ \bigl\vert y(s) \bigr\vert + \int^{s}_{t_{0}} \bigl\vert g(\tau ) \bigr\vert \bigl\vert y(\tau) \bigr\vert \,d\tau \biggr]^{q}\,ds. $$
(53)

Applying Theorem 3 for \(t\in[t_{0},t_{1})\) (with \(m=n=1\), \(a(t)=|h(t)|\), \(b(t)=|\lambda|t^{-\beta\delta}/\Gamma(\gamma)\), \(\xi =\beta(1+\delta)\)) to (53), we obtain the desired estimations (51) and (52). □

Example 2

Consider the following impulsive differential system:

$$\begin{aligned}& \frac{d(x(t))}{dt} = F(t,x),\quad t\neq t_{i}, t \in[t_{0},\infty), \end{aligned}$$
(54)
$$\begin{aligned}& \Delta(x) |_{t=t_{i}} = \beta_{i} x(t_{i}-0), \\& x(t_{0}) = x_{0}, \end{aligned}$$
(55)

where \(0\leq t_{0}< t_{1}< t_{2}<\cdots\), \(\lim_{i\rightarrow\infty}t_{i}=\infty\), \(x_{0}>0\) is a constant, \(F(t,x)\) is continuous with respect to t and x on \([t_{0},\infty) \times(0,+\infty)\). Suppose \(F(s,x)\) satisfies

$$ F(s,x)\le\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma-1}f(s)\sqrt{x(s)}, $$
(56)

where \(f(t)\in C(\mathbf{R}_{+},\mathbf{R}_{+})\), \(\beta\in(0,1]\), \(\gamma \in(1/2,1)\).

Then the impulsive differential system (54) and (55) are equivalent to the integral equation

$$ x(t)=x_{0}+ \int^{t}_{t_{0}}F\bigl(s,x(s)\bigr)\,ds+\sum _{t_{0}< t_{i}< t}\beta_{i} x(t_{i}-0). $$
(57)

By using the condition (56), from (57), we have

$$ \bigl\vert x(t) \bigr\vert \le x_{0}+ \int^{t}_{t_{0}}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma-1}f(s)\sqrt {x(s)}\,ds+\sum_{t_{0}< t_{i}< t} \beta_{i} \bigl\vert x(t_{i}-0) \bigr\vert . $$
(58)

Let \(u(t)=|x(t)|\), from (58), we get

$$ u(t) \le x_{0}+ \int^{t}_{t_{0}}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma-1}f(s)\sqrt {u(s)}\,ds+\sum_{t_{0}< t_{i}< t} \beta_{i}u(t_{i}-0). $$
(59)

By Lemma 5, we have

$$ u^{\frac{1}{2}}(t)\le\frac{1}{2}u(t)+\frac{1}{2}. $$
(60)

Substituting (60) to (59), we have

$$\begin{aligned} u(t) \le& x_{0}+ \int^{t}_{t_{0}}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma-1}f(s) \biggl(\frac {1}{2}u(s)+\frac{1}{2}\biggr) \,ds+\sum_{t_{0}< t_{i}< t}\beta_{i}u(t_{i}-0) \\ \le& x_{0}+ \int^{t}_{t_{0}}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma-1}\frac{f(s)}{2}u(s)\,ds + \int^{t}_{t_{0}}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma-1}\frac{f(s)}{2}\,ds +\sum_{t_{0}< t_{i}< t} \beta_{i}u(t_{i}-0) \\ \le& a(t)+ \int^{t}_{t_{0}}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma-1}\frac {f(s)}{2}u(s)\,ds+\sum_{t_{0}< t_{i}< t} \beta_{i}u(t_{i}-0), \end{aligned}$$
(61)

where \(a(t)=x_{0}+\int^{t}_{t_{0}}(t^{\beta}-s^{\beta})^{\gamma-1}\frac{f(s)}{2}\,ds\).

We see that (61) is the particular form of (3), and the functions of (54) satisfy the conditions of Theorem 3, using the result of Theorem 3, we can conclude that we have the estimated solutions for the impulsive system

$$\begin{aligned}& u(t) \le E_{i}(t)+ \biggl(\tilde{a}_{i}(t)+ \frac{\tilde{b}(t)}{ \tilde{e}_{i}(t)} \int_{t_{i}}^{t}\tilde{h}(s)\tilde{a}_{i}(s) \tilde {e}_{i}(s)\,ds \biggr)^{1-\gamma}, \\& \quad t\in[t_{i},t_{i+1}),i=0,1,2,\ldots, \end{aligned}$$

where \(M_{1}\), \(\theta_{1}\) are the same as in Theorem 3, and

$$\begin{aligned}& E_{0}(t) = a(t),\quad t\in[t_{0},t_{1}), \\& E_{i}(t) = a(t)+\sum_{j=0}^{i} \int_{t_{j}}^{t_{i}}\bigl(\alpha^{\beta}(t)-s^{\beta } \bigr)^{\gamma-1} f(s)\sqrt{u(s)}\,ds \\& \hphantom{E_{i}(t) ={}}{}+\sum_{j=1}^{i} \beta_{j}u(t_{j}-0),\quad t\in[t_{i},t_{i+1}),i=1,2, \ldots, \\& \tilde{a}_{i}(t) = 2^{\frac{\gamma}{1-\gamma}}A_{i}^{\frac{1}{1-\gamma }}(t), \quad i=0,1,2,\ldots, \\& A_{i}(t) = \int_{t_{i}}^{t}\bigl(t^{\beta}-s^{\beta} \bigr)^{\gamma-1} B_{i}(s)\,ds,\quad i=0,1,2,\ldots, \\& B_{i}(t) = f(t) \biggl(\frac{1}{2} +\frac{1}{2}E_{i}(t) \biggr),\quad i=0,1,2,\ldots, \\& \tilde{b}(t) = \bigl(2M_{1}\alpha^{\theta_{1}}(t) \bigr)^{\frac{\gamma}{1-\gamma}}, \\& \tilde{e}_{i}(t) = \exp \biggl(- \int_{t_{i}}^{t}\tilde{h}_{i}(s)\tilde {b}_{1}(s)\,ds \biggr),\quad i=0,1,2,\ldots, \\& \tilde{h}(t) = g_{1}^{\frac{1}{1-\gamma}}(t),\qquad g_{1}(t)= \frac{1}{2}f(t) . \end{aligned}$$

4 Conclusion

In this paper, we generalized the weakly singular integral inequality. The first inequality was a generally weak singular type, the second inequality was a like-weakly singular type with discontinuous functions, the third inequality was a type of weakly singular integral inequality with impulsive. We used analytical methods, reducing the inequality with the known results in the lemma, and the estimations of the upper bound of the unknown functions were given. The results were applied to the weakly singular integral equation and the impulsive differential system.

References

  1. Abdeldaim, A, Yakout, M: On some new integral inequalities of Gronwall-Bellman-Pachpatte type. Appl. Math. Comput. 217, 7887-7899 (2011)

    MathSciNet  MATH  Google Scholar 

  2. Agarwal, RP: Difference Equations and Inequalities. Dekker, New York (1993)

    Google Scholar 

  3. Agarwal, RP, Deng, SF, Zhang, WN: Generalization of a retarded Gronwall-like inequality and its applications. Appl. Math. Comput. 165, 599-612 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Bainov, DD, Simeonov, P: Integral Inequalities and Applications. Kluwer Academic, Dordrecht (1992)

    Book  MATH  Google Scholar 

  5. Bellman, R: The stability of solutions of linear differential equations. Duke Math. J. 10, 643-647 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheng, KL, Guo, C, Tang, M: Some nonlinear Gronwall-Bellman-Gamidov integral inequalities and their weakly singular analogues with applications. Abstr. Appl. Anal. 2014, Article ID 562691 (2014)

    MathSciNet  Google Scholar 

  7. Cheung, WS: Some new nonlinear inequalities and applications to boundary value problems. Nonlinear Anal. 64, 2112-2128 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng, SF, Prather, C: Generalization of an impulsive nonlinear singular Gronwall-Bihari inequality with delay. J. Inequal. Pure Appl. Math. 9, Article 34 (2008)

    MathSciNet  MATH  Google Scholar 

  9. El-Owaidy, H, Ragab, AA, Abuelela, W, El-Deeb, AA: On some new nonlinear integral inequalities of Gronwall-Bellman type. Kyungpook Math. J. 54, 555-575 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gllo, A, Piccirilo, AM: About some new generalizations of Bellman-Bihari results for integro-functional inequalities with discontinuous functions and applications. Nonlinear Anal. 71, e2276-e2287 (2009)

    Article  MathSciNet  Google Scholar 

  11. Gronwall, TH: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20, 292-296 (1919)

    Article  MathSciNet  MATH  Google Scholar 

  12. Abdeldaim, A: Nonlinear retarded integral inequalities of Gronwall-Bellman type and applications. J. Math. Inequal. 10(1), 285-299 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Henry, D: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math., vol. 840. Springer, Berlin (1981)

    MATH  Google Scholar 

  14. Sano, H, Kunimatsu, N: Modified Gronwall’s inequality and its application to stabilization problem for semilinear parabolic systems. Syst. Control Lett. 22, 145-156 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ye, HP, Gao, JM, Ding, YS: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075-1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Medveď, M: A new approach to an analysis of Henry type integral inequalities and their Bihari type versions. J. Math. Anal. Appl. 214, 349-366 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Medveď, M: Integral inequalities and global solutions of semilinear evolution equations. J. Math. Anal. Appl. 267, 643-650 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ma, QH, Pečarić, J: Some new explicit bounds for weakly singular integral inequalities with applications to fractional differential and integral equations. J. Math. Anal. Appl. 341(2), 894-905 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, WN, Han, MA, Meng, FW: Some new delay integral inequalities and their applications. J. Comput. Appl. Math. 180, 191-200 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lipovan, O: A retarded Gronwall-like inequality and its applications. J. Math. Anal. Appl. 252, 389-401 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, QH, Yang, EH: Estimations on solutions of some weakly singular Volterra integral inequalities. Acta Math. Appl. Sin. 25, 505-515 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Mazouzi, S, Tatar, N: New bounds for solutions of a singular integro-differential inequality. Math. Inequal. Appl. 13(2), 427-435 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Medveď, M: Nonlinear singular integral inequalities for functions in two and n independent variables. J. Inequal. Appl. 5(3), 287-308 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Pachpatte, BG: Inequalities for Differential and Integral Equations. Academic Press, New York (1998)

    MATH  Google Scholar 

  25. Tatar, NE: An impulsive nonlinear singular version of the Gronwall-Bihari inequality. J. Inequal. Appl. 2006, Article ID 84561 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, H, Zheng, KL: Some nonlinear weakly singular integral inequalities with two variables and applications. J. Inequal. Appl. 2010, Article ID 345701 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Willett, D: Nonlinear vector integral equations as contraction mappings. Arch. Ration. Mech. Anal. 15, 79-86 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  28. Iovane, G: Some new integral inequalities of Bellman-Bihari type with delay for discontinuous functions. Nonlinear Anal. 66, 498-508 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, XH, Zhang, LH, Agarwal, P, Wang, GT: On some new integral inequalities of Gronwall-Bellman-Bihari type with delay for discontinuous functions and their applications. Indag. Math. 27, 1-10 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mi, YZ, Zhong, JY: Generalization of the Bellman-Bihari type integral inequality with delay for discontinuous functions. J. Sichuan Univ. Natur. Sci. Ed. 52, 33-38 (2015)

    MATH  Google Scholar 

  31. Mitropolskiy, YA, Iovane, G, Borysenko, SD: About a generalization of Bellman-Bihari type inequalities for discontinuous functions and their applications. Nonlinear Anal. 66, 2140-2165 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yan, Y: Some new Gronwall-Bellman type impulsive integral inequality and its application. J. Sichuan Normal Univ. Nat. Sci. 36(4), 603-609 (2013)

    Google Scholar 

  33. Zheng, B: Explicit bounds derived by some new inequalities and applications in fractional integral equations. J. Inequal. Appl. 2014, 4 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zheng, ZW, Gao, X, Shao, J: Some new generalized retarded inequalities for discontinuous functions and their applications. J. Inequal. Appl. 2016, 7 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kuczma, M: An Introduction to the Theory of Functional Equations and Inequalities: Cauchy’s Equation and Jensen’s Inequality. University of Katowice, Katowice (1985)

    MATH  Google Scholar 

  36. Jiang, FC, Meng, FW: Explicit bounds on some new nonlinear integral inequalities with delay. J. Comput. Appl. Math. 205, 479-486 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the editor and the referees for their careful comments and valuable suggestions on this paper. This work is supported by the Natural Science Foundation of China (11561019), Guangxi Natural Science Foundation (2016GXNSFAA380090) and (2016GXNSFAA380125).

Author information

Authors and Affiliations

Authors

Contributions

LZZ organized and wrote this paper. WWS examined all the steps of the proofs in this research and gave some advice. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zizun Li.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wang, WS. Explicit bounds of unknown function of some new weakly singular retarded integral inequalities for discontinuous functions and their applications. J Inequal Appl 2017, 287 (2017). https://doi.org/10.1186/s13660-017-1563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-017-1563-0

MSC

Keywords