Open Access

Refinements and generalizations of some inequalities of Shafer-Fink’s type for the inverse sine function

Journal of Inequalities and Applications20172017:275

https://doi.org/10.1186/s13660-017-1554-1

Received: 30 September 2017

Accepted: 24 October 2017

Published: 3 November 2017

Abstract

In this paper, we give some sharper refinements and generalizations of inequalities related to Shafer-Fink’s inequality for the inverse sine function stated in Theorems 1, 2, and 3 of Bercu (Math. Probl. Eng. 2017: Article ID 9237932, 2017).

Keywords

sharpeninggeneralizationShafer-Fink’s double inequalityarc sine function

MSC

33B1026D05

1 Introduction

Inverse trigonometric functions, particularly the inverse sine function, have many applications in computer science and engineering. They are widely used in many fields, such as telecommunications, especially optical fiber telecommunications, signal processing, machine learning, and so on.

The main objective of the research presented in this paper is a refinement of Shafer-Fink’s inequality
$$ \frac{3x}{2+\sqrt{1-x^{2}}} \leq\operatorname{arcsin} x \leq\frac {\pi x}{2+\sqrt{1-x^{2}}} $$
(1)
for \(x \in [0, 1]\); see [2, 3].

Various improvements of Shafer-Fink’s inequality have been considered so far in [4] and [512]. Also, let us mention that one refinement of Shafer-Fink’s inequality was given in [13], and it had applications in [14, 15] (see also [16]).

In this paper, we focus on the results of Bercu [1] related to Shafer-Fink’s inequality and give generalizations and refinements of the inequalities stated in Theorems 1, 2, and 3 in that paper. For e convenience of the reader, we further cite them.

Statement 1

([1, Theorem 1])

For every real number \(0 \leq x\leq1\), the following two-sided inequality holds:
$$ \frac{x^{5}}{180} + \frac{x^{7}}{189} \leq\operatorname{arcsin}x - \frac{3x}{2 + \sqrt{1 - x^{2}}} \leq\frac{\pi- 3}{2}. $$
(2)

Statement 2

([1, Theorem 3])

For every \(x \in [0,1]\) on the left-hand side and every \(x \in [0, 0.871433]\) on the right-hand side, the following inequalities hold:
$$ \biggl( 1 - \frac{\pi}{3} \biggr) x + \biggl( \frac{1}{6} - \frac{\pi}{18} \biggr)x^{3} \leq\operatorname{arcsin} x - \frac{\pi x}{2 + \sqrt{1 - x^{2}}} \leq \biggl( 1 - \frac{\pi}{3} \biggr)x. $$
(3)

Statement 3

([1, Theorem 2])

For every \(0 \leq x \leq1\), we have:
$$ \operatorname{arcsin}x - \frac{3x}{2 + \sqrt{1 - x^{2}}} \geq \frac{a(x)}{2 + \sqrt{1 - x^{2}}}, $$
(4)
where \(a(x) = (1/60)x^{5} + (11/840)x^{7}\).

2 Main results

The main results of this paper are generalizations and improvements of the inequalities related to Shafer-Fink’s inequalities given in Theorems 1, 2, and 3 by Bercu [1], here Statements 1, 2, and 3.

First, let us recall some well-known power series expansions.

For \(\vert x \vert \leq1\),
$$ \operatorname{arcsin}x = \sum_{m=0}^{\infty}{A(m) x^{2m+1}}, $$
(5)
where
$$ A(m)=\frac{(2m)!}{(m!)^{2} (2m+1)2^{2m}} $$
(6)
for \(m \in N_{0}\).
Also, for \(\vert x \vert \leq1\),
$$ \sqrt{1-x^{2}} = \sum_{m=0}^{\infty}{B(m) x^{2m+2}}, $$
(7)
where
$$ B(m) = \sum_{k=0}^{m}{\frac{2k!}{k!(k+1)!2^{2k+1}}} $$
(8)
for \(m \in N_{0}\).

2.1 Refinements of the inequalities in Statements 1 and 2

Let us consider the function
$$ \varphi_{k}(x) = \frac{k x}{2 + \sqrt{1 - x^{2}}} $$
(9)
for \(x \in [0,1]\) and \(k = 3\) or \(k = \pi\).
Then, for \(x \in [0,1]\), we have:
$$ \begin{aligned}[b] \varphi_{k}(x) & = kx \bigl(2 - \sqrt{1-x^{2}} \bigr) \cdot\frac{1}{3+x^{2}} \\ & = kx \Biggl(2 - \sum_{i=0}^{\infty}{B(i) x^{2i+2}} \Biggr) \cdot \sum_{j=0}^{\infty}{\frac{(-1)^{j}}{3^{ j+1}} x^{2j}} \\ & = \sum_{m=0}^{\infty}{C_{k} (m) x^{2m+1}}, \end{aligned} $$
(10)
where
$$ C_{k}(m) = \frac{(-1)^{m}k}{3^{m+1}} + \sum _{i = 0}^{m - 1}{ \frac{k{{(-1)}^{m-1-i}}(2i)!}{3^{m-i}i!(i+1)!2^{2i + 1}}} $$
(11)
for \(m \in N\) and \(C_{k} (0)=\frac{k}{3}\). Equality (11) is obtained by applying Cauchy’s product to the corresponding series.
It is easy to verify that the following recurrence relations hold:
$$\begin{aligned}& A(m+1) = \frac{(2m + 1)^{2}}{(2m + 2)(2m + 3)}A(m), \end{aligned}$$
(12)
$$\begin{aligned}& C_{k} (m+1) =\frac{k}{3} \frac{(2m)!}{m!(m+1)!2^{2m+1}} - \frac {1}{3}C_{k} (m), \quad C_{k} (0)= \frac{k}{3}, \end{aligned}$$
(13)
and
$$ C_{k}(m+1) = \frac{k}{3} \cdot \frac{2m + 1}{2m + 2}A(m) - \frac{1}{3}{C_{k}}(m) $$
(14)
for \(m \in N_{0}\) and \(k = 3\) or \(k = \pi\).
Next, let us consider the function
$$ f_{k}(x) = \operatorname{arcsin}x - \varphi_{k}(x) $$
(15)
for \(x \in [0,1]\) and \(k = 3\) or \(k = \pi\). Then, for \(x \in [0,1]\), we have:
$$ f_{k}(x) = \sum_{m=0}^{\infty}{D_{k}(m) x^{2m+1}}, $$
(16)
where
$$ D_{k}(m) = A(m) - C_{k}(m) $$
(17)
for \(m \in N_{0}\).

Let us prove that \(D_{k} ( n ) > 0\) for all \(n \in N\), \(n \ge2\).

First, we note that for \(k = 3\) or \(k = \pi\), we have:
$$\begin{aligned} &D_{k}(2) = A(2) - C_{k}(2) = \frac{3}{40} - \frac{5k}{216} > 0, \\ &D_{k}(3) = A(3) - C_{k}(3) = \frac{5}{112} - \frac{17k}{1\text{,}296} > 0. \end{aligned} $$

Now, let us assume that the statement holds for \(n=m\), that is, \(D_{k} ( m ) > 0\).

We will prove that the statement holds for \(n=m+2\), that is, \(D_{k} ( m+2 ) > 0\).

Using the recurrence relations (12), (13), and (14), we get:
$$\begin{aligned} &D_{k}(m+2) \\ &\quad = A(m+2) - C_{k}(m+2) \\ &\quad = \frac{(2m+3)^{2}}{(2m+4)(2m+5)}A(m+1) - \frac{k}{3} \frac{{2m+3}}{{2m+4}}A(m+1) + \frac{1}{3} C_{k}(m+1) \\ &\quad = \biggl( \frac{(2m + 3)^{2}}{(2m + 4)(2m + 5)} - \frac{k}{3} \frac{2m+3}{2m+4} \biggr) A(m+1) + \frac{1}{3} \biggl( \frac{k}{3} \frac{{2m+1}}{{2m+2}}A(m) - \frac{1}{3}{C_{k}}(m) \biggr) \\ &\quad = \biggl( \biggl( \frac{{{{(2m+3)}^{2}}}}{{(2m+4)(2m+5)}} - \frac{k}{3} \frac{{2m+3}}{{2m+4}} \biggr) \frac{{{{(2m+1)}^{2}}}}{{(2m+2)(2m+3)}} + \frac{k}{9} \frac{{2m+1}}{{2m+2}} - \frac{1}{9} \biggr) A(m)\\&\qquad{} + \frac{1}{9}D_{k} ( m ) \\ &\quad = \frac{-13+5k+(50 - 8k)m+(136 - 44k)m^{2}+(64 - 16k)m^{3}}{36(m+1)(m+2)(2m+5)}A(m) + \frac{1}{9}D_{k} ( m ) \\ &\quad = \frac{k m^{2} (m - 1) + 5k - 13 + (50 - 8k)m + (136 - 43k)m^{2} + (64 - 17k)m^{3} }{36(m+1)(m+2)(2m+5)} A(m)\\&\qquad{} + \frac{1}{9}D_{k} ( m ). \end{aligned} $$
Observing the above expression and using the induction hypothesis (\(D_{k} ( m )>0 \)), we conclude that \(D_{k} ( m+2 )>0\). Hence, by the principle of mathematical induction it follows that \(D_{k} ( n ) > 0\) for all \(n \in N\), \(n \ge2\), that is,
$$ D_{k}(m) = \frac{(2m)!}{(m!)^{2} (2m+1)2^{2m}} - \Biggl( \frac{(-1)^{m}k}{3^{m+1}} + \sum _{i = 0}^{m - 1}{ \frac{k{{(-1)}^{m-1-i}}(2i)!}{3^{m-i}i!(i+1)!2^{2i + 1}}} \Biggr) > 0. $$
(18)

Thus, we have proved the following theorem.

Theorem 1

For \(x \in [0,1]\), \(n \in N\), and \(k = 3\) or \(k = \pi\), we have the inequality
$$ \sum_{m=0}^{n}{D_{k}(m) x^{2m+1}} \leq \operatorname{arcsin}x - \frac{kx}{2+\sqrt{1-x^{2}}}. $$
(19)

Remark 1

For \(n = 3\) and \(n = 1\), we get the left-hand sides of the inequalities stated in Statements 1 and 2, respectively (Theorems 1 and 3 from Bercu [1]).

Example 1

For \(k=3\), the following statements are true for every \(x \in [0,1 ]\).
  • If \(n=4\), then
    $$\frac{1}{180}x^{5} + \frac{1}{189}x^{7} + \frac{23}{5\text{,}184}x^{9} \leq \operatorname{arcsin}x - \frac{3x}{2 + \sqrt{1 - x^{2}}} \leq \frac{\pi- 3}{2}. $$
  • If \(n=5\), then
    $$\frac{1}{180}x^{5} + \frac{1}{189}x^{7} + \frac{23}{5\text{,}184}x^{9} + \frac{629}{171\text{,}072}x^{11} \leq \operatorname{arcsin}x - \frac{3x}{2 + \sqrt{1 - x^{2}}} \leq \frac{\pi-3}{2}. $$
  • If \(n=6\), then
    $$\begin{aligned} \frac{1}{180}x^{5} + \frac{1}{189}x^{7} + \frac{23}{5\text{,}184}x^{9} + \frac{629}{171\text{,}072}x^{11} + \frac{14\text{,}929}{4\text{,}852\text{,}224}x^{13} &\leq \operatorname{arcsin}x - \frac{3x}{2 + \sqrt{1 - x^{2}}} \\ &\leq \frac{\pi-3}{2}, \end{aligned} $$
    etc.
Also, for \(k=\pi\), the following statements are true for every \(x \in [0,1 ]\).
  • If \(n=2\), then
    $$\biggl(1 - \frac{\pi}{3} \biggr) x + \biggl(\frac{1}{6} - \frac{\pi}{18} \biggr) x^{3} + \biggl(\frac{3}{40} - \frac{5\pi}{216} \biggr)x^{5} \leq \operatorname{arcsin} x - \frac{\pi x}{2 + \sqrt{1 - x^{2}}} \leq \biggl(1 - \frac{\pi}{3} \biggr)x. $$
  • If \(n=3\), then
    $$\begin{aligned} &\biggl(1 - \frac{\pi}{3} \biggr)x + \biggl(\frac{1}{6} - \frac{\pi}{18} \biggr)x^{3} + \biggl(\frac{3}{40} - \frac{5\pi}{216} \biggr)x^{5} + \biggl(\frac{5}{112} - \frac{17\pi}{1\text{,}296} \biggr)x^{7} \\ &\quad \leq \operatorname{arcsin} x - \frac{\pi x}{2 + \sqrt{1 - x^{2}}} \leq \biggl(1 - \frac{\pi}{3} \biggr)x. \end{aligned} $$
  • If \(n=4\), then
    $$\begin{aligned} &\biggl(1 - \frac{\pi}{3} \biggr)x + \biggl(\frac{1}{6} - \frac{\pi}{18} \biggr)x^{3} + \biggl(\frac{3}{40} - \frac{5\pi}{216} \biggr)x^{5} + \biggl(\frac{5}{112} - \frac{17\pi}{1\text{,}296} \biggr)x^{7} \\ &\quad + \biggl(\frac{35}{1\text{,}152} - \frac{269\pi}{31\text{,}104} \biggr)x^{9}\leq \operatorname{arcsin} x - \frac{\pi x}{2 + \sqrt{1 - x^{2}}} \leq \biggl(1 - \frac{\pi}{3} \biggr)x, \end{aligned} $$
    etc.

2.2 Refinements of the inequality in Statement 3

In [1, Theorem 2], Bercu proved the following inequalities for every \(x \in [0, 1]\):
$$ \operatorname{arcsin}x - \frac{3}{2 + \sqrt{1 - x^{2}}} \geq \frac{a(x)}{2 + \sqrt{1 - x^{2}}}, $$
(20)
where \(a(x) = (1/60)x^{5} + (11/840)x^{7}\).

We propose the following improvement and generalization of (20).

Theorem 2

If \(n \in N\) and \(n \geq2\), then
$$ \operatorname{arcsin}x - \frac{3x}{2 +\sqrt{1-x^{2}}} \geq \frac{\sum_{m=2}^{n}{E(m)x^{2m+1}}}{2 + \sqrt{1-x^{2}}} $$
(21)
for every \(x \in [0,1]\), where
$$ E(m) = \frac{m (2m - 1)!}{(2m+1)2^{2m-2} m!^{2}} - \frac{2m 2^{2m-2}(m - 1)!^{2}}{(2m+1)!},\quad m \in N, m \geq2. $$
(22)

Remark 2

Note that inequality (20) is a particular case of (21) for \(n = 3\).

Example 2

For \(n > 3\), inequality (21) refines inequality (20), and we have the following new results.
  • Taking \(n=4\) in (21) gives
    $$\operatorname{arcsin}x - \frac{3x}{2 + \sqrt{1-x^{2}}} \geq \frac{ \frac{1}{60}x^{5} + \frac{11}{840}x^{7} + \frac{67}{6\text{,}720} x^{9}}{2 + \sqrt{1-x^{2}}} \quad \mbox{for all } x \in [0,1]. $$
  • Taking \(n=5\) in (21) gives
    $$\operatorname{arcsin}x - \frac{3x}{2 + \sqrt{1-x^{2}}} \geq \frac{ \frac{1}{60}x^{5} + \frac{11}{840}x^{7} + \frac{67}{6\text{,}720}x^{9} + \frac{3\text{,}461}{443\text{,}520} x^{11}}{2 + \sqrt{1-x^{2}}}\quad \mbox{for all } x \in [0,1]. $$
  • Taking \(n=6\) in (21) gives
    $$\begin{aligned} &\operatorname{arcsin}x - \frac{3x}{2 + \sqrt{1-x^{2}}}\\ &\quad \geq \frac{ \frac{1}{60}x^{5} + \frac{11}{840}x^{7} + \frac{67}{6\text{,}720} x^{9} + \frac{3\text{,}461}{443\text{,}520} x^{11} + \frac{29\text{,}011}{4\text{,}612\text{,}608} x^{13}}{2 + \sqrt{1-x^{2}}} \quad \mbox{for all } x \in [0,1], \end{aligned} $$
    etc.

Proof of Theorem 2

Based on Cauchy’s product of power series (5) and (7), the real analytical function
$$ g(x) = \bigl(2 + \sqrt{1-x^{2}} \bigr) \cdot \operatorname{arcsin}x - 3x $$
(23)
has the power series
$$ g(x) = \sum_{m=2}^{\infty}{E(m) x^{2m+1}} \quad \mbox{for } x \in[0,1], $$
(24)
where
$$ \begin{aligned}[b] E(m) &= \frac{3(2m)!}{m!^{2}(2m+1)2^{2m}} \\&\quad{}- \sum_{k=0}^{m-1}{\frac{(2k)!}{k! (k+1)! 2^{2k+1}} \cdot \frac{(2(m - k - 1))!}{((m - k - 1)!)^{2} (2m - 2k - 1) 2^{2(m-k-1)}}} \end{aligned} $$
(25)
for \(m = 2, 3, \ldots\) .
First, we prove relation (22). Consider the sequence \((\mathsf{S}(m))_{m \in N, m\geq2}\) where
$$ \mathsf{S}(m) = \sum_{k=0}^{m-1} \mathsf{F}(m,k) $$
(26)
and
$$\mathsf{F}(m,k) = \frac{(2k)! (2(m - k - 1))!}{k! (k+1) !2^{2k+1} ((m - k - 1)!)^{2} (2m - 2k - 1) 2^{2(m-k-1)}}. $$
Consider the function1
$$\mathsf{G}(m,k) = \frac{(m-k) (4k^{2}-(6m+2)k-m) (2k)! (2m-2k-1)! }{(2m-2k+1) ((m-k)!)^{2} 4^{m} (k!)^{2}} $$
for \(m \in N\) and \(k \in \{0, 1, \ldots, m-1\}\). It is not hard to verify that the functions \(\mathsf{F}(m,k)\) and \(\mathsf{G}(m,k)\) satisfy the following relation:
$$ -2(m+1) m^{2} \mathsf{F}(m,k)+m(2m+3) (m+1) \mathsf{F}(m+1,k) = \mathsf{G}(m,k+1) - \mathsf{G}(m,k). $$
(27)
If we sum both sides of (27) from \(k = 0\) to \(k = m - 2\), then we get the relation
$$\begin{aligned} &-2(m+1) m^{2} \mathsf{S}(m)+m(2m+3) (m+1) \mathsf{S}(m+1) \\ &\quad = \mathsf{G}(m,m-1) - \mathsf{G}(m,0) - 2(m+1)m^{2}\mathsf {F}(m,m-1) \\ &\qquad {}+m(2m+3) (m+1) \mathsf{F}(m+1, m-1) + m(2m+3) (m+1) \mathsf{F}(m+1, m). \end{aligned} $$
Finally, as
$$\begin{gathered}\mathsf{G}(m,m-1)= -\frac{1}{3} \frac{(2m^{2}+5m-6) (2m-2)!}{4^{m} ((m-1)!)^{2}}, \qquad \mathsf{G}(m,0)=-\frac{m^{2}(2m-1)!}{(2m+1) 4^{m} m!^{2}}, \\ \mathsf{F}(m+1, m-1) = \frac{1}{6} \frac{(2m-2)!}{(m-1)! m! 2^{2m-1}}, \quad \quad \mathsf{F}(m+1, m) = \frac{(2m)!}{m! (m+1)! 2^{2m+1}}, \end{gathered} $$
and
$$\mathsf{F}(m, m-1) = \frac{(2m-2)!}{(m-1)! m! 2^{2m-1}}, $$
we have the following recurrence for \(\mathsf{S}(m)\):
$$ -2(m+1) m^{2} \mathsf{S}(m) + m (2m+3) (m+1) \mathsf{S}(m+1) = \frac{(2m-1)!}{(2m+1) 4^{m} ((m-1))!^{2}}. $$
(28)
An algorithm for finding solutions of linear recurrence equations with polynomial coefficients can be found, for example, in [17] and [18].
It is easy to verify that the function
$$ \mathsf{S}(m) = \frac{1}{2} \frac{4^{m} m!^{2}}{(2m)!(2m+1)m}+ \frac {(2m)!}{4^{m} m!^{2} (2m+1) }, \quad m \in N, $$
(29)
satisfies the recurrence relation (28). Hence, based on (25), (26), and (29), we have:
$$ \begin{aligned}[b] E(m) & = \frac{3(2m)!}{m!^{2}(2m+1)2^{2m}} - \mathsf{S}(m) \\ & = \frac{m (2m - 1)!}{(2m+1) 2^{2m-2} m!^{2}} - \frac{2m 2^{2m-2}(m - 1)!^{2}}{(2m+1)!} \\ & = 2 \frac{(2m-1)!^{2} - m 2^{4m-4} (m-1)!^{4}}{2^{2m-2} (m-1)!^{2} (2m+1)!} \end{aligned} $$
(30)
for \(m \in N\), \(m \geq 2\).
Now we prove that \(E(m) > 0\) for every \(m=2,3, \ldots\) . It suffices to show that
$$ (2m-1)!^{2} - m 2^{4m-4} (m-1)!^{4} > 0 \quad\text{for } m \in N, m \geq2, $$
(31)
that is,
$$ T(m) = \frac{(2m-1)!^{2}}{ m 2^{4m-4} (m-1)!^{4}} > 1 \quad\text{for } m \in N, m \geq2. $$
(32)
Statement (32) is true for \(m=2\), that is, \(T(2) = 4 > 1\). Observing that
$$ T(k+1) = T(k) \frac{(2k+1)^{2}}{4 k (k+1)} $$
(33)
and using the induction hypothesis (i.e., \(T(k) = \frac{(2k-1)!^{2}}{k 2^{4k-4} (k-1)!^{4}} > 1\) for some positive integer \(k \geq 2\)), we conclude, by the principle of mathematical induction, that \(T(k+1) > 1\). Therefore, inequalities (32) and (31) are true, and consequently \(E(m)>0\) for \(m \in N\), \(m \geq 2\). □

3 Conclusion

In this paper, we proposed and proved new inequalities, which present refinements and generalizations of inequalities stated in [1], related to Shafer-Fink’s inequality for the inverse sine function.

Also, our approach provides inequalities that allow new approximations of the functions
$$\operatorname{arcsin} x - \frac{3x}{2+\sqrt{1-x^{2}}} \quad\mbox{and}\quad \operatorname{arcsin} x - \frac{\pi x}{2+\sqrt{1-x^{2}}} \quad\mbox{for all } x \in[0,1]. $$
Finally, let us note that proofs of inequalities (19) and (21) for any fixed \(n\in N\) and \(k \in\{3, \pi\}\) can be obtained by substituting \(x = \sin{t}\) for \(t \in[0, \pi/2]\) and using the methods and algorithms developed in [19] and [20].
Footnotes
1

A method for determining function \(\mathsf{G}(m,k)\) for a given function \(\mathsf{F}(m,k)\) can be found in [17]. Note that the pair of discrete functions \((\mathsf{F}(m,k), \mathsf{G}(m,k) )\) is the so-called Wilf-Zeilberger pair [21].

 

Declarations

Acknowledgements

Research of the authors was supported in part by the Serbian Ministry of Education, Science and Technological Development, under Projects ON 174032, III 44006, ON 174033, and TR 32023.

Authors’ contributions

All authors participated in every phase of research conducted for this paper. All authors read and approved the final manuscript.

Competing interests

Authors would like to state that they have no competing interests in the subject of this research.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
Faculty of Electrical Engineering, University of Belgrade

References

  1. Bercu, G: Sharp refinements for the inverse sine function related to Shafer-Fink’s inequality. Math. Probl. Eng. 2017, Article ID 9237932 (2017). doi:10.1155/2017/9237932 View ArticleMathSciNetGoogle Scholar
  2. Mitrinović, DS: Analytic Inequalities. Springer, Berlin (1970) View ArticleMATHGoogle Scholar
  3. Fink, AM: Two inequalities, Publ. Elektroteh. Fak. Univ. Beogr., Mat. 6, 48-49 (1995) MATHMathSciNetGoogle Scholar
  4. Anderson, GD, Vuorinen, M, Zhang, X: Analytic number theory, approximation theory and special functions. In: Milovanović, GV, Rassias, MT (eds.) Topics in Special Functions III, pp. 297-345. Springer, Berlin (2014) Google Scholar
  5. Zhu, L: A source of inequalities for circular functions. Comput. Math. Appl. 58, 1998-2004 (2009) View ArticleMATHMathSciNetGoogle Scholar
  6. Guo, B-N, Luo, Q-M, Qi, F: Sharpening and generalizations of Shafer-Fink’s double inequality for the arc sine function. Filomat 27(2), 261-265 (2013) View ArticleMATHMathSciNetGoogle Scholar
  7. Bhayo, BA, Sandor, J: On Carlson’s and Shafer’s inequalities. Probl. Anal. Issues Anal. 3(21)(1), 3-15 (2014) View ArticleMATHMathSciNetGoogle Scholar
  8. Nishizawa, Y: Sharpening of Jordan’s type and Shafer-Fink’s type inequalities with exponential approximations. Appl. Math. Comput. 269, 146-154 (2015) MathSciNetGoogle Scholar
  9. Nishizawa, Y: Extended constant parts of Becker-Stark’s and Shafer-Fink’s inequalities. Tamkang J. Math. 47(4), 385-391 (2016) MATHMathSciNetGoogle Scholar
  10. Wu, S, Bercu, G: Padé approximants for inverse trigonometric functions and their applications. J. Inequal. Appl. 2017, 31 (2017) View ArticleMATHGoogle Scholar
  11. Sandor, J: Refinements of the Mitrinović-Adamović inequality, with application. Notes Number Theory Discrete Math., 23(1), 4-6 (2017) Google Scholar
  12. Bhayo, BA, Klen, R, Sandor, J: New trigonometric and hyperbolic inequalities. Math. Notes (Miskolc) 18, 125-137 (2017). doi:10.18514/MMN.2017.1560 MathSciNetGoogle Scholar
  13. Malešević, B: An application of λ-method on Shafer-Fink’s inequality. Publ. Elektroteh. Fak. Univ. Beogr., Mat. 8, 90-92 (1997) MathSciNetGoogle Scholar
  14. Rahmatollahi, G, De Abreu, GTF: Closed-form hop-count distributions in random networks with arbitrary routing. IEEE Trans. Commun. 60(2), 429-444 (2012) View ArticleGoogle Scholar
  15. De Abreu, GTF: Jensen-Cotes upper and lower bounds on the Gaussian Q-function and related functions. IEEE Trans. Commun. 57(11), 3328-3338 (2009) View ArticleGoogle Scholar
  16. Cloud, MJ, Drachman, BC, Lebedev, LP: Inequalities with Applications to Engineering. Springer, Berlin (2014) MATHGoogle Scholar
  17. Petkovšek, M, Wilf, H, Zeilberger, D: \(A = B\). AK Peters, Wellesley (1996) MATHGoogle Scholar
  18. Petkovšek, M, Zakrajšek, H: Solving linear recurrence equations with polynomial coefficients. In: Computer Algebra in Quantum Field Theory, pp. 259-284. Springer, Berlin (2013) View ArticleGoogle Scholar
  19. Malešević, B, Makragić, M: A method for proving some inequalities on mixed trigonometric polynomial functions. J. Math. Inequal. 10(3), 849-876 (2016) MATHMathSciNetGoogle Scholar
  20. Lutovac, T, Malešević, B, Mortici, C: The natural algorithmic approach of mixed trigonometric-polynomial problems. J. Inequal. Appl. 2017, 116 (2017) View ArticleMATHMathSciNetGoogle Scholar
  21. Tefera, A: What is…a Wilf-Zeilberger pair? Not. Am. Math. Soc. 57(4), 508-509 (2010) MATHMathSciNetGoogle Scholar

Copyright

© The Author(s) 2017