Open Access

Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters

Journal of Inequalities and Applications20172017:274

https://doi.org/10.1186/s13660-017-1550-5

Received: 6 September 2017

Accepted: 22 October 2017

Published: 2 November 2017

Abstract

In the article, we present the best possible parameters \(\lambda=\lambda (p)\) and \(\mu=\mu(p)\) on the interval \([0, 1/2]\) such that the double inequality
$$\begin{aligned}& G^{p}\bigl[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a \bigr]A^{1-p}(a,b) \\& \quad< E(a,b) < G^{p}\bigl[\mu a+(1-\mu)b, \mu b+(1-\mu)a \bigr]A^{1-p}(a,b) \end{aligned}$$
holds for any \(p\in[1, \infty)\) and all \(a, b>0\) with \(a\neq b\), where \(A(a, b)=(a+b)/2\), \(G(a,b)=\sqrt{ab}\) and \(E(a,b)=[2\int_{0}^{\pi /2}\sqrt{a\cos^{2}\theta+b\sin^{2}\theta}\,d\theta/\pi]^{2}\) are the arithmetic, geometric and special quasi-arithmetic means of a and b, respectively.

Keywords

quasi-arithmetic meancomplete elliptic integralGaussian hypergeometric functionarithmetic meangeometric mean

MSC

26E6033E05

1 Introduction

Let \(r\in(0,1)\). Then the Legendre complete elliptic integrals \(\mathcal {K}(r)\) and \(\mathcal{E}(r)\) [1, 2] of the first and second kinds are defined as
$$ \mathcal{K}(r)= \int_{0}^{\pi/2}\frac{dt}{\sqrt{1-r^{2}\sin^{2}(t)}}, \qquad\mathcal{E}(r)= \int_{0}^{\pi/2}\sqrt{1-r^{2} \sin^{2}(t)}\,dt, $$
respectively. It is well known that the function \(r\rightarrow\mathcal {K}(r)\) is strictly increasing from \((0, 1)\) onto \((\pi/2, \infty)\) and the function \(r\rightarrow\mathcal{E}(r)\) is strictly decreasing from \((0, 1)\) onto \((1, \pi/2)\), and they satisfy the formulas (see [3, Appendix E, pp. 474,475])
$$ \begin{gathered} \frac{d{\mathcal{K}(r)}}{dr}=\frac{{\mathcal{E}(r)}-{r'}^{2}{\mathcal {K}}(r)}{r{r'}^{2}},\qquad \frac{d{\mathcal{E}(r)}}{dr}=\frac{{\mathcal{E}(r)}-{\mathcal{K}(r)}}{r}, \\ \mathcal{K} \biggl(\frac{2\sqrt{r}}{1+r} \biggr)=(1+r)\mathcal{K}(r),\qquad \mathcal{E} \biggl(\frac{2\sqrt{r}}{1+r} \biggr)=\frac{2\mathcal {E}(r)-{r'}^{2}\mathcal{K}}{1+r}, \end{gathered} $$
where \(r'=\sqrt{1-r^{2}}\).
The complete elliptic integrals \(\mathcal{K}(r)\) and \(\mathcal{E}(r)\) are the particular cases of the Gaussian hypergeometric function [410]
$$ F(a,b;c;x)=\sum_{n=0}^{\infty}\frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac {x^{n}}{n!}\quad (-1< x< 1), $$
where \((a)_{0}=1\) for \(a\neq0\), \((a)_{n}=a(a+1)(a+2)\cdots (a+n-1)=\Gamma(a+n)/\Gamma(a)\) is the shifted factorial function and \(\Gamma(x)=\int_{0}^{\infty }t^{x-1}e^{-t}\,dt\) (\(x>0\)) is the gamma function [1118]. Indeed,
$$ \begin{gathered} \mathcal{K}(r)=\frac{\pi}{2}F \biggl( \frac{1}{2},\frac{1}{2};1;r^{2} \biggr) = \frac{\pi}{2}\sum_{n=0}^{\infty} \frac{ (\frac{1}{2} )_{n}^{2}}{(n!)^{2}}r^{2n}, \\ \mathcal{E}(r)=\frac{\pi}{2}F \biggl(-\frac{1}{2}, \frac{1}{2};1;r^{2} \biggr) =\frac{\pi}{2}\sum _{n=0}^{\infty}\frac{ (-\frac{1}{2} )_{n} (\frac{1}{2} )_{n}}{(n!)^{2}}r^{2n}. \end{gathered} $$

Recently, the bounds for the complete elliptic integrals have attracted the attention of many researchers. In particular, many remarkable inequalities and properties for \(\mathcal{K}(r)\), \(\mathcal{E}(r)\) and \(F(a,b;c;x)\) can be found in the literature [1952].

In 1998, a class of quasi-arithmetic mean was introduced by Toader [53] which is defined by
$$ M_{p,n}(a,b)=p^{-1} \biggl(\frac{1}{\pi} \int_{0}^{\pi}p\bigl(r_{n}(\theta )\,d \theta\bigr) \biggr)=p^{-1} \biggl(\frac{2}{\pi} \int_{0}^{\pi/2}p\bigl(r_{n}(\theta )\,d \theta\bigr) \biggr), $$
where \(r_{n}(\theta)=(a^{n}\cos^{2}\theta+b^{n}\sin^{2}\theta)^{1/n}\) for \(n\neq0\), \(r_{0}(\theta)=a^{\cos^{2}\theta}b^{\sin^{2}\theta}\), and p is a strictly monotonic function. It is well known that many important means are the special cases of the quasi-arithmetic mean. For example,
$$\begin{aligned} M_{1/x,2}(a,b)= \frac{\pi}{2 \int_{0}^{\pi /2}{\frac{d\theta}{\sqrt{a^{2}\cos^{2}\theta+b^{2}\sin^{2}\theta}}}} = \textstyle\begin{cases} {\pi a} / [2{\mathcal{K}} (\sqrt{1-(b/a)^{2}} ) ],&a\geq b,\\ {\pi b} / [2{\mathcal{K}} (\sqrt{1-(a/b)^{2}} ) ],&a< b, \end{cases}\displaystyle \end{aligned}$$
is the arithmetic-geometric mean of Gauss [5460],
$$ M_{x,2}(a,b))=\frac{2}{\pi} \int_{0}^{\pi/2}\sqrt{a^{2}\cos^{2} \theta +b^{2}\sin^{2}\theta}\,d\theta = \textstyle\begin{cases}2a{\mathcal{E}} (\sqrt{1-(b/a)^{2}} )/\pi,&a\geq b,\\ 2b{\mathcal{E}} (\sqrt{1-(a/b)^{2}} )/\pi,&a< b, \end{cases} $$
is the Toader mean [6170], and
$$ M_{x,0}(a,b))=\frac{2}{\pi} \int_{0}^{\pi/2}a^{\cos^{2}\theta}b^{\sin ^{2}\theta}\,d \theta $$
is the Toader-Qi mean [7174].
Let \(p=\sqrt{x}\) and \(n=1\). Then \(M_{p,n}(a,b)\) reduces to a special quasi-arithmetic mean
$$ E(a,b)=M_{\sqrt{x},1}(a,b))= \textstyle\begin{cases}4a [{\mathcal{E}} (\sqrt{1-b/a} ) ]^{2}/\pi ^{2},&a\geq b,\\ 4b [{\mathcal{E}} (\sqrt{1-a/b} ) ]^{2}/\pi^{2},&a< b. \end{cases} $$
(1.1)
Let
$$ \begin{gathered} A(a,b)=\frac{a+b}{2}, \qquad G(a,b)=\sqrt{ab}, \\ M_{p}(a,b)= \biggl(\frac{a^{p}+b^{p}}{2} \biggr)^{1/p} (p\neq0), \qquad M_{0}(a,b)=\sqrt{ab}, \end{gathered} $$
be the arithmetic, geometric and pth power means of a and b, respectively. Then it is well known that the inequality
$$ G(a,b)=M_{0}(a,b)< A(a,b)=M_{1}(a,b) $$
(1.2)
holds for all \(a, b>0\) with \(a\neq b\), and the double inequality
$$ \frac{\pi}{2}M_{3/2}\bigl(1, r^{\prime}\bigr)< \mathcal{E}(r)< \frac{\pi }{2}M_{2}\bigl(1, r^{\prime}\bigr) $$
(1.3)
holds for all \(r\in(0, 1)\) (see [75, 19.9.4]).
From (1.1)-(1.3) we clearly see that
$$ G(a,b)< E(a,b)< A(a,b) $$
for all \(a, b>0\) with \(a\neq b\).
Let \(p\in[1, \infty)\) and
$$ f(x; p; a, b)=G^{p}\bigl[xa+(1-x)b, xb+(1-x)a\bigr]A^{1-p}(a,b). $$
Then it is not difficult to verify that the function \(x\rightarrow f(x; p; a, b)\) is strictly increasing on \([0, 1/2]\) for fixed \(p\in[1, \infty)\) and \(a, b>0\) with \(a\neq b\). Note that
$$ \begin{aligned}[b] f(0; p; a, b)&=G^{p}(a,b)A^{1-p}(a,b) \leq G(a,b) \\ &< E(a,b)< A(a,b)=f(1/2; p; a, b) \end{aligned} $$
(1.4)
for all \(p\in[1, \infty)\) and \(a, b>0\) with \(a\neq b\).
Motivated by inequalities (1.4) and the monotonicity of the function \(x\rightarrow f(x; p; a, b)\) on the interval \([0, 1/2]\), in the article, we shall find the best possible parameters \(\lambda=\lambda(p), \mu=\mu(p)\) on the interval \([0, 1/2]\) such that the double inequality
$$ \begin{aligned} &G^{p}\bigl[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a\bigr]A^{1-p}(a,b) \\ &\quad< E(a,b)< G^{p}\bigl[\mu a+(1-\mu)b, \mu b+(1-\mu)a \bigr]A^{1-p}(a,b) \end{aligned} $$
holds for any \(p\in[1, \infty)\) and all \(a, b>0\) with \(a\neq b\).

2 Lemmas

Lemma 2.1

(see [3, Theorem 1.25])

Let \(-\infty< a< b<+\infty\), \(f, g: [a, b]\rightarrow\mathbb{R}\) be continuous on \([a, b]\) and differentiable on \((a,b)\), and \(g^{\prime}(x)\neq0\) on \((a, b)\). If \(f^{\prime}(x)/g^{\prime}(x)\) is increasing (decreasing) on \((a,b)\), then so are the functions
$$ \frac{f(x)-f(a)}{g(x)-g(a)}, \qquad\frac{f(x)-f(b)}{g(x)-g(b)}. $$
If \(f^{\prime}(x)/g^{\prime}(x)\) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2

The inequality
$$ \frac{1}{4p}+ \biggl(\frac{2\sqrt{2}}{\pi} \biggr)^{4/p}< 1 $$
holds for all \(p\in[1, \infty)\).

Proof

Let
$$ f(p)=\frac{1}{4p}+ \biggl(\frac{2\sqrt{2}}{\pi} \biggr)^{4/p}. $$
(2.1)
Then simple computations lead to
$$\begin{aligned}& \lim_{p\rightarrow\infty}f(p)=1, \end{aligned}$$
(2.2)
$$\begin{aligned}& \begin{aligned}[b] f^{\prime}(p)&=\frac{4}{p^{2}}\log \biggl(\frac{\sqrt{2}\pi}{4} \biggr) \biggl[ \biggl(\frac{2\sqrt{2}}{\pi} \biggr)^{4/p}-\frac{1}{16\log (\frac{\sqrt{2}\pi}{4} )} \biggr] \\ &\geq\frac{4}{p^{2}}\log \biggl(\frac{\sqrt{2}\pi}{4} \biggr) \biggl[ \biggl( \frac{2\sqrt{2}}{\pi} \biggr)^{4}-\frac{1}{16\log (\frac {\sqrt{2}\pi}{4} )} \biggr] \\ &=\frac{1024\log (\frac{\sqrt{2}\pi}{4} )-\pi^{4}}{4\pi^{4}p^{2}}>0 \end{aligned} \end{aligned}$$
(2.3)
for \(p\in[1, \infty)\).

Therefore, Lemma 2.2 follows easily from (2.1)-(2.3). □

Lemma 2.3

The following statements are true:
  1. (1)

    The function \(r\mapsto[\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r)]/r^{2}\) is strictly increasing from \((0, 1)\) onto \((\pi/4, 1)\).

     
  2. (2)

    The function \(r\mapsto[\mathcal{K}(r)-\mathcal {E}(r)]/r^{2}\) is strictly increasing from \((0, 1)\) onto \((\pi/4, \infty)\).

     
  3. (3)

    The function \(r\mapsto[\mathcal{E}(r)+(1-r^{2})\mathcal {K}(r)]/(1-r^{2})\) is strictly increasing from \((0, 1)\) onto \((\pi, \infty)\).

     
  4. (4)

    The function \(r\mapsto[2\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r)]/(1+r^{2})\) is strictly decreasing from \((0, 1)\) onto \((1, \pi/2)\).

     
  5. (5)

    The function \(r\mapsto r^{2}[2\mathcal {E}(r)-(1-r^{2})\mathcal{K}(r)]/ [(1+r^{2})^{2}(\mathcal {K}(r)-\mathcal{E}(r)) ]\) is strictly decreasing from \((0, 1)\) onto \((0, 2)\).

     

Proof

Parts (1) and (2) can be found in the literature [3, Theorem 3.21(1) and Exercise 3.43(11)].

For part (3), let \(f_{1}(r)=[\mathcal{E}(r)+(1-r^{2})\mathcal {K}(r)]/(1-r^{2})\). Then simple computations lead to
$$\begin{aligned}& f_{1}\bigl(0^{+}\bigr)=\pi, \qquad f_{1} \bigl(1^{-}\bigr)=\infty, \end{aligned}$$
(2.4)
$$\begin{aligned}& f^{\prime}_{1}(r)=\frac{r}{(1-r^{2})^{2}} \biggl[\frac{2}{r^{2}} \bigl(\mathcal {E}(r)-\bigl(1-r^{2}\bigr)\mathcal{K}(r)\bigr)+ \bigl(1-r^{2}\bigr)\mathcal{K}(r) \biggr]. \end{aligned}$$
(2.5)
It follows from part (1) and (2.5) that
$$ f^{\prime}_{1}(r)>0 $$
(2.6)
for all \(r\in(0, 1)\). Therefore, part (3) follows from (2.4) and (2.6).
For part (4), let \(f_{2}(r)=[2\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r)]/(1+r^{2})\), then one has
$$\begin{aligned}& f_{2}\bigl(0^{+}\bigr)=\frac{\pi}{2}, \qquad f_{1}\bigl(1^{-}\bigr)=1, \end{aligned}$$
(2.7)
$$\begin{aligned}& f^{\prime}_{2}(r)=\frac{r}{(1+r^{2})^{2}} \biggl[ \bigl(1-r^{2}\bigr)\frac{\mathcal {E}(r)-(1-r^{2})\mathcal{K}(r)}{r^{2}}-2\mathcal{E}(r) \biggr]. \end{aligned}$$
(2.8)
From part (1) and (2.8) we clearly see that
$$ f^{\prime}_{2}(r)< -\frac{r}{(1+r^{2})}< 0 $$
(2.9)
for all \(r\in(0, 1)\). Therefore, part (4) follows from (2.7) and (2.9).
For part (5), let \(f_{3}(r)=r^{2}[2\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r)]/ [(1+r^{2})^{2}(\mathcal{K}(r)-\mathcal{E}(r)) ]\), then \(f_{3}(r)\) can be rewritten as
$$ f_{3}(r)=\frac{2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r)}{1+r^{2}} \times\frac{1}{\frac{\mathcal{K}(r)-\mathcal{E}(r)}{r^{2}}}\times \frac {1}{1+r^{2}}. $$
(2.10)
Therefore, part (5) follows easily from parts (2) and (4) together with (2.10). □

Lemma 2.4

The function
$$ g(r)=\frac{r^{2}\mathcal{K}(r)}{(1+r^{2})[\mathcal{K}(r)-\mathcal{E}(r)]} $$
is strictly decreasing from \((0, 1)\) onto \((1/2, 2)\).

Proof

Let \(g_{1}(r)=r^{2}\mathcal{K}(r)\) and \(g_{2}(r)=(1+r^{2})[\mathcal {K}(r)-\mathcal{E}(r)]\). Then we clearly see that
$$\begin{aligned}& g_{1}\bigl(0^{+}\bigr)=g_{2} \bigl(0^{+}\bigr)=0, \qquad g(r)=\frac{g_{1}(r)}{g_{2}(r)}, \end{aligned}$$
(2.11)
$$\begin{aligned}& g\bigl(1^{-}\bigr)=\frac{1}{2}, \end{aligned}$$
(2.12)
$$\begin{aligned}& \frac{g^{\prime}_{1}(r)}{g^{\prime}_{2}(r)}=\frac{1}{2-\frac{3\mathcal {E}(r)}{\frac{\mathcal{E}(r)+(1-r^{2})\mathcal{K}(r)}{1-r^{2}}}}. \end{aligned}$$
(2.13)
From Lemma 2.3(3), (2.11) and (2.13) we know that
$$ g\bigl(0^{+}\bigr)=\lim_{r\rightarrow0^{+}}\frac{g^{\prime}_{1}(r)}{g^{\prime}_{2}(r)}=2 $$
(2.14)
and the function \(g^{\prime}_{1}(r)/g^{\prime}_{2}(r)\) is strictly decreasing on \((0, 1)\).

Therefore, Lemma 2.4 follows easily from Lemma 2.1, (2.11), (2.12) and (2.14) together with the monotonicity of the function \(g^{\prime}_{1}(r)/g^{\prime}_{2}(r)\). □

Lemma 2.5

Let \(u\in[0, 1]\), \(r\in(0, 1)\), \(p\in[1, \infty)\) and
$$ h(u, p; r)=\frac{1}{2}p\log \biggl[1-\frac{4ur^{2}}{(1+r^{2})^{2}} \biggr] -\log \biggl[\frac{4 (2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r) )^{2}}{\pi^{2}(1+r^{2})} \biggr]. $$
(2.15)
Then one has
  1. (1)

    \(h(u, p; r)>0\) for all \(r\in(0, 1)\) if and only if \(u\leq1/4p\);

     
  2. (2)

    \(h(u, p; r)<0\) for all \(r\in(0, 1)\) if and only if \(u\geq 1-(2\sqrt{2}/\pi)^{4/p}\).

     

Proof

It follows from (2.15) that
$$\begin{aligned}& h\bigl(u, p; 0^{+}\bigr)=0, \end{aligned}$$
(2.16)
$$\begin{aligned}& h\bigl(u, p; 1^{-}\bigr)=\frac{p}{2}\log(1-u)+\log \biggl( \frac{\pi^{2}}{8} \biggr), \end{aligned}$$
(2.17)
$$\begin{aligned}& \begin{aligned}[b] \frac{\partial h(u, p; r)}{\partial r}&=\frac{2(1-r^{2})[\mathcal {K}(r)-\mathcal{E}(r)]}{ r(1+r^{2})[2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r)]} - \frac{4pur(1-r^{2})}{(1+r^{2}) [(1+r^{2})^{2}-4ur^{2} ]} \\ &=\frac{2(1-r^{2}) [2(\mathcal{K}(r)-\mathcal {E}(r))+p(2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r)) ]}{(1+r^{2}) [(1+r^{2})^{2}-4ur^{2} ][2\mathcal {E}(r)-(1-r^{2})\mathcal{K}(r)]}\bigl[h_{1}(p; r)-2u\bigr], \end{aligned} \end{aligned}$$
(2.18)
where
$$ \begin{aligned}[b] h_{1}(p; r)&=\frac{(1+r^{2})^{2}[\mathcal{K}(r)-\mathcal{E}(r)]}{r^{2} [2(\mathcal{K}(r)-\mathcal{E}(r))+p(2\mathcal {E}(r)-(1-r^{2})\mathcal{K}(r)) ]} \\ &=\frac{1}{g(r)+(p-1)f_{3}(r)}, \end{aligned} $$
(2.19)
where \(f_{3}(r)\) and \(g(r)\) are defined by (2.10) and Lemma 2.4, respectively.
From Lemma 2.3(5) and Lemma 2.4 together with (2.19) we clearly see that the function \(r\rightarrow h_{1}(p; r)\) is strictly increasing on \((0, 1)\) and
$$\begin{aligned}& h_{1}\bigl(p; 0^{+}\bigr)=\frac{1}{2p}, \end{aligned}$$
(2.20)
$$\begin{aligned}& h_{1}\bigl(p; 1^{-}\bigr)=2. \end{aligned}$$
(2.21)
From Lemma 2.2 we know that \(1-(2\sqrt{2}/\pi)^{4/p}>1/(4p)\). Therefore, we only need to divide the proof into three cases as follows.

Case 1 \(u\leq1/(4p)\). Then Lemma 2.3(4), (2.18), (2.20) and the monotonicity of the function \(r\rightarrow h_{1}(p; r)\) on the interval \((0, 1)\) lead to the conclusion that the function \(r\rightarrow h(u, p; r)\) is strictly increasing on \((0, 1)\). Therefore, \(h(u, p; r)>0\) for all \(r\in(0, 1)\) follows from (2.16) and the monotonicity of the function \(r\rightarrow h(u, p; r)\).

Case 2 \(u\geq1-(2\sqrt{2}/\pi)^{4/p}\). Then from Lemma 2.2, Lemma 2.3(5), (2.17), (2.18), (2.20), (2.21) and the monotonicity of the function \(r\rightarrow h_{1}(p; r)\) on the interval \((0, 1)\) we clearly see that there exists \(r_{0}\in(0, 1)\) such that the function \(r\rightarrow h(u, p; r)\) is strictly decreasing on \((0, r_{0})\) and strictly increasing on \((r_{0}, 1)\), and
$$ h\bigl(u, p; 1^{-}\bigr)\leq0. $$
(2.22)
Therefore, \(h(u, p; r)<0\) for all \(r\in(0, 1)\) follows from (2.16) and (2.22) together with the piecewise monotonicity of the function \(r\rightarrow h(u, p; r)\) on the interval \((0, 1)\).
Case 3 \(1/(4p)< u<1-(2\sqrt{2}/\pi)^{4/p}\). Then (2.17) leads to
$$ h\bigl(u, p; 1^{-}\bigr)>0. $$
(2.23)
It follows from Lemma 2.3(5), (2.18), (2.20), (2.21) and the monotonicity of the function \(r\rightarrow h_{1}(p; r)\) on the interval \((0, 1)\) that there exists \(r^{\ast}\in(0, 1)\) such that the function \(r\rightarrow h(u, p; r)\) is strictly decreasing on \((0, r^{\ast})\) and strictly increasing on \((r^{\ast}, 1)\). Therefore, there exists \(\lambda \in(0, 1)\) such that \(h(u, p; r)<0\) for \(r\in(0, \lambda)\) and \(h(u, p; r)>0\) for \(r\in(\lambda, 1)\). □

3 Main result

Theorem 3.1

Let \(\lambda, \mu\in[0, 1/2]\). Then the double inequality
$$ \begin{gathered} G^{p}\bigl[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a\bigr]A^{1-p}(a,b) \\ \quad< E(a,b)< G^{p}\bigl[\mu a+(1-\mu)b, \mu b+(1-\mu)a \bigr]A^{1-p}(a,b) \end{gathered} $$
holds for any \(p\in[1, \infty)\) and all \(a, b>0\) with \(a\neq b\) if and only if \(\lambda\leq1/2-\sqrt{1-(2\sqrt{2}/\pi)^{4/p}}/2\) and \(\mu\geq1/2-\sqrt{p}/(4p)\).

Proof

Let \(t\in[0, 1/2]\), since \(G^{p}[ta+(1-t)b, tb+(1-t)a]A^{1-p}(a,b)\) and \(E(a,b)\) are symmetric and homogeneous of degree one, without loss of generality, we assume that \(a>b>0\). Let \(r\in(0, 1)\) and \(b/a=(1-r)^{2}/(1+r)^{2}\). Then (1.1) leads to
$$ \begin{gathered} E(a,b)=\frac{4(1+r)^{2}}{\pi^{2}(1+r^{2})}A(a,b){\mathcal{E}}^{2} \biggl( \frac{2\sqrt{r}}{1+r} \biggr) =\frac{4}{\pi^{2}}A(a,b)\frac{ [2\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r) ]^{2}}{1+r^{2}}, \\ \log \bigl[G^{p}\bigl(ta+(1-t)b, tb+(1-t)a \bigr)A^{1-p}(a,b) \bigr]-\log E(a,b) \\ \quad=\log \biggl[\frac{G^{p}(ta+(1-t)b, tb+(1-t)a)A^{1-p}(a,b)}{A(a,b)} \biggr]-\log \biggl[\frac {E(a,b)}{A(a,b)} \biggr] \\ \quad=\frac{1}{2}p\log \biggl[1-\frac {4(1-2t)^{2}r^{2}}{(1+r^{2})^{2}} \biggr] -\log \biggl[ \frac{4 (2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r) )^{2}}{\pi^{2}(1+r^{2})} \biggr]. \end{gathered} $$
(3.1)
Therefore, Theorem 3.1 follows easily from Lemma 2.5 and (3.1). □

Let \(p=1, 2\), then Theorem 3.1 leads to Corollary 3.2 immediately.

Corollary 3.2

Let \(\lambda_{1}, \mu_{1}, \lambda_{2}, \mu_{2}\in[0, 1/2]\). Then the double inequalities
$$ \begin{gathered} H\bigl[\lambda_{1}a+(1- \lambda_{1})b, \lambda_{1}b+(1-\lambda _{1})a \bigr]< E(a,b)< H\bigl[\mu_{1}a+(1-\mu_{1})b, \mu_{1}b+(1-\mu_{1})a\bigr], \\ G\bigl[\lambda_{2}a+(1-\lambda_{2})b, \lambda_{2}b+(1- \lambda _{2})a\bigr]< E(a,b)< G\bigl[\mu_{2}a+(1- \mu_{2})b, \mu_{2}b+(1-\mu_{2})a\bigr] \end{gathered} $$
hold for all \(a, b>0\) with \(a\neq b\) if and only if \(\lambda_{1}\leq 1/2-\sqrt{1-8/\pi^{2}}/2=0.2823\ldots\) , \(\mu_{1}\geq1/2-\sqrt{2}/8=0.3232\ldots\) , \(\lambda_{2}\leq1/2-\sqrt {1-64/\pi^{4}}/2=0.2071\ldots\) and \(\mu_{2}\geq1/4\).

Let \(p\in[1, \infty)\), \(r\in(0, 1)\), \(a=r\), \(b=1-r^{2}={r^{\prime }}^{2}\), \(\lambda=1/2-\sqrt{1-(2\sqrt{2}/\pi)^{4/p}}/2\) and \(\mu=1/2-\sqrt{p}/(4p)\). Then (1.1) and Theorem 3.1 lead to Corollary 3.3 immediately.

Corollary 3.3

The double inequality
$$ \begin{gathered} \frac{\sqrt{2}\pi}{4} \bigl(1+{r^{\prime}}^{2} \bigr)^{(1-p)/2} \biggl[4{r^{\prime}}^{2} + \biggl( \frac{8}{\pi^{2}} \biggr)^{2/p}r^{4} \biggr]^{p/4} \\ \quad< \mathcal{E}(r) < \frac{\sqrt{2}\pi}{4} \bigl(1+{r^{\prime }}^{2} \bigr)^{(1-p)/2} \biggl[\bigl(1+{r^{\prime}}^{2} \bigr)^{2}-\frac {r^{4}}{4p} \biggr]^{p/4} \end{gathered} $$
holds for all \(r\in(0, 1)\) and \(p\in[1, \infty)\).

4 Results and discussion

In this paper, we provide the sharp bounds for the special quasi-arithmetic mean \(E(a,b)\) in terms of the arithmetic mean \(A(a,b)\) and geometric mean \(G(a,b)\) with two parameters. As consequences, we present the best possible one-parameter harmonic and geometric means bounds for \(E(a,b)\) and find new bounds for the complete elliptic integral of the second kind.

5 Conclusion

In the article, we derive a new bivariate mean \(E(a,b)\) from the quasi-arithmetic mean and provide its sharp upper and lower bounds in terms of the concave combination of arithmetic and geometric means.

Declarations

Acknowledgements

The research was supported by the Natural Science Foundation of China (Grants Nos. 61673169, 61374086, 11371125, 11401191) and the Tianyuan Special Funds of the National Natural Science Foundation of China (Grant No. 11626101).

Authors’ contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
School of Distance Education, Huzhou Broadcast and TV University
(2)
Department of Mathematics, Huzhou University

References

  1. Bowman, F: Introduction to Elliptic Function with Applications. Dover, New York (1961) MATHGoogle Scholar
  2. Byrd, PF, Friedman, MD: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, New York (1971) View ArticleMATHGoogle Scholar
  3. Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997) MATHGoogle Scholar
  4. Anderson, GD, Qiu, S-L, Vuorinen, M: Precise estimates for differences of the Gaussian hypergeometric function. J. Math. Anal. Appl. 215(1), 212-234 (1997) View ArticleMATHMathSciNetGoogle Scholar
  5. Ponnusamy, S, Vuorinen, M: Univalence and convexity properties for Gaussian hypergeometric functions. Rocky Mt. J. Math. 31(1), 327-353 (2001) View ArticleMATHMathSciNetGoogle Scholar
  6. Song, Y-Q, Zhou, P-G, Chu, Y-M: Inequalities for the Gaussian hypergeometric function. Sci. China Math. 57(11), 2369-2380 (2014) View ArticleMATHMathSciNetGoogle Scholar
  7. Wang, M-K, Chu, Y-M, Jiang, Y-P: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 46(2), 679-691 (2016) View ArticleMATHMathSciNetGoogle Scholar
  8. Wang, M-K, Chu, Y-M, Song, Y-Q: Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 276, 44-60 (2016) MathSciNetGoogle Scholar
  9. Wang, M-K, Chu, Y-M: Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math. Sci. 37B(3), 607-622 (2017) View ArticleMathSciNetGoogle Scholar
  10. Wang, M-K, Li, Y-M, Chu, Y-M: Inequalities and infinite product formula for Ramanujan generalized modular equation function, Ramanujan J. doi:10.1007/s11139-017-9888-3
  11. Maican, CC: Integral Evaluations Using the Gamma and Beta Functions and Elliptic Integrals in Engineering. International Press, Cambridge (2005) MATHGoogle Scholar
  12. Mortici, C: New approximation formulas for evaluating the ratio of gamma functions. Math. Comput. Model. 52(1-2), 425-433 (2010) View ArticleMATHMathSciNetGoogle Scholar
  13. Zhang, X-M, Chu, Y-M: A double inequality for gamma function. J. Inequal. Appl. 2009, Article ID 503782 (2009) View ArticleMATHMathSciNetGoogle Scholar
  14. Zhao, T-H, Chu, Y-M, Jiang, Y-P: Monotonic and logarithmically convex properties of a function involving gamma functions. J. Inequal. Appl. 2009, Article ID 728618 (2009) MathSciNetGoogle Scholar
  15. Zhao, T-H, Chu, Y-M: A class of logarithmically completely monotonic functions associated with a gamma function. J. Inequal. Appl. 2010, Article ID 392431 (2010) View ArticleMATHMathSciNetGoogle Scholar
  16. Zhao, T-H, Chu, Y-M, Wang, H: Logarithmically complete monotonicity properties relating to the gamma function. Abstr. Appl. Anal. 2010, Article ID 896483 (2010) MATHMathSciNetGoogle Scholar
  17. Yang, Z-H, Zhang, W, Chu, Y-M: Monotonicity and inequalities involving the incomplete gamma function. J. Inequal. Appl. 2016, Article ID 221 (2016) View ArticleMATHMathSciNetGoogle Scholar
  18. Yang, Z-H, Zhang, W, Chu, Y-M: Monotonicity of the incomplete gamma function with applications. J. Inequal. Appl. 2016, Article ID 251 (2016) View ArticleMATHMathSciNetGoogle Scholar
  19. Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Functional inequalities for complete elliptic integrals and their ratios. SIAM J. Math. Anal. 21(2), 536-549 (1990) View ArticleMATHMathSciNetGoogle Scholar
  20. Panteliou, SD, Dimarogonas, AD, Katz, IN: Direct and inverse interpolation for Jacobian elliptic functions, zeta function of Jacobi and complete elliptic integrals of the second kind. Comput. Math. Appl. 32(8), 51-57 (1996) View ArticleMATHMathSciNetGoogle Scholar
  21. Qiu, S-L, Vamanamurthy, MK, Vuorinen, M: Some inequalities for the growth of elliptic integrals. SIAM J. Math. Anal. 29(5), 1224-1237 (1998) View ArticleMATHMathSciNetGoogle Scholar
  22. Barnard, RW, Pearce, K, Richards, KC: An inequality involving the generalized hypergeometric function and the arc legth of an ellipse. SIAM J. Math. Anal. 31(3), 693-699 (2000) View ArticleMATHMathSciNetGoogle Scholar
  23. Barnard, RW, Pearce, K, Richards, KC: A monotonicity properties involving \({}_{3}F_{2}\), and comparisons of the classical approximations of elliptical arc length. SIAM J. Math. Anal. 32(2), 403-419 (2000) View ArticleMATHMathSciNetGoogle Scholar
  24. Baricz, Á: Turán type inequalities for generalized complete elliptic integrals. Math. Z. 256(4), 895-911 (2007) View ArticleMATHMathSciNetGoogle Scholar
  25. Wang, G-D, Zhang, X-H, Chu, Y-M: Inequalities for the generalized elliptic integrals and modular functions. J. Math. Anal. Appl. 331(2), 1275-1283 (2007) View ArticleMATHMathSciNetGoogle Scholar
  26. Zhang, X-H, Wang, G-D, Chu, Y-M: Remarks on generalized elliptic integrals. Proc. R. Soc. Edinb. Sect. A 139(2), 417-426 (2009) View ArticleMATHMathSciNetGoogle Scholar
  27. Zhang, X-H, Wang, G-D, Chu, Y-M: Convexity with respect to Hölder mean involving zero-balanced hypergeometric functions. J. Math. Anal. Appl. 353(1), 256-259 (2009) View ArticleMATHMathSciNetGoogle Scholar
  28. András, S, Baricz, Á: Bounds for complete elliptic integrals of the first kind. Expo. Math. 28(4), 357-364 (2010) View ArticleMATHMathSciNetGoogle Scholar
  29. Neuman, E: Inequalities and bounds for generalized complete integrals. J. Math. Anal. Appl. 373(1), 203-213 (2011) View ArticleMATHMathSciNetGoogle Scholar
  30. Wang, M-K, Chu, Y-M, Qiu, Y-F, Qiu, S-L: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887-890 (2011) View ArticleMATHMathSciNetGoogle Scholar
  31. Chu, Y-M, Wang, M-K, Qiu, Y-F: On Alzer and Qiu’s conjecture for complete elliptic integral and inverse hyperbolic tangent function. Abstr. Appl. Anal. 2011, Article ID 697547 (2011) MATHMathSciNetGoogle Scholar
  32. Guo, B-N, Qi, F: Some bounds for complete elliptic integrals of the first and second kinds. Math. Inequal. Appl. 14(2), 323-334 (2011) MATHMathSciNetGoogle Scholar
  33. Bhayo, BA, Vuorinen, M: On generalized complete integrals and modular functions. Proc. Edinb. Math. Soc. (2) 55(3), 591-611 (2012) View ArticleMATHMathSciNetGoogle Scholar
  34. Wang, M-K, Qiu, S-L, Chu, Y-M, Jiang, Y-P: Generalized Hersch-Pfluger distortion function and complete elliptic integrals. J. Math. Anal. Appl. 385(1), 221-229 (2012) View ArticleMATHMathSciNetGoogle Scholar
  35. Wang, M-K, Chu, Y-M, Qiu, S-L, Jiang, Y-P: Convexity of the complete elliptic integrals of the first kind with respect to Hölder means. J. Math. Anal. Appl. 388(2), 1141-1146 (2012) View ArticleMATHMathSciNetGoogle Scholar
  36. Chu, Y-M, Wang, M-K, Jiang, Y-P, Qiu, S-L: Concavity of the complete elliptic integrals of the second kind with respect to Hölder means. J. Math. Anal. Appl. 395(2), 637-642 (2012) View ArticleMATHMathSciNetGoogle Scholar
  37. Chu, Y-M, Qiu, Y-F, Wang, M-K: Hölder mean inequalities for complete elliptic integrals. Integral Transforms Spec. Funct. 23(7), 521-527 (2012) View ArticleMATHMathSciNetGoogle Scholar
  38. Chu, Y-M, Wang, M-K, Qiu, S-L, Jiang, Y-P: Bounds for complete elliptic integrals of the second kind with applications. Comput. Math. Appl. 63(7), 1177-1184 (2012) View ArticleMATHMathSciNetGoogle Scholar
  39. Chu, Y-M, Wang, M-K: Optimal Lehmer mean bounds for Toader mean. Results Math. 61(3-4), 223-229 (2012) View ArticleMATHMathSciNetGoogle Scholar
  40. Wang, M-K, Chu, Y-M: Asymptotical bounds for complete elliptic integrals of the second kind. J. Math. Anal. Appl. 402(1), 119-126 (2013) View ArticleMATHMathSciNetGoogle Scholar
  41. Chu, Y-M, Wang, M-K, Qiu, Y-F, Ma, X-Y: Sharp two parameters bounds for the logarithmic mean and the arithmetic-geometric mean of Gauss. J. Math. Inequal. 7(3), 349-355 (2013) View ArticleMATHMathSciNetGoogle Scholar
  42. Wang, M-K, Chu, Y-M, Qiu, S-L: Some monotonicity properties of generalized elliptic integrals with applications. Math. Inequal. Appl. 16(3), 671-677 (2013) MATHMathSciNetGoogle Scholar
  43. Chu, Y-M, Qiu, S-L, Wang, M-K: Sharp inequalities involving the power mean and complete elliptic integral of the first kind. Rocky Mt. J. Math. 43(5), 1489-1496 (2013) View ArticleMATHMathSciNetGoogle Scholar
  44. Wang, M-K, Chu, Y-M, Jiang, Y-P, Qiu, S-L: Bounds of the perimeter of an ellipse using arithmetic, geometric and harmonic means. Math. Inequal. Appl. 17(1), 101-111 (2014) MATHMathSciNetGoogle Scholar
  45. Wang, G-D, Zhang, X-H, Chu, Y-M: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661-1667 (2014) View ArticleMATHMathSciNetGoogle Scholar
  46. Chu, Y-M, Zhao, T-H: Convexity and concavity of the complete elliptic integrals with respect to Lehmer mean. J. Inequal. Appl. 2015, Article ID 396 (2015) View ArticleMATHMathSciNetGoogle Scholar
  47. Wang, H, Qian, W-M, Chu, Y-M: Optimal bounds for Gaussian arithmetic-geometric mean with applications to complete elliptic integral. J. Funct. Spaces 2016, Article ID 3698463 (2016) MATHMathSciNetGoogle Scholar
  48. Yang, Z-H, Chu, Y-M, Zhang, W: Accurate approximations for the complete elliptic integrals of the second kind. J. Math. Anal. Appl. 438(2), 875-888 (2016) View ArticleMATHMathSciNetGoogle Scholar
  49. Yang, Z-H, Chu, Y-M, Zhang, W: Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean. J. Inequal. Appl. 2016, Article ID 176 (2016) View ArticleMATHMathSciNetGoogle Scholar
  50. Yang, Z-H, Chu, Y-M, Zhang, X-H: Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind. J. Nonlinear Sci. Appl. 10(3), 929-936 (2017) View ArticleMathSciNetGoogle Scholar
  51. Yang, Z-H, Chu, Y-M: A monotonicity property involving the generalized elliptic integral of the first kind. Math. Inequal. Appl. 20(3), 729-735 (2017) MATHMathSciNetGoogle Scholar
  52. Alzer, H, Richards, KC: Inequalities for the ratio of complete elliptic integrals. Proc. Am. Math. Soc. 145(4), 1661-1670 (2017) MATHMathSciNetGoogle Scholar
  53. Toader, G: Some mean values related to the arithmetic-geometric mean. J. Math. Anal. Appl. 218(2), 358-368 (1998) View ArticleMATHMathSciNetGoogle Scholar
  54. Carlson, BC, Vuorinen, M: Inequality of the AGM and the logarithmic mean. SIAM Rev. 33(4), 653-654 (1991) View ArticleGoogle Scholar
  55. Vamanamurthy, MK, Vuorinen, M: Inequalities for means. J. Math. Anal. Appl. 183(1), 155-166 (1994) View ArticleMATHMathSciNetGoogle Scholar
  56. Qiu, S-L, Vamanamurthy, MK: Sharp estimates for complete elliptic integrals. SIAM J. Math. Anal. 27(3), 823-834 (1996) View ArticleMATHMathSciNetGoogle Scholar
  57. Alzer, H: Sharp inequalities for the complete elliptic integral of the first kind. Math. Proc. Camb. Philos. Soc. 124(2), 309-314 (1998) View ArticleMATHMathSciNetGoogle Scholar
  58. Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Functional inequalities for hypergeometric functions and complete elliptic integrals. SIAM J. Math. Anal. 23(2), 512-524 (1992) View ArticleMATHMathSciNetGoogle Scholar
  59. Alzer, H, Qiu, S-L: Monotonicity theorem and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289-312 (2004) View ArticleMATHMathSciNetGoogle Scholar
  60. Yang, Z-H, Song, Y-Q, Chu, Y-M: Sharp bounds for the arithmetic-geometric mean. J. Inequal. Appl. 2014, Article ID 192 (2014) View ArticleMATHMathSciNetGoogle Scholar
  61. Chu, Y-M, Wang, M-K, Qiu, S-L, Qiu, Y-F: Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011, Article ID 605259 (2011) MATHMathSciNetGoogle Scholar
  62. Chu, Y-M, Wang, M-K: Inequalities between arithmetic-geometric, Gini, and Toader mean. Abstr. Appl. Anal. 2012, Article ID 830585 (2012) MATHMathSciNetGoogle Scholar
  63. Chu, Y-M, Wang, M-K, Qiu, S-L: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41-51 (2012) View ArticleMATHMathSciNetGoogle Scholar
  64. Chu, Y-M, Wang, M-K, Ma, X-Y: Sharp bounds for Toader mean in terms of contraharmonic mean with applications. J. Math. Inequal. 7(2), 161-166 (2013) View ArticleMATHMathSciNetGoogle Scholar
  65. Song, Y-Q, Jiang, W-D, Chu, Y-M, Yan, D-D: Optimal bounds for Toader mean in terms of arithmetic and contraharmonic means. J. Math. Inequal. 7(4), 751-757 (2013) View ArticleMATHMathSciNetGoogle Scholar
  66. Hua, Y, Qi, F: A double inequality for bounding Toader mean by the centroidal mean. Proc. Indian Acad. Sci. Math. Sci. 124(4), 527-531 (2014) View ArticleMATHMathSciNetGoogle Scholar
  67. Hua, Y, Qi, F: The best bounds for Toader mean in terms of the centroidal and arithmetic means. Filomat 28(4), 775-780 (2014) View ArticleMATHMathSciNetGoogle Scholar
  68. Li, J-F, Qian, W-M, Chu, Y-M: Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means. J. Inequal. Appl. 2015, Article ID 277 (2015) View ArticleMATHMathSciNetGoogle Scholar
  69. Qian, W-M, Song, Y-Q, Zhang, X-H, Chu, Y-M: Sharp bounds for Toader mean in terms of arithmetic and second contraharmonic means. J. Funct. Spaces 2015, Article ID 452823 (2015) MATHMathSciNetGoogle Scholar
  70. Zhao, T-H, Chu, Y-M, Zhang, W: Optimal inequalities for bounding Toader mean by arithmetic and quadratic mean. J. Inequal. Appl. 2017, Article ID 26 (2017) View ArticleMATHMathSciNetGoogle Scholar
  71. Yang, Z-H, Chu, Y-M: A sharp lower bound for Toader-Qi mean with applications. J. Funct. Spaces 2016, Article ID 4165601 (2016) MATHMathSciNetGoogle Scholar
  72. Yang, Z-H, Chu, Y-M: On approximating the modified Bessel function of the first kind and Toader-Qi mean. J. Inequal. Appl. 2016, Article ID 40 (2016) View ArticleMATHMathSciNetGoogle Scholar
  73. Yang, Z-H, Chu, Y-M, Song, Y-Q: Sharp bounds for Toader-Qi mean in terms of logarithmic and identric mean. Math. Inequal. Appl. 19(2), 721-730 (2016) MATHMathSciNetGoogle Scholar
  74. Qian, W-M, Zhang, X-H, Chu, Y-M: Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means. J. Math. Inequal. 11(1), 121-127 (2017) View ArticleMATHMathSciNetGoogle Scholar
  75. Olver, FWJ, Lozier, DW, Boisvert, RF, Clark, CW (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010) MATHGoogle Scholar

Copyright

© The Author(s) 2017