Skip to main content

Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters

Abstract

In the article, we present the best possible parameters \(\lambda=\lambda (p)\) and \(\mu=\mu(p)\) on the interval \([0, 1/2]\) such that the double inequality

$$\begin{aligned}& G^{p}\bigl[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a \bigr]A^{1-p}(a,b) \\& \quad< E(a,b) < G^{p}\bigl[\mu a+(1-\mu)b, \mu b+(1-\mu)a \bigr]A^{1-p}(a,b) \end{aligned}$$

holds for any \(p\in[1, \infty)\) and all \(a, b>0\) with \(a\neq b\), where \(A(a, b)=(a+b)/2\), \(G(a,b)=\sqrt{ab}\) and \(E(a,b)=[2\int_{0}^{\pi /2}\sqrt{a\cos^{2}\theta+b\sin^{2}\theta}\,d\theta/\pi]^{2}\) are the arithmetic, geometric and special quasi-arithmetic means of a and b, respectively.

1 Introduction

Let \(r\in(0,1)\). Then the Legendre complete elliptic integrals \(\mathcal {K}(r)\) and \(\mathcal{E}(r)\) [1, 2] of the first and second kinds are defined as

$$ \mathcal{K}(r)= \int_{0}^{\pi/2}\frac{dt}{\sqrt{1-r^{2}\sin^{2}(t)}}, \qquad\mathcal{E}(r)= \int_{0}^{\pi/2}\sqrt{1-r^{2} \sin^{2}(t)}\,dt, $$

respectively. It is well known that the function \(r\rightarrow\mathcal {K}(r)\) is strictly increasing from \((0, 1)\) onto \((\pi/2, \infty)\) and the function \(r\rightarrow\mathcal{E}(r)\) is strictly decreasing from \((0, 1)\) onto \((1, \pi/2)\), and they satisfy the formulas (see [3, Appendix E, pp. 474,475])

$$ \begin{gathered} \frac{d{\mathcal{K}(r)}}{dr}=\frac{{\mathcal{E}(r)}-{r'}^{2}{\mathcal {K}}(r)}{r{r'}^{2}},\qquad \frac{d{\mathcal{E}(r)}}{dr}=\frac{{\mathcal{E}(r)}-{\mathcal{K}(r)}}{r}, \\ \mathcal{K} \biggl(\frac{2\sqrt{r}}{1+r} \biggr)=(1+r)\mathcal{K}(r),\qquad \mathcal{E} \biggl(\frac{2\sqrt{r}}{1+r} \biggr)=\frac{2\mathcal {E}(r)-{r'}^{2}\mathcal{K}}{1+r}, \end{gathered} $$

where \(r'=\sqrt{1-r^{2}}\).

The complete elliptic integrals \(\mathcal{K}(r)\) and \(\mathcal{E}(r)\) are the particular cases of the Gaussian hypergeometric function [410]

$$ F(a,b;c;x)=\sum_{n=0}^{\infty}\frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac {x^{n}}{n!}\quad (-1< x< 1), $$

where \((a)_{0}=1\) for \(a\neq0\), \((a)_{n}=a(a+1)(a+2)\cdots (a+n-1)=\Gamma(a+n)/\Gamma(a)\) is the shifted factorial function and \(\Gamma(x)=\int_{0}^{\infty }t^{x-1}e^{-t}\,dt\) (\(x>0\)) is the gamma function [1118]. Indeed,

$$ \begin{gathered} \mathcal{K}(r)=\frac{\pi}{2}F \biggl( \frac{1}{2},\frac{1}{2};1;r^{2} \biggr) = \frac{\pi}{2}\sum_{n=0}^{\infty} \frac{ (\frac{1}{2} )_{n}^{2}}{(n!)^{2}}r^{2n}, \\ \mathcal{E}(r)=\frac{\pi}{2}F \biggl(-\frac{1}{2}, \frac{1}{2};1;r^{2} \biggr) =\frac{\pi}{2}\sum _{n=0}^{\infty}\frac{ (-\frac{1}{2} )_{n} (\frac{1}{2} )_{n}}{(n!)^{2}}r^{2n}. \end{gathered} $$

Recently, the bounds for the complete elliptic integrals have attracted the attention of many researchers. In particular, many remarkable inequalities and properties for \(\mathcal{K}(r)\), \(\mathcal{E}(r)\) and \(F(a,b;c;x)\) can be found in the literature [1952].

In 1998, a class of quasi-arithmetic mean was introduced by Toader [53] which is defined by

$$ M_{p,n}(a,b)=p^{-1} \biggl(\frac{1}{\pi} \int_{0}^{\pi}p\bigl(r_{n}(\theta )\,d \theta\bigr) \biggr)=p^{-1} \biggl(\frac{2}{\pi} \int_{0}^{\pi/2}p\bigl(r_{n}(\theta )\,d \theta\bigr) \biggr), $$

where \(r_{n}(\theta)=(a^{n}\cos^{2}\theta+b^{n}\sin^{2}\theta)^{1/n}\) for \(n\neq0\), \(r_{0}(\theta)=a^{\cos^{2}\theta}b^{\sin^{2}\theta}\), and p is a strictly monotonic function. It is well known that many important means are the special cases of the quasi-arithmetic mean. For example,

$$\begin{aligned} M_{1/x,2}(a,b)= \frac{\pi}{2 \int_{0}^{\pi /2}{\frac{d\theta}{\sqrt{a^{2}\cos^{2}\theta+b^{2}\sin^{2}\theta}}}} = \textstyle\begin{cases} {\pi a} / [2{\mathcal{K}} (\sqrt{1-(b/a)^{2}} ) ],&a\geq b,\\ {\pi b} / [2{\mathcal{K}} (\sqrt{1-(a/b)^{2}} ) ],&a< b, \end{cases}\displaystyle \end{aligned}$$

is the arithmetic-geometric mean of Gauss [5460],

$$ M_{x,2}(a,b))=\frac{2}{\pi} \int_{0}^{\pi/2}\sqrt{a^{2}\cos^{2} \theta +b^{2}\sin^{2}\theta}\,d\theta = \textstyle\begin{cases}2a{\mathcal{E}} (\sqrt{1-(b/a)^{2}} )/\pi,&a\geq b,\\ 2b{\mathcal{E}} (\sqrt{1-(a/b)^{2}} )/\pi,&a< b, \end{cases} $$

is the Toader mean [6170], and

$$ M_{x,0}(a,b))=\frac{2}{\pi} \int_{0}^{\pi/2}a^{\cos^{2}\theta}b^{\sin ^{2}\theta}\,d \theta $$

is the Toader-Qi mean [7174].

Let \(p=\sqrt{x}\) and \(n=1\). Then \(M_{p,n}(a,b)\) reduces to a special quasi-arithmetic mean

$$ E(a,b)=M_{\sqrt{x},1}(a,b))= \textstyle\begin{cases}4a [{\mathcal{E}} (\sqrt{1-b/a} ) ]^{2}/\pi ^{2},&a\geq b,\\ 4b [{\mathcal{E}} (\sqrt{1-a/b} ) ]^{2}/\pi^{2},&a< b. \end{cases} $$
(1.1)

Let

$$ \begin{gathered} A(a,b)=\frac{a+b}{2}, \qquad G(a,b)=\sqrt{ab}, \\ M_{p}(a,b)= \biggl(\frac{a^{p}+b^{p}}{2} \biggr)^{1/p} (p\neq0), \qquad M_{0}(a,b)=\sqrt{ab}, \end{gathered} $$

be the arithmetic, geometric and pth power means of a and b, respectively. Then it is well known that the inequality

$$ G(a,b)=M_{0}(a,b)< A(a,b)=M_{1}(a,b) $$
(1.2)

holds for all \(a, b>0\) with \(a\neq b\), and the double inequality

$$ \frac{\pi}{2}M_{3/2}\bigl(1, r^{\prime}\bigr)< \mathcal{E}(r)< \frac{\pi }{2}M_{2}\bigl(1, r^{\prime}\bigr) $$
(1.3)

holds for all \(r\in(0, 1)\) (see [75, 19.9.4]).

From (1.1)-(1.3) we clearly see that

$$ G(a,b)< E(a,b)< A(a,b) $$

for all \(a, b>0\) with \(a\neq b\).

Let \(p\in[1, \infty)\) and

$$ f(x; p; a, b)=G^{p}\bigl[xa+(1-x)b, xb+(1-x)a\bigr]A^{1-p}(a,b). $$

Then it is not difficult to verify that the function \(x\rightarrow f(x; p; a, b)\) is strictly increasing on \([0, 1/2]\) for fixed \(p\in[1, \infty)\) and \(a, b>0\) with \(a\neq b\). Note that

$$ \begin{aligned}[b] f(0; p; a, b)&=G^{p}(a,b)A^{1-p}(a,b) \leq G(a,b) \\ &< E(a,b)< A(a,b)=f(1/2; p; a, b) \end{aligned} $$
(1.4)

for all \(p\in[1, \infty)\) and \(a, b>0\) with \(a\neq b\).

Motivated by inequalities (1.4) and the monotonicity of the function \(x\rightarrow f(x; p; a, b)\) on the interval \([0, 1/2]\), in the article, we shall find the best possible parameters \(\lambda=\lambda(p), \mu=\mu(p)\) on the interval \([0, 1/2]\) such that the double inequality

$$ \begin{aligned} &G^{p}\bigl[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a\bigr]A^{1-p}(a,b) \\ &\quad< E(a,b)< G^{p}\bigl[\mu a+(1-\mu)b, \mu b+(1-\mu)a \bigr]A^{1-p}(a,b) \end{aligned} $$

holds for any \(p\in[1, \infty)\) and all \(a, b>0\) with \(a\neq b\).

2 Lemmas

Lemma 2.1

(see [3, Theorem 1.25])

Let \(-\infty< a< b<+\infty\), \(f, g: [a, b]\rightarrow\mathbb{R}\) be continuous on \([a, b]\) and differentiable on \((a,b)\), and \(g^{\prime}(x)\neq0\) on \((a, b)\). If \(f^{\prime}(x)/g^{\prime}(x)\) is increasing (decreasing) on \((a,b)\), then so are the functions

$$ \frac{f(x)-f(a)}{g(x)-g(a)}, \qquad\frac{f(x)-f(b)}{g(x)-g(b)}. $$

If \(f^{\prime}(x)/g^{\prime}(x)\) is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2

The inequality

$$ \frac{1}{4p}+ \biggl(\frac{2\sqrt{2}}{\pi} \biggr)^{4/p}< 1 $$

holds for all \(p\in[1, \infty)\).

Proof

Let

$$ f(p)=\frac{1}{4p}+ \biggl(\frac{2\sqrt{2}}{\pi} \biggr)^{4/p}. $$
(2.1)

Then simple computations lead to

$$\begin{aligned}& \lim_{p\rightarrow\infty}f(p)=1, \end{aligned}$$
(2.2)
$$\begin{aligned}& \begin{aligned}[b] f^{\prime}(p)&=\frac{4}{p^{2}}\log \biggl(\frac{\sqrt{2}\pi}{4} \biggr) \biggl[ \biggl(\frac{2\sqrt{2}}{\pi} \biggr)^{4/p}-\frac{1}{16\log (\frac{\sqrt{2}\pi}{4} )} \biggr] \\ &\geq\frac{4}{p^{2}}\log \biggl(\frac{\sqrt{2}\pi}{4} \biggr) \biggl[ \biggl( \frac{2\sqrt{2}}{\pi} \biggr)^{4}-\frac{1}{16\log (\frac {\sqrt{2}\pi}{4} )} \biggr] \\ &=\frac{1024\log (\frac{\sqrt{2}\pi}{4} )-\pi^{4}}{4\pi^{4}p^{2}}>0 \end{aligned} \end{aligned}$$
(2.3)

for \(p\in[1, \infty)\).

Therefore, Lemma 2.2 follows easily from (2.1)-(2.3). □

Lemma 2.3

The following statements are true:

  1. (1)

    The function \(r\mapsto[\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r)]/r^{2}\) is strictly increasing from \((0, 1)\) onto \((\pi/4, 1)\).

  2. (2)

    The function \(r\mapsto[\mathcal{K}(r)-\mathcal {E}(r)]/r^{2}\) is strictly increasing from \((0, 1)\) onto \((\pi/4, \infty)\).

  3. (3)

    The function \(r\mapsto[\mathcal{E}(r)+(1-r^{2})\mathcal {K}(r)]/(1-r^{2})\) is strictly increasing from \((0, 1)\) onto \((\pi, \infty)\).

  4. (4)

    The function \(r\mapsto[2\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r)]/(1+r^{2})\) is strictly decreasing from \((0, 1)\) onto \((1, \pi/2)\).

  5. (5)

    The function \(r\mapsto r^{2}[2\mathcal {E}(r)-(1-r^{2})\mathcal{K}(r)]/ [(1+r^{2})^{2}(\mathcal {K}(r)-\mathcal{E}(r)) ]\) is strictly decreasing from \((0, 1)\) onto \((0, 2)\).

Proof

Parts (1) and (2) can be found in the literature [3, Theorem 3.21(1) and Exercise 3.43(11)].

For part (3), let \(f_{1}(r)=[\mathcal{E}(r)+(1-r^{2})\mathcal {K}(r)]/(1-r^{2})\). Then simple computations lead to

$$\begin{aligned}& f_{1}\bigl(0^{+}\bigr)=\pi, \qquad f_{1} \bigl(1^{-}\bigr)=\infty, \end{aligned}$$
(2.4)
$$\begin{aligned}& f^{\prime}_{1}(r)=\frac{r}{(1-r^{2})^{2}} \biggl[\frac{2}{r^{2}} \bigl(\mathcal {E}(r)-\bigl(1-r^{2}\bigr)\mathcal{K}(r)\bigr)+ \bigl(1-r^{2}\bigr)\mathcal{K}(r) \biggr]. \end{aligned}$$
(2.5)

It follows from part (1) and (2.5) that

$$ f^{\prime}_{1}(r)>0 $$
(2.6)

for all \(r\in(0, 1)\). Therefore, part (3) follows from (2.4) and (2.6).

For part (4), let \(f_{2}(r)=[2\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r)]/(1+r^{2})\), then one has

$$\begin{aligned}& f_{2}\bigl(0^{+}\bigr)=\frac{\pi}{2}, \qquad f_{1}\bigl(1^{-}\bigr)=1, \end{aligned}$$
(2.7)
$$\begin{aligned}& f^{\prime}_{2}(r)=\frac{r}{(1+r^{2})^{2}} \biggl[ \bigl(1-r^{2}\bigr)\frac{\mathcal {E}(r)-(1-r^{2})\mathcal{K}(r)}{r^{2}}-2\mathcal{E}(r) \biggr]. \end{aligned}$$
(2.8)

From part (1) and (2.8) we clearly see that

$$ f^{\prime}_{2}(r)< -\frac{r}{(1+r^{2})}< 0 $$
(2.9)

for all \(r\in(0, 1)\). Therefore, part (4) follows from (2.7) and (2.9).

For part (5), let \(f_{3}(r)=r^{2}[2\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r)]/ [(1+r^{2})^{2}(\mathcal{K}(r)-\mathcal{E}(r)) ]\), then \(f_{3}(r)\) can be rewritten as

$$ f_{3}(r)=\frac{2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r)}{1+r^{2}} \times\frac{1}{\frac{\mathcal{K}(r)-\mathcal{E}(r)}{r^{2}}}\times \frac {1}{1+r^{2}}. $$
(2.10)

Therefore, part (5) follows easily from parts (2) and (4) together with (2.10). □

Lemma 2.4

The function

$$ g(r)=\frac{r^{2}\mathcal{K}(r)}{(1+r^{2})[\mathcal{K}(r)-\mathcal{E}(r)]} $$

is strictly decreasing from \((0, 1)\) onto \((1/2, 2)\).

Proof

Let \(g_{1}(r)=r^{2}\mathcal{K}(r)\) and \(g_{2}(r)=(1+r^{2})[\mathcal {K}(r)-\mathcal{E}(r)]\). Then we clearly see that

$$\begin{aligned}& g_{1}\bigl(0^{+}\bigr)=g_{2} \bigl(0^{+}\bigr)=0, \qquad g(r)=\frac{g_{1}(r)}{g_{2}(r)}, \end{aligned}$$
(2.11)
$$\begin{aligned}& g\bigl(1^{-}\bigr)=\frac{1}{2}, \end{aligned}$$
(2.12)
$$\begin{aligned}& \frac{g^{\prime}_{1}(r)}{g^{\prime}_{2}(r)}=\frac{1}{2-\frac{3\mathcal {E}(r)}{\frac{\mathcal{E}(r)+(1-r^{2})\mathcal{K}(r)}{1-r^{2}}}}. \end{aligned}$$
(2.13)

From Lemma 2.3(3), (2.11) and (2.13) we know that

$$ g\bigl(0^{+}\bigr)=\lim_{r\rightarrow0^{+}}\frac{g^{\prime}_{1}(r)}{g^{\prime}_{2}(r)}=2 $$
(2.14)

and the function \(g^{\prime}_{1}(r)/g^{\prime}_{2}(r)\) is strictly decreasing on \((0, 1)\).

Therefore, Lemma 2.4 follows easily from Lemma 2.1, (2.11), (2.12) and (2.14) together with the monotonicity of the function \(g^{\prime}_{1}(r)/g^{\prime}_{2}(r)\). □

Lemma 2.5

Let \(u\in[0, 1]\), \(r\in(0, 1)\), \(p\in[1, \infty)\) and

$$ h(u, p; r)=\frac{1}{2}p\log \biggl[1-\frac{4ur^{2}}{(1+r^{2})^{2}} \biggr] -\log \biggl[\frac{4 (2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r) )^{2}}{\pi^{2}(1+r^{2})} \biggr]. $$
(2.15)

Then one has

  1. (1)

    \(h(u, p; r)>0\) for all \(r\in(0, 1)\) if and only if \(u\leq1/4p\);

  2. (2)

    \(h(u, p; r)<0\) for all \(r\in(0, 1)\) if and only if \(u\geq 1-(2\sqrt{2}/\pi)^{4/p}\).

Proof

It follows from (2.15) that

$$\begin{aligned}& h\bigl(u, p; 0^{+}\bigr)=0, \end{aligned}$$
(2.16)
$$\begin{aligned}& h\bigl(u, p; 1^{-}\bigr)=\frac{p}{2}\log(1-u)+\log \biggl( \frac{\pi^{2}}{8} \biggr), \end{aligned}$$
(2.17)
$$\begin{aligned}& \begin{aligned}[b] \frac{\partial h(u, p; r)}{\partial r}&=\frac{2(1-r^{2})[\mathcal {K}(r)-\mathcal{E}(r)]}{ r(1+r^{2})[2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r)]} - \frac{4pur(1-r^{2})}{(1+r^{2}) [(1+r^{2})^{2}-4ur^{2} ]} \\ &=\frac{2(1-r^{2}) [2(\mathcal{K}(r)-\mathcal {E}(r))+p(2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r)) ]}{(1+r^{2}) [(1+r^{2})^{2}-4ur^{2} ][2\mathcal {E}(r)-(1-r^{2})\mathcal{K}(r)]}\bigl[h_{1}(p; r)-2u\bigr], \end{aligned} \end{aligned}$$
(2.18)

where

$$ \begin{aligned}[b] h_{1}(p; r)&=\frac{(1+r^{2})^{2}[\mathcal{K}(r)-\mathcal{E}(r)]}{r^{2} [2(\mathcal{K}(r)-\mathcal{E}(r))+p(2\mathcal {E}(r)-(1-r^{2})\mathcal{K}(r)) ]} \\ &=\frac{1}{g(r)+(p-1)f_{3}(r)}, \end{aligned} $$
(2.19)

where \(f_{3}(r)\) and \(g(r)\) are defined by (2.10) and Lemma 2.4, respectively.

From Lemma 2.3(5) and Lemma 2.4 together with (2.19) we clearly see that the function \(r\rightarrow h_{1}(p; r)\) is strictly increasing on \((0, 1)\) and

$$\begin{aligned}& h_{1}\bigl(p; 0^{+}\bigr)=\frac{1}{2p}, \end{aligned}$$
(2.20)
$$\begin{aligned}& h_{1}\bigl(p; 1^{-}\bigr)=2. \end{aligned}$$
(2.21)

From Lemma 2.2 we know that \(1-(2\sqrt{2}/\pi)^{4/p}>1/(4p)\). Therefore, we only need to divide the proof into three cases as follows.

Case 1 \(u\leq1/(4p)\). Then Lemma 2.3(4), (2.18), (2.20) and the monotonicity of the function \(r\rightarrow h_{1}(p; r)\) on the interval \((0, 1)\) lead to the conclusion that the function \(r\rightarrow h(u, p; r)\) is strictly increasing on \((0, 1)\). Therefore, \(h(u, p; r)>0\) for all \(r\in(0, 1)\) follows from (2.16) and the monotonicity of the function \(r\rightarrow h(u, p; r)\).

Case 2 \(u\geq1-(2\sqrt{2}/\pi)^{4/p}\). Then from Lemma 2.2, Lemma 2.3(5), (2.17), (2.18), (2.20), (2.21) and the monotonicity of the function \(r\rightarrow h_{1}(p; r)\) on the interval \((0, 1)\) we clearly see that there exists \(r_{0}\in(0, 1)\) such that the function \(r\rightarrow h(u, p; r)\) is strictly decreasing on \((0, r_{0})\) and strictly increasing on \((r_{0}, 1)\), and

$$ h\bigl(u, p; 1^{-}\bigr)\leq0. $$
(2.22)

Therefore, \(h(u, p; r)<0\) for all \(r\in(0, 1)\) follows from (2.16) and (2.22) together with the piecewise monotonicity of the function \(r\rightarrow h(u, p; r)\) on the interval \((0, 1)\).

Case 3 \(1/(4p)< u<1-(2\sqrt{2}/\pi)^{4/p}\). Then (2.17) leads to

$$ h\bigl(u, p; 1^{-}\bigr)>0. $$
(2.23)

It follows from Lemma 2.3(5), (2.18), (2.20), (2.21) and the monotonicity of the function \(r\rightarrow h_{1}(p; r)\) on the interval \((0, 1)\) that there exists \(r^{\ast}\in(0, 1)\) such that the function \(r\rightarrow h(u, p; r)\) is strictly decreasing on \((0, r^{\ast})\) and strictly increasing on \((r^{\ast}, 1)\). Therefore, there exists \(\lambda \in(0, 1)\) such that \(h(u, p; r)<0\) for \(r\in(0, \lambda)\) and \(h(u, p; r)>0\) for \(r\in(\lambda, 1)\). □

3 Main result

Theorem 3.1

Let \(\lambda, \mu\in[0, 1/2]\). Then the double inequality

$$ \begin{gathered} G^{p}\bigl[\lambda a+(1-\lambda)b, \lambda b+(1-\lambda)a\bigr]A^{1-p}(a,b) \\ \quad< E(a,b)< G^{p}\bigl[\mu a+(1-\mu)b, \mu b+(1-\mu)a \bigr]A^{1-p}(a,b) \end{gathered} $$

holds for any \(p\in[1, \infty)\) and all \(a, b>0\) with \(a\neq b\) if and only if \(\lambda\leq1/2-\sqrt{1-(2\sqrt{2}/\pi)^{4/p}}/2\) and \(\mu\geq1/2-\sqrt{p}/(4p)\).

Proof

Let \(t\in[0, 1/2]\), since \(G^{p}[ta+(1-t)b, tb+(1-t)a]A^{1-p}(a,b)\) and \(E(a,b)\) are symmetric and homogeneous of degree one, without loss of generality, we assume that \(a>b>0\). Let \(r\in(0, 1)\) and \(b/a=(1-r)^{2}/(1+r)^{2}\). Then (1.1) leads to

$$ \begin{gathered} E(a,b)=\frac{4(1+r)^{2}}{\pi^{2}(1+r^{2})}A(a,b){\mathcal{E}}^{2} \biggl( \frac{2\sqrt{r}}{1+r} \biggr) =\frac{4}{\pi^{2}}A(a,b)\frac{ [2\mathcal{E}(r)-(1-r^{2})\mathcal {K}(r) ]^{2}}{1+r^{2}}, \\ \log \bigl[G^{p}\bigl(ta+(1-t)b, tb+(1-t)a \bigr)A^{1-p}(a,b) \bigr]-\log E(a,b) \\ \quad=\log \biggl[\frac{G^{p}(ta+(1-t)b, tb+(1-t)a)A^{1-p}(a,b)}{A(a,b)} \biggr]-\log \biggl[\frac {E(a,b)}{A(a,b)} \biggr] \\ \quad=\frac{1}{2}p\log \biggl[1-\frac {4(1-2t)^{2}r^{2}}{(1+r^{2})^{2}} \biggr] -\log \biggl[ \frac{4 (2\mathcal{E}(r)-(1-r^{2})\mathcal{K}(r) )^{2}}{\pi^{2}(1+r^{2})} \biggr]. \end{gathered} $$
(3.1)

Therefore, Theorem 3.1 follows easily from Lemma 2.5 and (3.1). □

Let \(p=1, 2\), then Theorem 3.1 leads to Corollary 3.2 immediately.

Corollary 3.2

Let \(\lambda_{1}, \mu_{1}, \lambda_{2}, \mu_{2}\in[0, 1/2]\). Then the double inequalities

$$ \begin{gathered} H\bigl[\lambda_{1}a+(1- \lambda_{1})b, \lambda_{1}b+(1-\lambda _{1})a \bigr]< E(a,b)< H\bigl[\mu_{1}a+(1-\mu_{1})b, \mu_{1}b+(1-\mu_{1})a\bigr], \\ G\bigl[\lambda_{2}a+(1-\lambda_{2})b, \lambda_{2}b+(1- \lambda _{2})a\bigr]< E(a,b)< G\bigl[\mu_{2}a+(1- \mu_{2})b, \mu_{2}b+(1-\mu_{2})a\bigr] \end{gathered} $$

hold for all \(a, b>0\) with \(a\neq b\) if and only if \(\lambda_{1}\leq 1/2-\sqrt{1-8/\pi^{2}}/2=0.2823\ldots\) , \(\mu_{1}\geq1/2-\sqrt{2}/8=0.3232\ldots\) , \(\lambda_{2}\leq1/2-\sqrt {1-64/\pi^{4}}/2=0.2071\ldots\) and \(\mu_{2}\geq1/4\).

Let \(p\in[1, \infty)\), \(r\in(0, 1)\), \(a=r\), \(b=1-r^{2}={r^{\prime }}^{2}\), \(\lambda=1/2-\sqrt{1-(2\sqrt{2}/\pi)^{4/p}}/2\) and \(\mu=1/2-\sqrt{p}/(4p)\). Then (1.1) and Theorem 3.1 lead to Corollary 3.3 immediately.

Corollary 3.3

The double inequality

$$ \begin{gathered} \frac{\sqrt{2}\pi}{4} \bigl(1+{r^{\prime}}^{2} \bigr)^{(1-p)/2} \biggl[4{r^{\prime}}^{2} + \biggl( \frac{8}{\pi^{2}} \biggr)^{2/p}r^{4} \biggr]^{p/4} \\ \quad< \mathcal{E}(r) < \frac{\sqrt{2}\pi}{4} \bigl(1+{r^{\prime }}^{2} \bigr)^{(1-p)/2} \biggl[\bigl(1+{r^{\prime}}^{2} \bigr)^{2}-\frac {r^{4}}{4p} \biggr]^{p/4} \end{gathered} $$

holds for all \(r\in(0, 1)\) and \(p\in[1, \infty)\).

4 Results and discussion

In this paper, we provide the sharp bounds for the special quasi-arithmetic mean \(E(a,b)\) in terms of the arithmetic mean \(A(a,b)\) and geometric mean \(G(a,b)\) with two parameters. As consequences, we present the best possible one-parameter harmonic and geometric means bounds for \(E(a,b)\) and find new bounds for the complete elliptic integral of the second kind.

5 Conclusion

In the article, we derive a new bivariate mean \(E(a,b)\) from the quasi-arithmetic mean and provide its sharp upper and lower bounds in terms of the concave combination of arithmetic and geometric means.

References

  1. Bowman, F: Introduction to Elliptic Function with Applications. Dover, New York (1961)

    MATH  Google Scholar 

  2. Byrd, PF, Friedman, MD: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, New York (1971)

    Book  MATH  Google Scholar 

  3. Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997)

    MATH  Google Scholar 

  4. Anderson, GD, Qiu, S-L, Vuorinen, M: Precise estimates for differences of the Gaussian hypergeometric function. J. Math. Anal. Appl. 215(1), 212-234 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ponnusamy, S, Vuorinen, M: Univalence and convexity properties for Gaussian hypergeometric functions. Rocky Mt. J. Math. 31(1), 327-353 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Song, Y-Q, Zhou, P-G, Chu, Y-M: Inequalities for the Gaussian hypergeometric function. Sci. China Math. 57(11), 2369-2380 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Wang, M-K, Chu, Y-M, Jiang, Y-P: Ramanujan’s cubic transformation inequalities for zero-balanced hypergeometric functions. Rocky Mt. J. Math. 46(2), 679-691 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  8. Wang, M-K, Chu, Y-M, Song, Y-Q: Asymptotical formulas for Gaussian and generalized hypergeometric functions. Appl. Math. Comput. 276, 44-60 (2016)

    MathSciNet  Google Scholar 

  9. Wang, M-K, Chu, Y-M: Refinements of transformation inequalities for zero-balanced hypergeometric functions. Acta Math. Sci. 37B(3), 607-622 (2017)

    Article  MathSciNet  Google Scholar 

  10. Wang, M-K, Li, Y-M, Chu, Y-M: Inequalities and infinite product formula for Ramanujan generalized modular equation function, Ramanujan J. doi:10.1007/s11139-017-9888-3

  11. Maican, CC: Integral Evaluations Using the Gamma and Beta Functions and Elliptic Integrals in Engineering. International Press, Cambridge (2005)

    MATH  Google Scholar 

  12. Mortici, C: New approximation formulas for evaluating the ratio of gamma functions. Math. Comput. Model. 52(1-2), 425-433 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  13. Zhang, X-M, Chu, Y-M: A double inequality for gamma function. J. Inequal. Appl. 2009, Article ID 503782 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Zhao, T-H, Chu, Y-M, Jiang, Y-P: Monotonic and logarithmically convex properties of a function involving gamma functions. J. Inequal. Appl. 2009, Article ID 728618 (2009)

    MathSciNet  Google Scholar 

  15. Zhao, T-H, Chu, Y-M: A class of logarithmically completely monotonic functions associated with a gamma function. J. Inequal. Appl. 2010, Article ID 392431 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Zhao, T-H, Chu, Y-M, Wang, H: Logarithmically complete monotonicity properties relating to the gamma function. Abstr. Appl. Anal. 2010, Article ID 896483 (2010)

    MATH  MathSciNet  Google Scholar 

  17. Yang, Z-H, Zhang, W, Chu, Y-M: Monotonicity and inequalities involving the incomplete gamma function. J. Inequal. Appl. 2016, Article ID 221 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yang, Z-H, Zhang, W, Chu, Y-M: Monotonicity of the incomplete gamma function with applications. J. Inequal. Appl. 2016, Article ID 251 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  19. Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Functional inequalities for complete elliptic integrals and their ratios. SIAM J. Math. Anal. 21(2), 536-549 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Panteliou, SD, Dimarogonas, AD, Katz, IN: Direct and inverse interpolation for Jacobian elliptic functions, zeta function of Jacobi and complete elliptic integrals of the second kind. Comput. Math. Appl. 32(8), 51-57 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Qiu, S-L, Vamanamurthy, MK, Vuorinen, M: Some inequalities for the growth of elliptic integrals. SIAM J. Math. Anal. 29(5), 1224-1237 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Barnard, RW, Pearce, K, Richards, KC: An inequality involving the generalized hypergeometric function and the arc legth of an ellipse. SIAM J. Math. Anal. 31(3), 693-699 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Barnard, RW, Pearce, K, Richards, KC: A monotonicity properties involving \({}_{3}F_{2}\), and comparisons of the classical approximations of elliptical arc length. SIAM J. Math. Anal. 32(2), 403-419 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Baricz, Á: Turán type inequalities for generalized complete elliptic integrals. Math. Z. 256(4), 895-911 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang, G-D, Zhang, X-H, Chu, Y-M: Inequalities for the generalized elliptic integrals and modular functions. J. Math. Anal. Appl. 331(2), 1275-1283 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Zhang, X-H, Wang, G-D, Chu, Y-M: Remarks on generalized elliptic integrals. Proc. R. Soc. Edinb. Sect. A 139(2), 417-426 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhang, X-H, Wang, G-D, Chu, Y-M: Convexity with respect to Hölder mean involving zero-balanced hypergeometric functions. J. Math. Anal. Appl. 353(1), 256-259 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. András, S, Baricz, Á: Bounds for complete elliptic integrals of the first kind. Expo. Math. 28(4), 357-364 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  29. Neuman, E: Inequalities and bounds for generalized complete integrals. J. Math. Anal. Appl. 373(1), 203-213 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang, M-K, Chu, Y-M, Qiu, Y-F, Qiu, S-L: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887-890 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Chu, Y-M, Wang, M-K, Qiu, Y-F: On Alzer and Qiu’s conjecture for complete elliptic integral and inverse hyperbolic tangent function. Abstr. Appl. Anal. 2011, Article ID 697547 (2011)

    MATH  MathSciNet  Google Scholar 

  32. Guo, B-N, Qi, F: Some bounds for complete elliptic integrals of the first and second kinds. Math. Inequal. Appl. 14(2), 323-334 (2011)

    MATH  MathSciNet  Google Scholar 

  33. Bhayo, BA, Vuorinen, M: On generalized complete integrals and modular functions. Proc. Edinb. Math. Soc. (2) 55(3), 591-611 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wang, M-K, Qiu, S-L, Chu, Y-M, Jiang, Y-P: Generalized Hersch-Pfluger distortion function and complete elliptic integrals. J. Math. Anal. Appl. 385(1), 221-229 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang, M-K, Chu, Y-M, Qiu, S-L, Jiang, Y-P: Convexity of the complete elliptic integrals of the first kind with respect to Hölder means. J. Math. Anal. Appl. 388(2), 1141-1146 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  36. Chu, Y-M, Wang, M-K, Jiang, Y-P, Qiu, S-L: Concavity of the complete elliptic integrals of the second kind with respect to Hölder means. J. Math. Anal. Appl. 395(2), 637-642 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Chu, Y-M, Qiu, Y-F, Wang, M-K: Hölder mean inequalities for complete elliptic integrals. Integral Transforms Spec. Funct. 23(7), 521-527 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  38. Chu, Y-M, Wang, M-K, Qiu, S-L, Jiang, Y-P: Bounds for complete elliptic integrals of the second kind with applications. Comput. Math. Appl. 63(7), 1177-1184 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  39. Chu, Y-M, Wang, M-K: Optimal Lehmer mean bounds for Toader mean. Results Math. 61(3-4), 223-229 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  40. Wang, M-K, Chu, Y-M: Asymptotical bounds for complete elliptic integrals of the second kind. J. Math. Anal. Appl. 402(1), 119-126 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  41. Chu, Y-M, Wang, M-K, Qiu, Y-F, Ma, X-Y: Sharp two parameters bounds for the logarithmic mean and the arithmetic-geometric mean of Gauss. J. Math. Inequal. 7(3), 349-355 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wang, M-K, Chu, Y-M, Qiu, S-L: Some monotonicity properties of generalized elliptic integrals with applications. Math. Inequal. Appl. 16(3), 671-677 (2013)

    MATH  MathSciNet  Google Scholar 

  43. Chu, Y-M, Qiu, S-L, Wang, M-K: Sharp inequalities involving the power mean and complete elliptic integral of the first kind. Rocky Mt. J. Math. 43(5), 1489-1496 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  44. Wang, M-K, Chu, Y-M, Jiang, Y-P, Qiu, S-L: Bounds of the perimeter of an ellipse using arithmetic, geometric and harmonic means. Math. Inequal. Appl. 17(1), 101-111 (2014)

    MATH  MathSciNet  Google Scholar 

  45. Wang, G-D, Zhang, X-H, Chu, Y-M: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661-1667 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  46. Chu, Y-M, Zhao, T-H: Convexity and concavity of the complete elliptic integrals with respect to Lehmer mean. J. Inequal. Appl. 2015, Article ID 396 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  47. Wang, H, Qian, W-M, Chu, Y-M: Optimal bounds for Gaussian arithmetic-geometric mean with applications to complete elliptic integral. J. Funct. Spaces 2016, Article ID 3698463 (2016)

    MATH  MathSciNet  Google Scholar 

  48. Yang, Z-H, Chu, Y-M, Zhang, W: Accurate approximations for the complete elliptic integrals of the second kind. J. Math. Anal. Appl. 438(2), 875-888 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  49. Yang, Z-H, Chu, Y-M, Zhang, W: Monotonicity of the ratio for the complete elliptic integral and Stolarsky mean. J. Inequal. Appl. 2016, Article ID 176 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  50. Yang, Z-H, Chu, Y-M, Zhang, X-H: Sharp Stolarsky mean bounds for the complete elliptic integral of the second kind. J. Nonlinear Sci. Appl. 10(3), 929-936 (2017)

    Article  MathSciNet  Google Scholar 

  51. Yang, Z-H, Chu, Y-M: A monotonicity property involving the generalized elliptic integral of the first kind. Math. Inequal. Appl. 20(3), 729-735 (2017)

    MATH  MathSciNet  Google Scholar 

  52. Alzer, H, Richards, KC: Inequalities for the ratio of complete elliptic integrals. Proc. Am. Math. Soc. 145(4), 1661-1670 (2017)

    MATH  MathSciNet  Google Scholar 

  53. Toader, G: Some mean values related to the arithmetic-geometric mean. J. Math. Anal. Appl. 218(2), 358-368 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  54. Carlson, BC, Vuorinen, M: Inequality of the AGM and the logarithmic mean. SIAM Rev. 33(4), 653-654 (1991)

    Article  Google Scholar 

  55. Vamanamurthy, MK, Vuorinen, M: Inequalities for means. J. Math. Anal. Appl. 183(1), 155-166 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  56. Qiu, S-L, Vamanamurthy, MK: Sharp estimates for complete elliptic integrals. SIAM J. Math. Anal. 27(3), 823-834 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  57. Alzer, H: Sharp inequalities for the complete elliptic integral of the first kind. Math. Proc. Camb. Philos. Soc. 124(2), 309-314 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  58. Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Functional inequalities for hypergeometric functions and complete elliptic integrals. SIAM J. Math. Anal. 23(2), 512-524 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  59. Alzer, H, Qiu, S-L: Monotonicity theorem and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289-312 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  60. Yang, Z-H, Song, Y-Q, Chu, Y-M: Sharp bounds for the arithmetic-geometric mean. J. Inequal. Appl. 2014, Article ID 192 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  61. Chu, Y-M, Wang, M-K, Qiu, S-L, Qiu, Y-F: Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011, Article ID 605259 (2011)

    MATH  MathSciNet  Google Scholar 

  62. Chu, Y-M, Wang, M-K: Inequalities between arithmetic-geometric, Gini, and Toader mean. Abstr. Appl. Anal. 2012, Article ID 830585 (2012)

    MATH  MathSciNet  Google Scholar 

  63. Chu, Y-M, Wang, M-K, Qiu, S-L: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41-51 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  64. Chu, Y-M, Wang, M-K, Ma, X-Y: Sharp bounds for Toader mean in terms of contraharmonic mean with applications. J. Math. Inequal. 7(2), 161-166 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  65. Song, Y-Q, Jiang, W-D, Chu, Y-M, Yan, D-D: Optimal bounds for Toader mean in terms of arithmetic and contraharmonic means. J. Math. Inequal. 7(4), 751-757 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  66. Hua, Y, Qi, F: A double inequality for bounding Toader mean by the centroidal mean. Proc. Indian Acad. Sci. Math. Sci. 124(4), 527-531 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  67. Hua, Y, Qi, F: The best bounds for Toader mean in terms of the centroidal and arithmetic means. Filomat 28(4), 775-780 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  68. Li, J-F, Qian, W-M, Chu, Y-M: Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means. J. Inequal. Appl. 2015, Article ID 277 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  69. Qian, W-M, Song, Y-Q, Zhang, X-H, Chu, Y-M: Sharp bounds for Toader mean in terms of arithmetic and second contraharmonic means. J. Funct. Spaces 2015, Article ID 452823 (2015)

    MATH  MathSciNet  Google Scholar 

  70. Zhao, T-H, Chu, Y-M, Zhang, W: Optimal inequalities for bounding Toader mean by arithmetic and quadratic mean. J. Inequal. Appl. 2017, Article ID 26 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  71. Yang, Z-H, Chu, Y-M: A sharp lower bound for Toader-Qi mean with applications. J. Funct. Spaces 2016, Article ID 4165601 (2016)

    MATH  MathSciNet  Google Scholar 

  72. Yang, Z-H, Chu, Y-M: On approximating the modified Bessel function of the first kind and Toader-Qi mean. J. Inequal. Appl. 2016, Article ID 40 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  73. Yang, Z-H, Chu, Y-M, Song, Y-Q: Sharp bounds for Toader-Qi mean in terms of logarithmic and identric mean. Math. Inequal. Appl. 19(2), 721-730 (2016)

    MATH  MathSciNet  Google Scholar 

  74. Qian, W-M, Zhang, X-H, Chu, Y-M: Sharp bounds for the Toader-Qi mean in terms of harmonic and geometric means. J. Math. Inequal. 11(1), 121-127 (2017)

    Article  MATH  MathSciNet  Google Scholar 

  75. Olver, FWJ, Lozier, DW, Boisvert, RF, Clark, CW (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

Download references

Acknowledgements

The research was supported by the Natural Science Foundation of China (Grants Nos. 61673169, 61374086, 11371125, 11401191) and the Tianyuan Special Funds of the National Natural Science Foundation of China (Grant No. 11626101).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yu-Ming Chu.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, WM., Chu, YM. Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J Inequal Appl 2017, 274 (2017). https://doi.org/10.1186/s13660-017-1550-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-017-1550-5

MSC

Keywords