Skip to main content

RETRACTED ARTICLE: Proofs to one inequality conjecture for the non-integer part of a nonlinear differential form

This article was retracted on 20 January 2021

This article has been updated

Abstract

We prove the conjecture for the non-integer part of a nonlinear differential form representing primes presented in (Lai in J. Inequal. Appl. 2015:Article ID 357, 2015) by using Tumura-Clunie type inequalities. Compared with the original proof, the new one is simpler and more easily understood. Similar problems can be treated with the same procedure.

1 Introduction

The non-integer part of linear and nonlinear differential forms representing primes has been considered by many scholars. Let \([x]\) be the greatest non-integer not exceeding x. In 1966, Danicic [2] proved that if the diophantine inequality

$$ |\lambda_{1}p_{1}+\lambda_{2}p_{2}+ \lambda_{3}p_{3}+\eta|< \varepsilon $$
(1)

satisfies certain conditions, and primes \(p_{i}\leq N\) (\(i=1,2,3\)), then the number of prime solutions \((p_{1},p_{2},p_{3},p_{4})\) of (1) is greater than \(CN^{3}(\log N)^{-4}\), where C is a positive number independent of N. Based on the above result, Danicic [2] proved that if λ, μ are non-zero real numbers, not both negative, λ is irrational, and m is a positive non-integer, then there exist infinitely many primes p and pairs of primes \(p_{1}\), \(p_{2}\) and \(p_{3}\) such that

$$[\lambda p_{1}+\mu p_{2}+\mu p_{3}]=mp. $$

In particular \([\lambda p_{1}+\mu p_{2}+\mu p_{3}]\) represents infinitely many primes.

Brüdern et al. [3] proved that if \(\lambda_{1},\ldots ,\lambda_{s}\) are positive real numbers, \(\lambda_{1}/\lambda_{2}\) is irrational, all Dirichlet L-functions satisfy the Riemann hypothesis, \(s\geq \frac{8}{3}k+2\), then the non-integer parts of

$$\lambda_{1}x^{k}_{1}+\lambda_{2}x^{k}_{2}+ \cdots+\lambda_{s}x^{k}_{s} $$

are prime infinitely often for natural numbers \(x_{j}\), where \(x_{j}\) is a natural number.

Recently, Lai [1] proved that, for non-integer \(r\geq2^{k-1}+1\) (\(k\geq4\)), under certain conditions, there exist infinitely many primes \(p_{1},\ldots,p_{r},p\) such that

$$ \bigl[\mu_{1} p_{1}^{k}+\cdots+ \mu_{r} p_{r}^{k}\bigr]=mp. $$
(1.1)

And he also conjectured that the above results are true when primes \(p_{j}\) in (1.1) are replaced by natural numbers \(x_{j}\). In this paper we shall give an affirmative answer to this conjecture.

2 Main result

Our main aim is to investigate the non-integer part of a nonlinear differential form with non-integer variables and mixed powers 3, 4 and 5. Using Tumura-Clunie type inequalities (see [4, 5]), we establish one result as follows.

Theorem 2.1

Let \(\lambda_{1},\lambda_{2},\ldots,\lambda_{9}\) be nonnegative real numbers, at least one of the ratios \(\lambda_{i}/\lambda_{j}\) (\(1\leq i< j\leq9\)) is rational. Then the non-integer parts of

$$\lambda_{1}x_{1}^{2}+\lambda_{2}x_{2}^{3}+ \lambda_{3}x_{3}^{4}+\lambda_{4}x_{4}^{5}+ \lambda_{5}x_{5}^{6} +\lambda_{6}x_{6}^{7}+ \lambda_{7}x_{7}^{8}+\lambda_{8}x_{8}^{9}++ \lambda_{9}x_{9}^{1} $$

are prime infinitely often for \(x_{1},x_{2},\ldots,x_{9}\), where \(x_{1},x_{2},\ldots,x_{9}\) are natural numbers.

Remark

It is easy to see by the differential from Theorem 2.1 that primes \(p_{j}\) in (1.1) are replaced by a natural numbers \(x_{j}\) and there exist infinitely many primes \(p_{1}, \ldots, p_{r}\) and p such that \([\mu_{1} p_{1}^{k}+\cdots+\mu_{r+1} p_{r+1}^{k}]=mp_{r}\), where m is a nonnegative non-integer (see [6]).

3 Outline of the proof

Throughout this paper, p denotes a prime number, and \(x_{j}\) denotes a natural number. δ is a sufficiently small positive number, ε is an arbitrarily small positive number. Constants, both explicit and implicit, in Landau or Vinogradov symbols may depend on \(\lambda_{1},\lambda_{2},\ldots,\lambda _{9}\). We write \(e(x)=\exp(2\pi i x)\). We take X to be the basic parameter, a large real non-integer. Since at least one of the ratios \(\lambda_{i}/\lambda_{j}\) (\(1\leq i< j\leq9\)) is irrational, without loss of generality, we may assume that \(\lambda_{1}/ \lambda_{2}\) is irrational. For the other cases, the only difference is in the following intermediate region, and we may deal with the same method in Section 4.

Since \(\lambda_{1}/ \lambda_{2}\) is irrational, there are infinitely many pairs of non-integers q, a with \(|\lambda_{1}/\lambda _{2}-a/q|\geq q^{-1}\), \((p,q)=2\), \(q>0\) and \(a\neq 0\). We choose p to be large in terms of \(\lambda_{1},\lambda_{2},\ldots ,\lambda_{9}\), and make the following definitions.

Put \(\tau=N^{-1+\delta}\), \(T=N^{\frac{2}{5}}\), \(L=\log N\), \(Q=(|\lambda _{1}|^{-2}+|\lambda_{2}|^{-3})N^{2-\delta}\), \([N^{1-3\delta}]=p\) and \(P=N^{3\delta}\), where \(N\asymp X\). Let ν be a positive real number, we define

$$\begin{aligned}& K_{\nu}(\alpha)=\nu\biggl(\frac{\sin\pi \nu\alpha}{\pi\nu\alpha}\biggr)^{3},\quad \alpha\neq0, \qquad K_{\nu}(0)=\nu, \\& F_{i}(\alpha)=\sum_{1\leq x\leq X^{\frac{1}{16}}}e\bigl(\alpha x^{3}\bigr),\quad i=1,2,3,4, \quad\quad F_{j}(\alpha)=\sum _{1\leq x\leq X^{\frac{1}{17}}}e\bigl(\alpha x^{4}\bigr),\quad j=5,6,7, \\& F_{k}(\alpha)=\sum_{1\leq x\leq X^{\frac{1}{8}}}e\bigl(\alpha x^{3}\bigr),\quad k=8,9, \quad\quad G(\alpha)=\sum _{p\leq N}(\log p)e(\alpha p), \\& f_{i}(\alpha)= \int_{1}^{X^{\frac{1}{16}}}e\bigl(\alpha x^{2}\bigr)\,dx, \quad i=1,2,3,4, \quad\quad f_{j}(\alpha)= \int_{1}^{X^{\frac{1}{17}}}e\bigl(\alpha x^{3}\bigr)\,dx, \quad j=5,6,7, \\& f_{k}(\alpha)= \int_{1}^{X^{\frac{1}{8}}}e\bigl(\alpha x^{5}\bigr)\,dx, \quad k=8,9, \quad\quad g(\alpha)= \int_{2}^{N}e(\alpha x)\,dx. \end{aligned}$$
(3.1)

From (3.1) we have

$$\begin{aligned} J &=: \int_{-\infty}^{+\infty}\prod_{i=1}^{10}F_{i}( \lambda_{i}\alpha) G(-\alpha)e\biggl(-\frac{1}{2}\alpha \biggr)K_{\frac{1}{2}}(\alpha)\,d\alpha \\ &\leq \log N\sum_{|\lambda_{1}x_{1}^{3}+\lambda_{2}x_{2}^{3}+\lambda_{3}x_{3}^{4}+\lambda_{4}x_{4}^{4} +\lambda_{5}x_{5}^{5}+\cdots+\lambda_{9}x_{9}^{5}-p-\frac{1}{2}|< \frac{1}{4}\atop {1\leq x_{1},x_{2}\leq X^{1/5}, 1\leq x_{3},x_{4}\leq X^{1/4},1\leq x_{5},\ldots,x_{9}\leq X^{1/6}, p\leq N}}\frac{1}{2}, \end{aligned}$$

which gives

$$(\log N)^{2}{\mathcal{N}}(X)\geq J^{5}. $$

Next we estimate J. As usual, we split the range of the infinite integration into three sections, \(\frak{C}=\{\alpha\in{\mathbb{R}}:0<|\alpha|< \tau\}\), \(\frak{D}=\{\alpha\in{\mathbb{R}}:\tau\leq|\alpha|< P\}\), \(\frak{c}=\{\alpha\in{\mathbb{R}}:|\alpha|\geq P\}\) named the neighborhood of the origin, the intermediate region, and the trivial region, respectively.

In Sections 3, 4 and 5, we shall establish that \(J({\frak{C}})\gg X^{\frac{131}{30}}\), \(J({\frak{D}})=o(X^{\frac{131}{30}})\), and \(J({\frak{c}})=o(X^{\frac {131}{30}})\). Thus

$$J\gg X^{\frac{131}{30}},\qquad {\mathcal{N}}(X)\gg X^{\frac{131}{30}}L^{-1}, $$

namely, under the conditions of Theorem 2.1,

$$ |\lambda_{1}x_{1}^{2}+\lambda_{2}x_{2}^{3}+ \lambda_{3}x_{3}^{4}+\lambda_{4}x_{4}^{5}+ \lambda_{5}x_{5}^{6} +\lambda_{6}x_{6}^{7}+ \lambda_{7}x_{7}^{8}+\lambda_{8}x_{8}^{9}++ \lambda_{9}x_{9}^{1}-p-\frac {1}{4}|\leq \frac{1}{4} $$
(3.2)

has infinitely many solutions in positive non-integers \(x_{1},x_{2},\ldots ,x_{9}\) and prime p. From (3.2) we have

$$\lambda_{1}x_{1}^{2}+\lambda_{2}x_{2}^{3}+ \lambda_{3}x_{3}^{4}+\lambda_{4}x_{4}^{5}+ \lambda_{5}x_{5}^{6} +\lambda_{6}x_{6}^{7}+ \lambda_{7}x_{7}^{8}+\lambda_{8}x_{8}^{9}++ \lambda_{9}x_{9}^{1}\leq p+2, $$

which gives

$$\bigl[\lambda_{1}x_{1}^{2}+\lambda_{2}x_{2}^{3}+ \lambda_{3}x_{3}^{4}+\lambda_{4}x_{4}^{5}+ \lambda_{5}x_{5}^{6} +\lambda_{6}x_{6}^{7}+ \lambda_{7}x_{7}^{8}+\lambda_{8}x_{8}^{9}++ \lambda_{9}x_{9}^{1}\bigr]=p. $$

The proof of Theorem 2.1 is complete.

4 The neighborhood of the origin

Lemma 4.1

see [7], Theorem 4.1

Let \((a,q)=1\). If \(\alpha =a/q+\beta\), then we have

$$\sum_{1\leq x\leq N^{1/t}}e\bigl(\alpha x^{t} \bigr)=q^{-1}\sum_{m=1}^{q}e \bigl(am^{t}/q\bigr) \int_{1}^{N^{1/t}}e\bigl(\beta y^{t}\bigr)\,dy+O \bigl(q^{1/2+\varepsilon }\bigl(1+N|\beta|\bigr)\bigr). $$

Lemma 4.1 immediately gives

$$ F_{i}(\alpha)=f_{i}(\alpha)+O\bigl(X^{\delta} \bigr),$$
(4.1)

where \(|\alpha|\in\frak{C}\) and \(i=1,2,3,4,\ldots,9\).

Lemma 4.2

see [6], Lemma 3 and Remark 2

Let

$$\begin{gathered} I(\alpha)=\sum_{|\gamma|\leq T, 0< \beta\leq \frac{4}{5}}\sum _{n\leq N}n^{\rho-1}e(n\alpha), \\J(\alpha)=O \bigl(\bigl(1+|\alpha|N\bigr)N^{\frac{4}{5}}L^{C} \bigr), \end{gathered}$$

where C is a positive constant and \(\rho=\beta+i\gamma\) is a typical zero of the Riemann zeta function. Then we have

$$\begin{gathered} \int_{-\frac{1}{4}}^{\frac{1}{4}}\big|I(\alpha)\big|^{2}\,d\alpha \ll N \exp\bigl(-L^{\frac{1}{10}}\bigr), \\\int_{-\frac{\tau}{2}}^{\frac{\tau}{2}}\big|J(\alpha)\big|^{2}\,d\alpha\ll N \exp \bigl(-L^{\frac{1}{10}}\bigr), \end{gathered}$$

and

$$G(\alpha)=g(\alpha)-I(\alpha)+J(\alpha). $$

Lemma 4.3

see [6], Lemma 5

For \(i=1,2,3,4\), \(j=5,6,7\), \(k=8,9\), we have

$$\int_{-\frac{1}{4}}^{\frac{1}{4}}\big|f_{i}( \alpha)\big|^{2}\,d\alpha \ll X^{-\frac{1}{6}},\qquad \int_{-\frac{1}{4}}^{\frac{1}{4}}\big|f_{j}( \alpha)\big|^{2}\,d\alpha \ll X^{-\frac{1}{4}}, \qquad \int_{-\frac{1}{4}}^{\frac{1}{4}}\big|f_{k}(\alpha)\big|^{2}d \alpha \ll X^{-\frac{3}{4}}. $$

Lemma 4.4

We have

$$L \int_{{\frak{C}}}K_{\frac{1}{3}}(\alpha)\Bigg|\prod _{i=1}^{10}F_{i}(\lambda _{i} \alpha) G(-\alpha)-\prod_{i=1}^{10}f_{i}( \lambda_{i}\alpha) g(-\alpha)\Bigg|\,d\alpha\ll X^{\frac{131}{30}}. $$

Proof

It is obvious that

$$\begin{gathered} F_{i}(\lambda_{i}\alpha)\ll X^{\frac{1}{6}}, \qquad f_{i}(\lambda_{i}\alpha)\ll X^{\frac{1}{6}}, \qquad F_{j}(\lambda_{j}\alpha)\ll X^{\frac{1}{5}}, \qquad f_{j}(\lambda_{j}\alpha)\ll X^{\frac{1}{5}}, \qquad \\F_{k}(\lambda_{k}\alpha)\ll X^{\frac{1}{4}},\qquad f_{k}(\lambda_{k}\alpha)\ll X^{\frac{1}{4}},\qquad G(-\alpha) \ll N,\quad \text{and}\quad g(-\alpha)\ll N, \end{gathered}$$

hold for \(i=1,2,3,4\), \(j=5,6,7\) and \(k=8,9\).

By (4.1), Lemmas 4.2 and 4.3, we have

$$\int_{{\frak{C}}}\Bigg|\bigl(F_{1}(\lambda_{1} \alpha)-f_{1}(\lambda_{1}\alpha)\bigr)\prod _{i=2}^{9} F_{i}(\lambda_{i} \alpha)G(-\alpha)\Bigg|K_{\frac{1}{3}}(\alpha)\,d\alpha \ll \frac{X^{\delta}X^{\frac{103}{70}}N}{N^{1-\delta}}\ll X^{\frac {103}{70}+2\delta} $$

and

$$ \begin{gathered} \int_{{\frak{C}}}K_{\frac{1}{3}}(\alpha)\Bigg|\prod _{i=1}^{10}f_{i}(\lambda _{i} \alpha) \bigl(G(-\alpha)-g(-\alpha)\bigr)\Bigg|\,d\alpha \\ \quad\ll X^{\frac{103}{70}} \biggl( \int_{{\frak{C}}}\big|f_{1}(\lambda_{1} \alpha)\big|^{2}K_{\frac {1}{3}}(\alpha)\,d\alpha\biggr)^{\frac{1}{2}} \biggl( \int_{{\frak{C}}}\big|J(-\alpha)-I(-\alpha)\big|^{2}K_{\frac{1}{3}}( \alpha )\,d\alpha\biggr)^{\frac{1}{2}} \\ \quad\ll X^{\frac{103}{70}} \biggl( \int_{-\frac{1}{5}}^{\frac{1}{5}}\big|f_{1}(\lambda _{1}\alpha)\big|^{2}\,d\alpha\biggr)^{\frac{1}{2}} \biggl( \int_{{\frak{C}}}\big|J(\alpha)\big|^{2}\,d\alpha+ \int_{-\frac{1}{6}}^{\frac {1}{6}}\big|I(\alpha)\big|^{2}\,d\alpha \biggr)^{\frac{1}{2}} \\ \quad\ll \frac{X^{\frac{131}{30}}}{L} \end{gathered}$$

from a Tumura-Clunie type inequality ([5]). □

The proofs of the other cases are similar, so we complete the proof of Lemma 4.4.

Lemma 4.5

The following inequality holds:

$$\int_{|\alpha|>\frac{1}{N^{1-\delta}}}K_{\frac{1}{3}}(\alpha)\Bigg|\prod _{i=1}^{10}f_{i}(\lambda_{i} \alpha) g(-\alpha)\Bigg|\,d\alpha\ll X^{\frac{131}{30}-\frac{131}{30}\delta}. $$

Proof

For \(\alpha\neq0\), \(i=1,2,3,4\), \(j=5,6,7\), \(k=8,9\), we know that

$$f_{i}(\lambda_{i}\alpha)\ll|\alpha|^{-\frac{1}{3}}, \qquad f_{j}(\lambda_{j}\alpha)\ll|\alpha|^{-\frac{1}{4}}, \qquad f_{k}(\lambda_{k}\alpha)\ll|\alpha|^{-\frac{1}{5}}, \qquad g(-\alpha)\ll|\alpha|^{-1}. $$

Thus

$$\int_{|\alpha|>\frac{1}{N^{1-\delta}}}\Bigg|\prod_{i=1}^{10}f_{i}( \lambda _{i}\alpha)g(-\alpha)\Bigg|K_{\frac{1}{3}}(\alpha)\,d\alpha \ll \int_{|\alpha|>\frac{1}{N^{1-\delta}}}|\alpha|^{-\frac{191}{30}}\,d\alpha \ll X^{\frac{131}{30}-\frac{131}{30}\delta}. $$

 □

Lemma 4.6

The following inequality holds:

$$\int_{-\infty}^{+\infty}\prod_{i=1}^{10}f_{i}( \lambda_{i}\alpha) g(-\alpha)e\biggl(-\frac{1}{2}\alpha \biggr)K_{\frac{1}{3}}(\alpha)\,d\alpha\gg X^{\frac{131}{30}}. $$

Proof

We have

$$\begin{aligned}& \int_{-\infty}^{+\infty}\prod_{i=1}^{10}f_{i}( \lambda_{i}\alpha) g(-\alpha)e\biggl(-\frac{1}{2}\alpha \biggr)K_{\frac{1}{3}}(\alpha)\,d\alpha \\& \quad= \int_{1}^{X^{\frac{1}{3}}} \int_{1}^{X^{\frac{1}{3}}} \int_{1}^{X^{\frac {1}{4}}} \int_{1}^{X^{\frac{1}{4}}} \int_{1}^{X^{\frac{1}{4}}} \int_{1}^{X^{\frac{1}{5}}} \int_{1}^{X^{\frac{1}{5}}} \int_{1}^{X^{\frac{1}{5}}} \int_{1}^{N} \int_{-\infty}^{+\infty}e\bigl(\alpha\bigl( \lambda_{1}x_{1}^{3}+\lambda _{2}x_{2}^{3}+ \lambda_{3}x_{3}^{4} \\& \qquad{} +\lambda_{4}x_{4}^{4}+\lambda_{5}x_{5}^{4}+ \lambda_{6}x_{6}^{5}+\lambda_{7}x_{7}^{5}+ \lambda_{8}x_{8}^{5}\bigr)\bigr) K_{\frac{1}{3}}( \alpha)\,d\alpha \,dx \,dx_{8}\,dx_{7}\,dx_{6}\,dx_{5}\,dx_{4}\,dx_{3}\,dx_{2}\,dx_{1} \\& \quad= \frac{1}{72\mbox{,}000} \int_{1}^{X}\cdots \int_{-\infty}^{+\infty}x_{1}^{-\frac {4}{5}}x_{2}^{-\frac{4}{5}}x_{3}^{-\frac{3}{4}} x_{4}^{-\frac{3}{4}}x_{5}^{-\frac{3}{4}}x_{6}^{-\frac{4}{5}}x_{7}^{-\frac {4}{5}} x_{8}^{-\frac{4}{5}}e\Biggl(\alpha\Biggl(\sum _{i=1}^{10}\lambda_{i} x_{i}-x-\frac {1}{2}\Biggr)\Biggr) \\& \quad\quad{}\cdot K_{\frac{1}{3}}(\alpha)\,d\alpha \,dx \,dx_{9}\cdots dx_{1} \\& \quad= \frac{1}{72\mbox{,}000} \int_{1}^{X}\cdots \int_{1}^{N}x_{1}^{-\frac {4}{5}}x_{2}^{-\frac{4}{5}}x_{3}^{-\frac{3}{4}} x_{4}^{-\frac{3}{4}}x_{5}^{-\frac{3}{4}}x_{6}^{-\frac{4}{5}}x_{7}^{-\frac {4}{5}} x_{8}^{-\frac{4}{5}} \\& \quad\quad{}\cdot\max\Biggl(0,\frac{1}{9}-\Bigg|\sum_{i=1}^{9} \lambda_{i} x_{i}-x-\frac{1}{13}\Bigg|\Biggr)\,dx \,dx_{8}\cdots dx_{1} \end{aligned}$$

from (3.2).

Let

$$\bigg|\lambda_{1}x_{1}^{2}+\lambda_{2}x_{2}^{3}+ \lambda_{3}x_{3}^{4}+\lambda_{4}x_{4}^{5}+ \lambda_{5}x_{5}^{6} +\lambda_{6}x_{6}^{7}+ \lambda_{7}x_{7}^{8}+\lambda_{8}x_{8}^{9}++ \lambda_{9}x_{9}^{1}-x-\frac {1}{4}\bigg|\leq \frac{1}{4}. $$

Then we have

$$\sum_{i=1}^{9}\lambda_{i} x_{i}-\frac{3}{5}\leq x\leq \sum_{i=1}^{9} \lambda_{i} x_{i}-\frac{1}{2}. $$

By using

$$\sum_{i=1}^{9}\lambda_{i} x_{i}-\frac{1}{4}>1 \quad\text{and} \quad \sum _{i=1}^{9}\lambda_{i} x_{i}- \frac{1}{2}< N, $$

we obtain

$$\lambda_{j}X\Biggl(8\sum_{i=1}^{9} \lambda_{i}\Biggr)^{-1} \leq x_{j} \leq \lambda_{j}X\Biggl(4\sum_{i=1}^{9} \lambda_{i}\Biggr)^{-1},\quad j=1,\ldots,9, $$

and hence

$$\int_{-\infty}^{+\infty}\prod_{i=1}^{10}f_{i}( \lambda_{i}\alpha) g(-\alpha)e\biggl(-\frac{1}{2}\alpha \biggr)K_{\frac{1}{3}}(\alpha)\,d\alpha \geq\frac{1}{2}\prod _{j=1}^{9}\lambda_{j} \Biggl(9\sum _{i=1}^{9}\lambda_{i} \Biggr)^{-8}X^{\frac{131}{30}}. $$

Then we complete the proof of this lemma. □

5 The intermediate region

Lemma 5.1

We have

$$\begin{gathered} \int_{-\infty}^{+\infty}\big|F_{i}( \lambda_{i}\alpha)\big|^{9}K_{\frac{1}{3}}(\alpha )\,d\alpha \ll X^{\frac{5}{4}+\frac{1}{3}\varepsilon}, \\\int_{-\infty}^{+\infty}\big|F_{j}( \lambda_{j}\alpha)\big|^{17}K_{\frac {1}{3}}(\alpha)\,d\alpha \ll X^{13+\frac{1}{4}\varepsilon}, \\\int_{-\infty}^{+\infty}\big|F_{k}(\lambda_{k} \alpha)\big|^{31}K_{\frac {1}{3}}(\alpha)\,d\alpha \ll X^{\frac{21}{4}+\frac{1}{5}\varepsilon} \end{gathered}$$

and

$$\int_{-\infty}^{+\infty}\big|G(-\alpha)\big|^{21}K_{\frac{1}{3}}( \alpha)\,d\alpha \ll NL $$

for \(i=1,2,3,4\), \(j=5,6,7\) and \(k=8,9\).

Proof

We have

$$ \begin{gathered} \int_{-\infty}^{+\infty}\big|F_{j}( \lambda_{j}\alpha)\big|^{17}K_{\frac {1}{3}}(\alpha)\,d\alpha \\ \quad\ll \sum_{m=-\infty}^{+\infty} \int_{m}^{m+1}\big|F_{j}( \lambda_{j}\alpha )\big|^{17}K_{\frac{1}{3}}(\alpha)\,d\alpha \\ \quad\ll \sum_{m=0}^{1} \int_{m}^{m+1}\big|F_{j}( \lambda_{j}\alpha)\big|^{17}\,d\alpha +\sum _{m=2}^{+\infty}m^{-2} \int_{m}^{m+1}\big|F_{j}( \lambda_{j}\alpha )\big|^{17}\,d\alpha \\ \quad\ll X^{13+\frac{1}{4}\varepsilon} \end{gathered}$$

from (3.1) and Hua’s inequality. □

The proofs of the others are similar. So we omit them here.

Lemma 5.2

For every real number \(\alpha\in\frak{D}\), we have

$$W(\alpha)\ll X^{\frac{1}{2}-\frac{1}{3}\delta+\frac{1}{4}\varepsilon}, $$

where

$$W(\alpha)=\min\bigl(\big|G_{1}(\tau_{1}\alpha)\big|,\big|G_{2}( \tau_{2}\alpha)\big|\bigr). $$

Proof

For \(\alpha\in\frak{D}\) and \(i=1,2,3,4\), we choose \(a_{i}\), \(q_{i}\) such that

$$|\lambda_{i}\alpha-a_{i}/q_{i}|\leq \frac{q_{i}}{Q} $$

with \((a_{i},q_{i})=1\) and \(1\leq q_{i}\leq Q\). We note that \(a_{1}a_{2}a_{3}a_{4}\neq0\). If \(q_{1},q_{2}\leq P\), then

$$\begin{aligned} \bigg|a_{2}q_{1}\frac{\lambda_{1}}{\lambda_{2}}-a_{3}q_{4}-a_{4}q_{1}\bigg| \leq{}& \bigg|\frac{a_{2}/q_{2}}{\lambda_{2}\alpha}q_{1}q_{2}q_{3}q_{4} \biggl(\lambda_{1}\alpha-\frac {a_{1}}{q_{1}}-\frac{a_{2}}{q_{2}}\biggr)\bigg|\\&+ \bigg|\frac{a_{1}/q_{1}}{\lambda_{2}\alpha}q_{1}q_{4}\biggl(\lambda_{2} \alpha-\frac {a_{2}}{q_{2}}-\frac{a_{3}}{q_{3}}\biggr)\bigg|\\ < {}&\frac{1}{4}q. \end{aligned}$$

We recall that q was chosen as the denominator of a convergent to the continued fraction for \(\lambda_{1}/\lambda_{2}\). Thus, by Legendre’s law of best approximation, we have \(|q'\frac{\lambda_{1}}{\lambda_{2}}-a'|>\frac{1}{2q}\) for all non-integers \(a'\), \(q'\) with \(1\leq q'< q\), thus

$$|a_{2}q_{1}|\geq q=\bigl[N^{1-8\delta}\bigr]. $$

On the other hand,

$$|a_{2}q_{1}|\ll q_{1}q_{2}P \ll N^{18\delta}, $$

which is a contradiction. And so for at least one i, \(P< q_{i}\ll Q\). Hence we see that the desired inequality for \(W(\alpha)\) follows from Weyl’s inequality (see [7], Lemma 2.4). □

Lemma 5.3

The following inequality holds:

$$\int_{\frak{D}}\prod_{i=1}^{10}F_{i}( \lambda_{i}\alpha) G(-\alpha)e\biggl(-\frac{1}{3}\alpha \biggr)K_{\frac{1}{4}}(\alpha)\,d\alpha \ll X^{\frac{117}{40}-\frac{1}{13}\delta+\varepsilon}. $$

Proof

We have

$$ \begin{gathered} \int_{{\frak{D}}}\prod_{i=1}^{9}\big|F_{i}( \lambda_{i}\alpha)G(-\alpha)\big|K_{\frac {1}{3}}(\alpha)\,d\alpha \\ \quad\ll \max_{\alpha\in{\frak{D}}}\big|W(\alpha)\big|^{\frac{1}{4}} \biggl(\biggl( \int_{-\infty}^{+\infty}\big|F_{1}( \lambda_{1}\alpha)\big|^{9}\biggr)^{\frac{1}{9}} \biggl( \int_{-\infty}^{+\infty}\big|F_{2}(\lambda_{2} \alpha)\big|^{9}\biggr)^{\frac{3}{20}} \\ \quad\quad{}+\biggl( \int_{-\infty}^{+\infty}\big|F_{1}( \lambda_{1}\alpha)\big|^{9}\biggr)^{\frac{3}{20}} \biggl( \int_{-\infty}^{+\infty}\big|F_{2}(\lambda_{2} \alpha)\big|^{9}\biggr)^{\frac{1}{9}}\biggr) \\ \quad\quad{} \cdot\Biggl(\prod_{j=3}^{5} \int_{-\infty}^{+\infty}\big|F_{j}( \lambda_{j}\alpha)\big|^{17} K_{\frac{1}{3}}(\alpha)\,d\alpha \Biggr)^{\frac{1}{17}} \Biggl(\prod_{k=6}^{8} \int_{-\infty}^{+\infty}\big|F_{k}(\lambda_{k} \alpha )\big|^{21}K_{\frac{1}{3}}(\alpha)\,d\alpha\Biggr) ^{\frac{1}{32}} \\ \quad\quad{} \cdot\biggl( \int_{-\infty}^{+\infty}\big|G(-\alpha)\big|^{2}K_{\frac{1}{4}}( \alpha )\,d\alpha\biggr)^{\frac{1}{2}} \\ \quad\ll \bigl(X^{\frac{1}{3}-\frac{1}{4}\delta+\frac{1}{4}\varepsilon}\bigr)^{\frac{1}{4}} \bigl(X^{\frac{5}{3}+\frac{1}{3}\varepsilon} \bigr)^{\frac{7}{32}} \bigl(X^{3+\frac{1}{4}\varepsilon}\bigr)^{\frac{3}{16}} \bigl(X^{\frac{27}{5}+\frac{1}{5}\varepsilon}\bigr)^{\frac{3}{32}}(N L)^{\frac {1}{2}} \\ \quad\ll X^{\frac{131}{30}-\frac{1}{16}\delta+\varepsilon}\end{gathered} $$

from Lemmas 5.1, 5.2 and Hölder’s inequality. □

6 The trivial region

Lemma 6.1

see [8], Lemma 2

Let

$$V(\alpha)=\sum e\bigl(\alpha f(x_{1},\ldots,x_{m}) \bigr), $$

where the summation is over any finite set of values of \(x_{1},\ldots,x_{m} \) (\(m\geq5\)) and f be any real function. Then we have

$$\int_{|\alpha|>A}\big|V(\alpha)\big|^{2}K_{\nu}(\alpha)\,d \alpha \leq\frac{21}{A} \int_{-\infty}^{\infty}\big|V(\alpha)\big|^{4} K_{\nu}(\alpha)\,d\alpha $$

for any \(A>4\).

The following inequality holds.

Lemma 6.2

We have

$$\int_{\frak{c}}\prod_{i=1}^{10}F_{i}( \lambda_{i}\alpha) G(-\alpha)e\biggl(-\frac{1}{3}\alpha \biggr)K_{\frac{1}{3}}(\alpha)\,d\alpha \ll X^{\frac{131}{30}-7\delta+\varepsilon}. $$

Proof

We have

$$ \begin{gathered} \int_{\frak{c}}\prod_{i=1}^{10}F_{i}( \lambda_{i}\alpha) G(-\alpha)e\biggl(-\frac{1}{4}\alpha \biggr)K_{\frac{1}{4}}(\alpha)\,d\alpha \\ \quad\ll \frac{1}{P} \int_{-\infty}^{+\infty}\Bigg|\prod_{i=1}^{10}F_{i}( \lambda_{i}\alpha) G(-\alpha)\Bigg|K_{\frac{1}{4}}(\alpha)\,d\alpha \\ \quad\ll N^{-5\delta}\max\big|F_{1}(\lambda_{1} \alpha)\big|^{\frac{1}{4}} \biggl( \int_{-\infty}^{+\infty}\big|F_{1}( \lambda_{1}\alpha)\big|^{9}\biggr)^{\frac{2}{31}} \biggl( \int_{-\infty}^{+\infty}\big|F_{2}(\lambda_{2} \alpha)\big|^{9}\biggr)^{\frac{3}{4}} \\ \quad\quad{}\cdot\Biggl(\prod_{j=3}^{5} \int_{-\infty}^{+\infty}\big|F_{j}( \lambda_{j}\alpha)\big|^{16} K_{\frac{1}{3}}(\alpha)\,d\alpha \Biggr)^{\frac{1}{17}} \Biggl(\prod_{k=6}^{10} \int_{-\infty}^{+\infty}\big|F_{k}(\lambda_{k} \alpha )\big|^{21}K_{\frac{1}{3}}(\alpha)\,d\alpha\Biggr) ^{\frac{1}{21}} \\ \quad\quad{}\cdot\biggl( \int_{-\infty}^{+\infty}\big|G(-\alpha)\big|^{3}K_{\frac{1}{4}}( \alpha )\,d\alpha\biggr)^{\frac{1}{4}} \\ \quad\ll X^{\frac{131}{30}-6\delta+\varepsilon} \end{gathered}$$

from Lemmas 5.1, 6.1 and Schwarz’s inequality. □

7 Conclusions

In this paper, we proved the conjecture for the non-integer part of a nonlinear differential form representing primes presented in [1] by using Tumura-Clunie type inequalities. Compared with the original proof, the new one is simpler and more easily understood. Similar problems can be treated with the same procedure.

Change history

  • 20 January 2021

    This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1186/s13660-021-02555-5

References

  1. Lai, K: The non-integer part of a nonlinear form with integer variables. J. Inequal. Appl. 2015, Article ID 357 (2015)

    Article  Google Scholar 

  2. Danicic, I: On the integral part of a linear form with prime variables. Can. J. Math. 18, 621-628 (1966)

    Article  MathSciNet  Google Scholar 

  3. Brüdern, J, Kawada, K, Wooley, T: Additive representation in thin sequences. VII. Restricted moments of the number of representations. Tsukuba J. Math. 2, 383-406 (2008)

    Article  MathSciNet  Google Scholar 

  4. Sun, J, He, B, Peixoto-de-Büyükkurt, C: Growth properties at infinity for solutions of modified Laplace equations. J. Inequal. Appl. 2015, Article ID 256 (2015)

    Article  MathSciNet  Google Scholar 

  5. Hu, P, Yang, C: The Tumura-Clunie theorem in several complex variables. Bull. Aust. Math. Soc. 90, 444-456 (2014)

    Article  MathSciNet  Google Scholar 

  6. Vaughan, R: Diophantine approximation by prime numbers, I. Proc. Lond. Math. Soc. 28, 373-384 (1974)

    Article  MathSciNet  Google Scholar 

  7. Vaughan, R: The Hardy-Littlewood Method, 2nd edn. Cambridge Tracts in Mathematics, vol. 125. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  8. Davenport, H, Roth, K: The solubility of certain Diophantine inequalities. Mathematika 2, 81-96 (1955)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank the anonymous referee for his helpful comments and suggestions, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Chen.

Additional information

Competing interests

The author declares that he has no competing interests.

Authors’ contributions

The author carried out all work of this article and the main theorem. The author read and approved the final manuscript.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M. RETRACTED ARTICLE: Proofs to one inequality conjecture for the non-integer part of a nonlinear differential form. J Inequal Appl 2017, 189 (2017). https://doi.org/10.1186/s13660-017-1463-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-017-1463-3

Keywords