- Research
- Open Access
- Published:
Fourier series of finite products of Bernoulli and Genocchi functions
Journal of Inequalities and Applications volume 2017, Article number: 157 (2017)
Abstract
In this paper, we consider three types of functions given by products of Bernoulli and Genocchi functions and derive some new identities arising from Fourier series expansions associated with Bernoulli and Genocchi functions. Furthermore, we will express each of them in terms of Bernoulli functions.
1 Introduction
Utilizing the generating function, the Bernoulli polynomials \(B_{m}(x)\) can be written as
For \(x=0\), \(B_{m}=B_{m}(0)\) are called Bernoulli numbers.
As a second definition, we have the Genocchi polynomials \(G_{m}(x)\) by the generating function as follows:
For \(x=0\), \(G_{m}=G_{m}(0)\) are called Genocchi numbers.
As to the Bernoulli and Genocchi polynomials and numbers, we will need only the following:
For any real number x, we let
denote the fractional part of x.
We recall the following facts about the Fourier series expansion of Bernoulli functions \(B_{m}(\langle x\rangle)\):
(a) for \(m \geq2 \),
(b) for \(m = 1 \),
Throughout this paper, we will assume that r and s are nonnegative integers with \(r+s \geq1\). Here we will consider three types of sums of finite products of Bernoulli and Genocchi functions \(\alpha_{m}(\langle x\rangle)\), \(\beta_{m}(\langle x\rangle)\), and \(\gamma_{m}(\langle x\rangle)\) and derive the Fourier series expansions of them. In addition, we will express each of them in terms of Bernoulli functions. We have
Here the sums for (1) and (2) run over all nonnegative integers \(c_{1}, \ldots, c_{r}\) and positive integers \(j_{1},\ldots, j_{s}\) with \(c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m\), and the sum for (3) runs over all positive integers \(c_{1}, \ldots, c_{r},j_{1},\ldots, j_{s}\) with \(c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m\).
For elementary facts about Fourier analysis, the reader may refer to any textbook (for example, see [11–13]).
As to \(\alpha_{m}(\langle x\rangle)\), we note that the polynomial identity (1.7) follows immediately from Theorems 2.1 and 2.2, which is in turn derived from the Fourier series expansion of \(\alpha_{m}(\langle x\rangle)\). We have
where, for \(l>s\),
The obvious polynomial identities can be derived also for \(\beta _{m}(\langle x\rangle)\) from Theorems 3.1 and 3.2. It is noteworthy that from the Fourier series expansion of the function \(\sum_{k=1}^{m-1} \frac{1}{k(m-k)}B_{k}(\langle x\rangle )B_{m-k}(\langle x\rangle )\) we can derive the Faber-Pandharipande-Zagier identity (see [14–18]) and the Miki identity (see [16–19]). The reader may refer to the recent papers [20–24] for related results.
2 The function \(\alpha_{m}(\langle x\rangle)\)
Let \(\alpha_{m}(x) = \sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} B_{c_{1}}(x)\cdots B_{c_{r}}(x)G_{j_{1}}(x)\cdots G_{j_{s}}(x)\) (\(m > s\)), where the sum is over all nonnegative integers \(c_{1} , \ldots, c_{r}\) and positive integers \(j_{1},\ldots, j_{s}\) satisfying \(c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m\). Then we will consider the function
defined on \(\mathbb{R}\), which is periodic with period 1.
The Fourier series of \(\alpha_{m}(\langle x\rangle) \) is
where
To proceed, we need to observe the following. We have
From this, we obtain
and
For \(m > s\), we set
Note here that the sum over all \(c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m\) of any term with a of \(B_{c_{e}}\), \(r-a\) of \(\delta_{1,c_{f}}\) (\(1 \leq e,f \leq r\)), c of \(-G_{j_{u}}\), and \(s-c\) of \(2\delta _{1,j_{v}}\) (\(1 \leq u,v \leq s\)) all give the same sum
which is not an empty sum as long as \(m + a + c - r -s \geq c \).
We now see that
and
We are now going to determine the Fourier coefficients \(A_{n}^{(m)}\).
Case 1: \(n \neq0\). We have
Thus we have shown that
Case 2: \(n = 0 \). We have
\(\alpha_{m}(\langle x\rangle)\) (\(m>s\)) is piecewise \(C^{\infty}\). Moreover, \(\alpha_{m}(\langle x\rangle) \) is continuous for those integers \(m>s\) with \(\Delta_{m} = 0\), and discontinuous with jump discontinuities at integers for those integers \(m>s\) with \(\Delta_{m} \neq0\).
Assume first that \(\Delta_{m} = 0\), for an integer \(m>s\). Then \(\alpha _{m} (0) = \alpha_{m} (1)\).
Hence \(\alpha_{m} (\langle x\rangle)\) is piecewise \(C^{\infty}\), and continuous. Thus the Fourier series of \(\alpha_{m} (\langle x\rangle)\) converges uniformly to \(\alpha_{m} (\langle x\rangle)\), and
We are now ready to state our first result.
Theorem 2.1
For each integer \(l > s\), we let
Assume that \(\Delta_{m} = 0\), for an integer \(m > s\). Then we have the following:
-
(a)
\(\sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} B_{c_{1}}(\langle x\rangle)\cdots B_{c_{r}}(\langle x\rangle )G_{j_{1}}(\langle x\rangle)\cdots G_{j_{s}}(\langle x\rangle)\) has the Fourier series expansion
$$ \begin{aligned}[b] & \sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} B_{c_{1}}\bigl(\langle x\rangle\bigr)\cdots B_{c_{r}}\bigl(\langle x\rangle\bigr)G_{j_{1}}\bigl(\langle x\rangle \bigr)\cdots G_{j_{s}}\bigl(\langle x\rangle\bigr) \\ &\quad = \frac{1}{m+r+s} \Delta_{m+1} + \sum _{n= - \infty, n \neq0}^{\infty} \Biggl( -\frac{1}{m+r+s} \sum _{j=1}^{m-s} \frac{(m+r+s)_{j}}{(2\pi i n)^{j}} \Delta_{m-j+1} \Biggr)e^{2\pi i nx}, \end{aligned} $$for all \(x \in\mathbb{R}\), where the convergence is uniform.
-
(b)
$$ \begin{aligned}[b] & \sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} B_{c_{1}}\bigl(\langle x\rangle\bigr)\cdots B_{c_{r}}\bigl(\langle x\rangle\bigr)G_{j_{1}}\bigl(\langle x\rangle \bigr)\cdots G_{j_{s}}\bigl(\langle x\rangle\bigr) \\ &\quad = \frac{1}{m+r+s} \Delta_{m+1}+ \frac{1}{m+r+s} \sum _{j=2}^{m-s} \binom{m+r+s}{j} \Delta_{m-j+1} B_{j}\bigl(\langle x\rangle\bigr) , \end{aligned} $$
for all \(x \in\mathbb{R}\), where \(B_{j}(\langle x\rangle)\) is the Bernoulli function.
Assume next that \(\Delta_{m} \neq0\), for an integer \(m>s\). Then \(\alpha_{m}(0) \neq\alpha_{m}(1)\). Hence \(\alpha_{m} (\langle x\rangle)\) is piecewise \(C^{\infty}\), and discontinuous with jump discontinuities at integers. The Fourier series of \(\alpha_{m} (\langle x\rangle)\) converges pointwise to \(\alpha_{m} (\langle x\rangle)\), for \(x \notin\mathbb {Z}\), and converges to
for \(x \in\mathbb{Z}\).
Now, we are ready to state our second result.
Theorem 2.2
For each integer \(l > s\), we let
Assume that \(\Delta_{m} \neq0\), for an integer \(m > s\). Then we have the following:
-
(a)
$$\begin{aligned} & \frac{1}{m+r+s} \Delta_{m+1} \\ &\qquad {} + \sum_{n= - \infty, n \neq0}^{\infty} \Biggl( - \frac{1}{m+r+s} \sum_{j=1}^{m-s} \frac{(m+r+s)_{j}}{(2\pi i n)^{j}} \Delta_{m-j+1} \Biggr)e^{2\pi i nx} \\ & \quad = \textstyle\begin{cases} \sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} B_{c_{1}}(\langle x\rangle)\cdots B_{c_{r}}(\langle x\rangle)\\ \quad {}\times G_{j_{1}}(\langle x\rangle)\cdots G_{j_{s}}(\langle x\rangle) ,& \textit{for } x\notin\mathbb{Z},\\ \sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} B_{c_{1}} \cdots B_{c_{r}}G_{j_{1}} \cdots G_{j_{s}}+ \frac{1}{2}\Delta_{m} , & \textit{for } x\in\mathbb{Z}. \end{cases}\displaystyle \end{aligned} $$
-
(b)
$$\begin{aligned}& \begin{gathered} \frac{1}{m+r+s} \sum _{j=0}^{m} \binom{m+r+s}{j} \Delta _{m-j+1} B_{j}\bigl(\langle x\rangle\bigr) \\ \quad = \sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} B_{c_{1}}\bigl(\langle x \rangle\bigr)\cdots B_{c_{r}}\bigl(\langle x\rangle\bigr)G_{j_{1}} \bigl(\langle x\rangle \bigr)\cdots G_{j_{s}}\bigl(\langle x\rangle\bigr) , \quad \textit{for } x \notin\mathbb{Z}, \end{gathered} \\& \begin{gathered} \frac{1}{m+r+s} \sum _{j=0, j\neq1}^{m} \binom{m+r+s}{j} \Delta _{m-j+1} B_{j}\bigl(\langle x\rangle\bigr) \\ \quad = \sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} B_{c_{1}} \cdots B_{c_{r}}G_{j_{1}} \cdots G_{j_{s}}+ \frac{1}{2} \Delta_{m}, \quad \textit {for } x \in\mathbb{Z}. \end{gathered} \end{aligned}$$
3 The function \(\beta_{m}(\langle x\rangle)\)
Let \(\beta_{m}(x)\) = \(\sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} \frac{1}{c_{1}! \cdots c_{r}! j_{1}! \cdots j_{s}!} B_{c_{1}}(x) \cdots B_{c_{r}}(x) G_{j_{1}}(x) \cdots G_{j_{s}}(x) \) (\(m > s\)), where the sum is over all nonnegative integers \(c_{1}, \ldots , c_{r}\) and positive integers \(j_{1},\ldots, j_{s}\) satisfying \(c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m\). Then we consider the function
defined on \(\mathbb{R}\), which is periodic with period 1.
The Fourier series of \(\beta_{m}(\langle x\rangle)\) is
where
To continue further, we need to observe the following:
From this, we have
and
For \(m > s\), we put
and
We now would like to determine the Fourier coefficients \(B_{n}^{(m)}\).
Case 1: \(n\neq0\). We have
from which we can deduce that
Case 2: \(n=0\). We have
\(\beta_{m}(\langle x\rangle)\) (\(m\geq s\)) is piecewise \(C^{\infty}\). Moreover, \(\beta_{m}(\langle x\rangle)\) is continuous for those integers \(m > s\) with \(\Delta_{m} =0\), and discontinuous with jump discontinuities at integers for those integers \(m > s\) with \(\Delta_{m} \neq0\).
Assume first that \(\Delta_{m} =0\), for an integer \(m > s\). Then \(\beta _{m}(0)=\beta_{m}(1)\). Hence \(\beta_{m}(\langle x\rangle)\) is piecewise \(C^{\infty}\), and continuous. Thus the Fourier series of \(\beta_{m}(\langle x\rangle)\) converges uniformly to \(\beta_{m}(\langle x\rangle)\), and
Now, we are ready to state our first result.
Theorem 3.1
For each integer \(l > s\), we let
Assume that \(\Omega_{m} = 0\), for an integer \(m > s\). Then we have the following:
-
(a)
\(\sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} \frac {1}{c_{1}! \cdots c_{r}! j_{1}! \cdots j_{s}!} B_{c_{1}}(\langle x\rangle)\cdots B_{c_{r}}(\langle x\rangle) \times G_{j_{1}}(\langle x\rangle)\cdots G_{j_{s}}(\langle x\rangle)\) has the Fourier series expansion
$$ \begin{aligned}[b] &\sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} \frac{1}{c_{1}! \cdots c_{r}! j_{1}! \cdots j_{s}!} B_{c_{1}}\bigl(\langle x\rangle\bigr)\cdots B_{c_{r}}\bigl(\langle x\rangle\bigr) \\ &\qquad {}\times G_{j_{1}}\bigl(\langle x\rangle\bigr)\cdots G_{j_{s}} \bigl(\langle x\rangle\bigr) \\ &\quad = \frac{1}{r+s} \Omega_{m+1} + \sum _{n=-\infty,n\neq0}^{\infty} \Biggl(- \sum _{j=1}^{m-s} \frac {(r+s)^{j-1}}{(2\pi i n)^{j}}\Omega_{m-j+1} \Biggr)e^{2\pi i n x}, \end{aligned} $$for all \(x \in\mathbb{R}\), where the convergence is uniform.
-
(b)
$$ \begin{aligned}[b] &\sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} \frac {1}{c_{1}! \cdots c_{r}! j_{1}! \cdots j_{s}!} B_{c_{1}}\bigl(\langle x\rangle\bigr)\cdots B_{c_{r}}\bigl(\langle x\rangle\bigr) \\ &\qquad {}\times G_{j_{1}}\bigl(\langle x\rangle\bigr)\cdots G_{j_{s}} \bigl(\langle x\rangle\bigr) \\ & \quad = \sum_{j=0, j \neq1}^{m-s} \frac{(r+s)^{j-1}}{j!} \Omega_{m-j+1} B_{j}\bigl(\langle x\rangle\bigr), \end{aligned} $$
for all \(x \in\mathbb{R}\), where \(B_{j}(\langle x\rangle)\) is the Bernoulli function.
Assume next that \(\Omega_{m} \neq0\), for an integer \(m > s\). Then \(\beta_{m}(0)\neq\beta_{m}(1)\). Hence \(\beta_{m}(\langle x\rangle )\) is piecewise \(C^{\infty}\) and discontinuous with jump discontinuities at integers. The Fourier series of \(\beta_{m}(\langle x\rangle)\) converges pointwise to \(\beta_{m}(\langle x\rangle)\), for \(x \notin\mathbb{Z}\), and converges to
for \(x\in\mathbb{Z}\).
We are now ready to state our second result.
Theorem 3.2
For each integer \(l > s\), we let
Assume that \(\Omega_{m}\neq0\), for an integer \(m > s\). Then we have the following:
-
(a)
$$ \begin{aligned}[b] &\frac{1}{r+s} \Omega_{m+1} + \sum_{n=-\infty,n\neq0}^{\infty} \Biggl(-\sum _{j=1}^{m-s} \frac{(r+s)^{j-1}}{(2\pi i n)^{j}}\Omega _{m-j+1} \Biggr)e^{2\pi i n x} \\ &\quad = \textstyle\begin{cases} \sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} \frac{1}{c_{1}! \cdots c_{r}! j_{1}! \cdots j_{s}!} B_{c_{1}}(\langle x\rangle)\cdots B_{c_{r}}(\langle x\rangle)\\ \quad {}\times G_{j_{1}}(\langle x\rangle)\cdots G_{j_{s}}(\langle x\rangle ),&\textit{for } x\notin\mathbb{Z},\\ \sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} \frac{1}{c_{1}! \cdots c_{r}! j_{1}! \cdots j_{s}!} B_{c_{1}}B_{c_{2}}\cdots B_{c_{r}}G_{j_{1}} \cdots G_{j_{s}} + \frac{1}{2}\Omega_{m} ,& \textit{for } x\in\mathbb{Z}. \end{cases}\displaystyle \end{aligned} $$
-
(b)
$$ \begin{aligned}[b] & \sum_{j=0}^{m-s} \frac{(r+s)^{j-1}}{j!}\Omega_{m-j+1} B_{j}\bigl(\langle x\rangle \bigr) \\ &\quad = \sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} \frac{1}{c_{1}! \cdots c_{r}! j_{1}! \cdots j_{s}!} B_{c_{1}} \bigl(\langle x\rangle\bigr)\cdots B_{c_{r}}\bigl(\langle x\rangle\bigr) \\ &\qquad {}\times G_{j_{1}}\bigl(\langle x\rangle\bigr)\cdots G_{j_{s}} \bigl(\langle x\rangle \bigr),\quad\textrm{for } x\notin\mathbb{Z}, \\ & \sum_{j=0,j\neq1}^{m-s} \frac{(r+s)^{j-1}}{j!} \Omega_{m-j+1} B_{j}\bigl(\langle x\rangle\bigr) \\ &\quad = \sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} \frac{1}{c_{1}! \cdots c_{r}! j_{1}! \cdots j_{s}!} B_{c_{1}}B_{c_{2}}\cdots B_{c_{r}}G_{j_{1}} \cdots G_{j_{s}} \\ & \qquad {}+ \frac{1}{2}\Omega_{m},\quad\textrm{for }x\in\mathbb{Z}. \end{aligned} $$
4 The function \(\gamma_{m}(\langle x\rangle)\)
Here we assume that r, s and m satisfy \(m \geq r+s\) if \(r > 0\) or \(m > s\) if \(r = 0\).
Let \(\gamma_{r,s,m}(x)=\sum_{c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m} \frac{1}{c_{1} \cdots c_{r} j_{1} \cdots j_{s}} B_{c_{1}}(x)\cdots B_{c_{r}}(x)G_{j_{1}}(x)\cdots G_{j_{s}}(x)\), where the sum is over all positive integers \(c_{1}, \ldots, c_{r}, j_{1}, \ldots, j_{s}\) satisfying \(c_{1} + \cdots+ c_{r} + j_{1} + \cdots+ j_{s} = m\). Then we will consider the function
defined on \(\mathbb{R}\), which is periodic with period 1.
The Fourier series of \(\gamma_{r,s,m}(\langle x\rangle)\) is
where
To proceed, we need to observe the following. We have
Thus, we have shown that
Let \(m \geq r+s\), for \(r > 0\), and let \(m > s\), for \(r = 0\). Then we put
From (4.5), we obtain
Denoting \(\int_{0}^{1}\gamma_{r,s,m}(x)\,dx \) by \(a_{r,s,m}\), from (4.7) we have
Clearly, (4.8) together with (4.9) and (4.10) determines \(a_{r,s,m}=\int_{0}^{1}\gamma_{r,s,m}(x)\,dx \) recursively for all r, s, m satisfying \(m \geq r+s\) if \(r > 0\) or \(m > s\) if \(r = 0\).
Also, we note that
We now would like to determine the Fourier coefficients \(C_{n}^{(r,s,m)}\).
Case 1: \(n\neq0\). We have
Note that
Thus we have shown that
We now see that \(C_{n}^{(r,s,m)}\) (\(n \neq0\)) can be completely determined by (4.14)-(4.17), for all r, s, m satisfying \(m \geq r+s\) if \(r > 0\) or \(m > s\) if \(r = 0\).
Case 2: \(n = 0 \). We have
which can be determined from (4.8)-(4.10), for all r, s, m satisfying \(m \geq r+s\) if \(r > 0\) or \(m > s\) if \(r = 0\).
\(\gamma_{r,s,m}(\langle x\rangle)\) is piecewise \(C^{\infty}\). Moreover, \(\gamma_{r,s,m}(\langle x\rangle)\) is continuous for those integers r, s, m with \(\Lambda_{r,s,m} = 0\) and discontinuous with jump discontinuities at integers for those integers r, s, m with \(\Lambda_{r,s,m} \neq0\).
Assume first that \(\Lambda_{r,s,m} = 0 \), for some integers r, s, m satisfying \(m \geq r+s\) if \(r > 0\) or \(m > s\) if \(r = 0\). Then \(\gamma _{r,s,m}(0)=\gamma_{r,s,m}(1)\). Thus \(\gamma_{r,s,m}(\langle x\rangle )\) is piecewise \(C^{\infty}\) and continuous. Hence the Fourier series of \(\gamma_{r,s,m}(\langle x\rangle)\) converges uniformly to \(\gamma _{r,s,m}(\langle x\rangle)\), and
where \(C_{0}^{(r,s,m)}\) are determined by (4.8)-(4.10) and \(C_{n}^{(r,s,m)}\) (\(n \neq0\)) by (4.14)-(4.17).
We are now going to state our first result.
Theorem 4.1
For all integers r, s, l satisfying \(l \geq r+s\), for \(r > 0\) or \(l > s\), for \(r = 0\), we let
Assume that \(\Lambda_{r,s,m} = 0 \), for some integers r, s, m satisfying \(m \geq r+s\) if \(r > 0\) or \(m > s\) if \(r = 0\). Then we have the following:
has the Fourier series expansion
where \(C_{n}^{(r,s,m)}\) (\(n \neq0\)) are determined by (4.14)-(4.17) and \(C_{0}^{(r,s,m)}\) by (4.8)-(4.10). Here the convergence is uniform.
Next, assume that \(\Lambda_{r,s,m} \neq0 \), for some integers satisfying \(m \geq r+s\) if \(r > 0\) or \(m > s\) if \(r = 0\). Then \(\gamma _{r,s,m}(0) \neq\gamma_{r,s,m}(1)\). Here \(\gamma_{r,s,m}(\langle x\rangle)\) is piecewise \(C^{\infty}\) and discontinuous with jump discontinuities at integers. Then the Fourier series of \(\gamma_{r,s,m}(\langle x\rangle)\) converges pointwise to \(\gamma_{r,s,m}(\langle x\rangle )\), for \(x \notin\mathbb{Z}\), and it converges to
for \(x\in\mathbb{Z}\).
Now, we are going to state our second result.
Theorem 4.2
For all integers r, s, l satisfying \(l \geq r+s\), for \(r > 0\) or \(l > s\), for \(r = 0\), we let
Assume that \(\Lambda_{r,s,m} \neq0 \), for some integers r, s, m satisfying \(m \geq r+s\) if \(r > 0\) or \(m > s\) if \(r = 0\). Then we have the following:
where \(C_{n}^{(r,s,m)}\) (\(n \neq0\)) are determined by (4.14)-(4.17) and \(C_{0}^{(r,s,m)}\) by (4.8)-(4.10).
5 Results and discussion
In this paper, we study three types of functions which are given by products of Bernoulli and Genocchi functions and we give some new identities arising from Fourier series expansions associated with Bernoulli and Genocchi functions. In addition, we will express each of them in terms of Bernoulli functions. The Fourier series expansion of the Bernoulli and Genocchi functions are useful in computing the special values of the zeta and multiple zeta function. It is expected that the Fourier series of the Bernoulli and Genocchi functions will find some applications in connection with a certain zeta function and the higher-order Bernoulli numbers.
6 Conclusion
In this paper, we considered the Fourier series expansion of the Bernoulli and Genocchi functions which are obtained by extending by periodicity of period the Bernoulli and Genocchi polynomials on \([0, 1)\). The Fourier series are explicitly determined.
References
Faber, C, Pandharipande, R: Hodge integrals and Gromov-Witten theory. Invent. Math. 139(1), 173-199 (2000)
Kim, DS, Kim, T: A note on higher-order Bernoulli polynomials. J. Inequal. Appl. 2013, 111 (2013)
Kim, DS, Kim, T: Bernoulli basis and the product of several Bernoulli polynomials. Int. J. Math. Math. Sci. 2012, 463659 (2012)
Kim, T: Some identities for the Bernoulli, the Euler and Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. 20(1), 23-28 (2015)
Liu, H, Wang, W: Some identities on the the Bernoulli, Euler and Genocchi poloynomials via power sums and alternate power sums. Discrete Math. 309, 3346-3363 (2009)
Cangul, IN, Kurt, V, Ozden, H, Simsek, Y: On the higher-order w-q-Genocchi numbers. Adv. Stud. Contemp. Math. (Kyungshang) 19(1), 39-57 (2009)
Ding, D, Yang, J: Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials. Adv. Stud. Contemp. Math. (Kyungshang) 20(1), 7-21 (2010)
Dunne, GV, Schubert, C: Bernoulli number identities from quantum field theory and topological string theory. Commun. Number Theory Phys. 7(2), 225-249 (2013)
Luo, QM: Fouier expansions and integral representations for Genocchi poloynomials. J. Integer Seq. 12, 09.1.4 (2009)
Srivastava, HM: Some generalizations and basic extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 5(3), 390-414 (2011)
Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions. Dover, New York (1970)
Marsden, JE: Elementary Classical Analysis. Freeman, New York (1974)
Zill, DG, Cullen, MR: Advanced Engineering Mathematics. Jones & Bartlett, Boston (2006)
Gaboury, S, Tremblay, R, Fugere, B-J: Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials. Proc. Jangjeon Math. Soc. 17(1), 115-123 (2014)
Jang, G-W, Kim, T, Kim, DS, Mansour, T: Fourier series of functions related to Bernoulli polynomials. Adv. Stud. Contemp. Math. 27, 49-62 (2017)
Kim, DS, Kim, T: Some identities of higher order Euler polynomials arising from Euler basis. Integral Transforms Spec. Funct. 24(9), 734-738 (2013)
Kim, T: On the multiple q-Genocchi and Euler numbers. Russ. J. Math. Phys. 15(4), 481-486 (2008)
Kim, T: Euler numbers and polynomials associated with zeta functions. Abstr. Appl. Anal. 2008, Article ID 581582 (2008)
Miki, H: A relation between Bernoulli numbers. J. Number Theory 10(3), 297-302 (1978)
Kim, DS, Kim, T: Identities arising from higher-order Daehee polynomial bases. Open Math. 13, 196-208 (2015)
Kim, T, Kim, DS, Dolgy, D, Park, J-W: Fourier series of sums of products of poly-Bernoulli functions and their applications. J. Nonlinear Sci. Appl. 10(4), 2384-2401 (2017)
Kim, T, Kim, DS, Dolgy, D, Park, J-W: Fourier series of sums of products of ordered Bell and poly-Bernoulli functions. J. Inequal. Appl. 2017, 13660 (2017)
Kim, T, Kim, DS, Jang, G-W, Kwon, J: Fourier series of sums of products of Genocchi functions and their applications. J. Nonlinear Sci. Appl. 10(4), 1683-1694 (2017)
Kim, T, Kim, DS, Rim, S-H, Dolgy, D: Fourier series of higher-order Bernoulli functions and their applications. J. Inequal. Appl. 2017, 71452 (2017)
Acknowledgements
The first author has been appointed a chair as professor at Tianjin Polytechnic University by Tianjin City in China from August 2015 to August 2019.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the manuscript and typed, read, and approved the final manuscript.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Kim, T., Kim, D.S., Jang, GW. et al. Fourier series of finite products of Bernoulli and Genocchi functions. J Inequal Appl 2017, 157 (2017). https://doi.org/10.1186/s13660-017-1431-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-017-1431-y
MSC
- 11B68
- 11B83
- 42A16
Keywords
- Fourier series
- finite product
- Bernoulli function
- Genocchi function