 Research
 Open Access
 Published:
The viscosity iterative algorithms for the implicit midpoint rule of nonexpansive mappings in uniformly smooth Banach spaces
Journal of Inequalities and Applications volume 2017, Article number: 154 (2017)
Abstract
The aim of this paper is to introduce a viscosity iterative algorithm for the implicit midpoint rule of nonexpansive mappings in uniformly smooth spaces. Under some appropriate conditions on the parameters, we prove some strong convergence theorems. As applications, we apply our main results to solving fixed point problems of strict pseudocontractive mappings, variational inequality problems in Banach spaces and equilibrium problems in Hilbert spaces. Finally, we give some numerical examples for supporting our main results.
Introduction
Throughout this paper, we assume that E and \(E^{*}\) is a real Banach space and the dual space of E, respectively. Let T be a mapping from C into itself, where C is a subset of E. We denoted by \(F(T)\) the set of fixed points of T. It is well known that the duality mapping \(J:E\rightarrow2^{E^{*}}\) is defined by
When J is singlevalued, we denote it by j. We notice that if E is a Hilbert space, then J is the identity mapping and if E is smooth, then J is singlevalued.
Now we recall some basic concepts and facts appeared in [1]. A mapping \(f: C\rightarrow C \) is said to be a contraction, if there exists a constant \(\alpha\in[0,1)\) satisfying
We use \(\Pi_{C}\) to denote the collection of all contractions from C into itself.
A mapping \(T:C\rightarrow C\) is said to be nonexpansive if
Let \(\rho_{E}:[0,\infty)\rightarrow[0,\infty)\) be defined by
which is called the modulus of smoothness of E. We say that Banach space E is uniformly smooth if \(\dfrac{\rho_{E}(t)}{t}\rightarrow0\) as \(t\rightarrow0\). It is well known that typical example of uniformly smooth Banach spaces is \(L^{p}\), here \(p>1\). Moreover, we say that Banach space E is quniformly smooth, if there exists a fixed constant \(c>0\) such that \(\rho_{E}(t)\leq ct^{q}\).
Recently, viscosity iterative algorithms for finding a common element of the set of fixed points for nonlinear operators and the set of solutions of variational inequality problems have been investigated by many authors; see [1–7] and the references therein. For example, Xu [1] introduced the explicit viscosity method for nonexpansive mappings:
where \(\{\alpha_{n} \}\) is a sequence in \((0,1)\) and \(f\in \Pi_{C}\). Under some suitable conditions on \(\{\alpha_{n} \}\), he proved that the sequence \(\{x_{n} \}\) generated by (1.2) converges strongly to a fixed point q of T in Hilbert spaces or uniformly smooth Banach spaces, which also solves the variational inequality:
On the other hand, the implicit midpoint rule is a powerful method for solving ordinary differential equations; see [8–10] and the references therein. Recently, Xu et al. [11] applied the viscosity technique to the implicit midpoint rule for a nonexpansive mapping. Precisely, they considered the following viscosity implicit midpoint rule:
They proved that the sequence generated by (1.4) converges strongly to a fixed point of T, which also solves the variational inequality (1.3) in Hilbert space. The following problems arise:
Question 1. Can we extend and improve the main results of Xu et al. [11] from Hilbert space to general Banach space? For example we might consider a uniformly smooth Banach space.
Question 2. We note that the proof of step 6 in Theorem 3.1 of [11] is very complicated. Can we simplify it?
In this paper, we give the affirmative answers to the above two questions. More precisely, we investigate the viscosity iterative algorithm (1.4) for the implicit midpoint rule of a nonexpansive mapping in a real uniformly smooth space. Under some suitable conditions on the parameters, we prove some strong convergence theorems. We also apply our main results to solve fixed point problems for strict pseudocontractive mappings, variational inequality problems in Banach spaces and equilibrium problems in Hilbert spaces.
Preliminaries
The following lemmas are fundamental in the proof of our main results of this section.
Lemma 2.1
[1]
Assume \(\{a_{n} \}\) is a sequence of nonnegative real numbers such that
where \(\{\alpha_{n} \}\) is a sequence in \((0,1)\) and \(\{ \delta_{n} \}\) is a sequence in \(\mathbb{R}\) such that

(i)
\(\sum_{n=0}^{\infty}\alpha_{n}=\infty\), and

(ii)
either \(\limsup_{n\rightarrow\infty}\frac{\delta_{n}}{\alpha _{n}}\leq0\) or \(\sum_{n=1}^{\infty} \vert \delta_{n} \vert <\infty\).
Then \(\lim_{n\rightarrow\infty}a_{n}=0\).
Lemma 2.2
[1]
Let E be a uniformly smooth Banach space, C be a closed convex subset of E, \(T:C\rightarrow C\) be a nonexpansive mapping with \(F(T)\neq\emptyset\) and let \(f\in\Pi_{C}\). Then the sequence \(\{x_{t} \}\) defined by \(x_{t}=tf(x_{t})+(1t)Tx_{t} \) converges strongly to a point in \(F(T)\). If we define a mapping \(Q:\Pi_{C}\rightarrow F(T)\) by \(Q(f):=\lim_{t\rightarrow0}x_{t}\), \(\forall f\in\Pi_{C}\). Then \(Q(f)\) solves the following variational inequality:
Lemma 2.3
[3]
Let C be a nonempty closed convex subset of a real Banach space E which has uniformly Gâteaux differentiable norm, and \(T:C\rightarrow C\) be a nonexpansive mapping with \(F(T)\neq\emptyset \). Assume that \(\{z_{t} \}\) strongly converges to a fixed point z of T as \(t\rightarrow0\), where \(\{z_{t} \}\) is defined by \(z_{t}=tf(z_{t})+(1t)Tz_{t} \). Suppose \(\{x_{n} \}\subset C\) is bounded and \(\lim_{n\rightarrow\infty} \Vert x_{n}Tx_{n} \Vert =0\). Then
Main results
Theorem 3.1
Let C be a closed convex subset of a uniformly smooth Banach space E. Let \(T:C\rightarrow C\) be a nonexpansive mapping with \(F(T)\neq \emptyset\), and \(f:C\rightarrow C\) a contraction with coefficient \(\alpha\in[0,1)\). Let \(\{x_{n} \}\) be a sequence generated by the following viscosity implicit midpoint rule:
where \(\{\alpha_{n} \}\) is a sequence in \((0,1)\) such that:

(i)
\(\lim_{n\rightarrow\infty}\alpha_{n}=0\),

(ii)
\(\sum_{n=0}^{\infty}\alpha_{n}=\infty\),

(iii)
either \(\sum_{n=0}^{\infty} \vert \alpha_{n+1}\alpha _{n} \vert <\infty\) or \(\lim_{n\rightarrow\infty}\frac{\alpha _{n+1}}{\alpha_{n}}=1\).
Then \(\{x_{n} \}\) converges strongly to a fixed point q of T, which also solve the following variational inequality:
Proof
Using similar argument used in the proof of Theorem 3.1 of [11], we can find that the sequence \(\{x_{n} \}\) is bounded and
We omit the details. Let \(\{x_{t} \}\) be a sequence defined by \(x_{t}=tf(x_{t})+(1t)Tx_{t}\), then it follows from Lemma 2.2 that \(\{ x_{t} \}\) converges strongly to a fixed point q of T, which solves the variational inequality:
By (3.3) and Lemma 2.3, we have
Finally, we prove that \(x_{n}\rightarrow q\) as \(n\rightarrow\infty\). In fact, we observe
which implies
Thus we obtain
This implies
We note
Apply Lemma 2.1 to (3.5), we have \(x_{n}\rightarrow q\) as \(n\rightarrow \infty\). This finishes the proof. □
It is well known that Hilbert space is uniformly smooth, then we obtain the main results of [11].
Corollary 3.2
Let C be a closed convex subset of a Hilbert space H, \(T:C\rightarrow C\) a nonexpansive mapping with \(F(T)\neq\emptyset\), and \(f:C\rightarrow C\) a contraction with coefficient \(\alpha\in [0,1)\). Let \(\{x_{n} \}\) be generated by the following viscosity implicit midpoint rule:
where \(\{\alpha_{n} \}\) is a sequence in \((0,1)\) satisfying:

(i)
\(\lim_{n\rightarrow\infty}\alpha_{n}=0\),

(ii)
\(\sum_{n=0}^{\infty}\alpha_{n}=\infty\),

(iii)
either \(\sum_{n=0}^{\infty} \vert \alpha_{n+1}\alpha _{n} \vert <\infty\) or \(\lim_{n\rightarrow\infty}\frac{\alpha _{n+1}}{\alpha_{n}}=1\).
Then \(\{x_{n} \}\) converges strongly to a fixed point q of T, which is also the unique solution of the following variational inequality:
Applications
(I) Application to fixed point problems for strict pseudocontractive mappings.
We say that a mapping \(T:C\rightarrow C\) is λstrict pseudocontractive if there exists a fixed constant \(\lambda\in(0,1)\) such that
for some \(j(xy)\in J(xy)\) and for every \(x,y\in C\). A simple computation shows that (4.1) is equivalent to the following inequality:
for some \(j(xy)\in J(xy)\) and for every \(x,y\in C\).
Now we give a relationship between strict pseudocontractive mapping and nonexpansive mapping.
Lemma 4.1
[12]
Let C be a nonempty closed convex subset of a real 2uniformly smooth Banach space E and \(T:C\rightarrow C\) be a λstrict pseudocontractive mapping. For \(\alpha\in(0,1)\), we define \(T_{\alpha}x:=(1\alpha)x+\alpha Tx\). Then, as \(\alpha\in(0,\frac{\lambda }{K^{2}}]\), where K is the 2uniformly smooth constant. Then \(T_{\alpha}: C\rightarrow C\) is nonexpansive such that \(F(T_{\alpha})=F(T)\).
Using Theorem 3.1 and Lemma 4.1, we obtain the following results.
Theorem 4.1
Let C be a closed convex subset of a uniformly smooth Banach space E. Let \(T:C\rightarrow C\) a λpseudocontractive mapping with \(F(T)\neq\emptyset\), and \(f:C\rightarrow C\) a contraction with coefficient \(\alpha\in[0,1)\). Let \(\{x_{n} \}\) be a sequence generated by the viscosity implicit midpoint rule:
where \(T_{\delta}\) is a mapping from C into itself defined by \(T_{\delta}x:=(1\delta)x+\delta Tx\), \(x\in C\), \(\delta\in(0,\frac {\lambda}{K^{2}}]\). Assume that \(\{\alpha_{n} \}\) is a sequence in \((0,1)\) such that:

(i)
\(\lim_{n\rightarrow\infty}\alpha_{n}=0\),

(ii)
\(\sum_{n=0}^{\infty}\alpha_{n}=\infty\),

(iii)
either \(\sum_{n=0}^{\infty} \vert \alpha_{n+1}\alpha _{n} \vert <\infty\) or \(\lim_{n\rightarrow\infty}\frac{\alpha _{n+1}}{\alpha_{n}}=1\).
Then \(\{x_{n} \}\) converges strongly to a fixed point q of T, which also solve the variational inequality:
(II) Application to variational inequality problems in Banach spaces.
Let C be a nonempty closed convex subset of a Hilbert space H and let \(A:C\rightarrow H\) be a nonlinear mapping. It is well known that the classical variational inequality is to find \(x^{*}\) such that
We denoted by \(\mathrm{VI}(A,C)\) the set of solutions of (4.4).
Recently, Ceng et al. [13] considered the problem of finding \((x^{*},y^{*})\in C\times C\) satisfying
which is called a general system of variational inequalities, where \(A, B:C\rightarrow H\) are two nonlinear mappings, \(\lambda>0\) and \(\mu>0\) are two constants. Precisely, they introduced a relaxed extragradient method for finding a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of variational inequality problem (4.5) in a real Hilbert space.
Now we consider the problem of finding \((x^{*},y^{*})\in C\times C\) satisfying
Problem (4.6) is called the system of general variational inequalities in a real Banach spaces. In particular, if E is a Hilbert space, then problem (4.6) becomes problem (4.5). So our problem (4.6) contains (4.5) as a special case.
Recall that a mapping \(A:C\rightarrow E\) is called accretive if there exists some \(j(xy)\in J(xy)\) such that
A mapping \(A:C\rightarrow E\) is said to be αinversestrongly accretive if there exist some \(j(xy)\in J(xy)\) and a fixed constant \(\alpha>0\) such that
The following lemmas are very important for proving our main results.
Lemma 4.2
[14]
Let C be a nonempty closed convex subset of a real 2uniformly smooth Banach space E. Let \(Q_{C}\) be the sunny nonexpansive retraction from E onto C. Let the mappings \(A,B:C\rightarrow E\) be αinversestrongly accretive and βinversestrongly accretive, respectively. Let \(G:C\rightarrow C\) be a mapping defined by
If \(0<\lambda\leq\frac{\alpha}{K^{2}}\) and \(0<\mu\leq\frac{\beta}{K^{2}}\), then \(G:C\rightarrow C\) is nonexpansive.
Lemma 4.3
[14]
Let C be a nonempty closed convex subset of a real 2uniformly smooth Banach space E. Let \(Q_{C}\) be the sunny nonexpansive retraction from E onto C. Let \(A,B:C\rightarrow E\) be two nonlinear mappings. For given \(x^{*},y^{*}\in C\), \((x^{*},y^{*})\) is a solution of problem (4.6) if and only if \(x^{*}=Q_{C}(y^{*}\lambda Ay^{*})\) where \(y^{*}=Q_{C}(x^{*}\mu Bx^{*})\), that is, \(x^{*}=Gx^{*}\), where G is defined by Lemma 4.2.
Theorem 4.2
Let C be a closed convex subset of a real 2uniformly smooth Banach space E, let the mappings \(A,B:C\rightarrow E\) be αinversestrongly accretive and βinversestrongly accretive with \(F(G)\neq\emptyset\), where \(G:C\rightarrow C\) is a mapping defined by Lemma 4.2. Let \(f:C\rightarrow C\) be a contraction with coefficient \(\alpha\in[0,1)\). Let \(\{x_{n} \}\) be a sequence generated by the viscosity implicit midpoint rule:
where \(0<\lambda\leq\frac{\alpha}{K^{2}}\), \(0<\mu\leq\frac{\beta }{K^{2}}\). Suppose that \(\{\alpha_{n} \}\) is a sequence in \((0,1)\) satisfying:

(i)
\(\lim_{n\rightarrow\infty}\alpha_{n}=0\),

(ii)
\(\sum_{n=0}^{\infty}\alpha_{n}=\infty\),

(iii)
either \(\sum_{n=0}^{\infty} \vert \alpha_{n+1}\alpha _{n} \vert <\infty\) or \(\lim_{n\rightarrow\infty}\frac{\alpha _{n+1}}{\alpha_{n}}=1\).
Then \(\{x_{n} \}\) converges strongly to a fixed point q of G, which is also the unique solution of the following variational inequality:
Proof
By Lemma 4.2, we see that G is nonexpansive. So we obtain the desired results by Theorem 3.1 immediately. □
(III) Application to equilibrium problems in Hilbert spaces.
Let \(\phi:C\times C\rightarrow\mathbb{R}\) be a bifunction, where \(\mathbb{R}\) is the set of real numbers. The equilibrium problem for the function ϕ is to find a point \(x\in C\) satisfying
We denoted by \(EP(\phi)\) the set of solutions of (4.10). This equilibrium problem contains variational inequality problem, optimization problem and the fixed point problem as its special cases (see Blum and Oettli [15] for more information).
For solving the equilibrium problem, we need to assume that the bifunction ϕ satisfies the following four conditions (see [15]):

(A1)
\(\phi(x,x)=0\) for all \(x\in C\);

(A2)
ϕ is monotone, that is, \(\phi(x,y)+\phi(y,x)\leq0\) for all \(x,y\in C\);

(A3)
ϕ is upperhemicontinuous, i.e., for any \(x,y,z\in C\)
$$\limsup_{t\rightarrow0^{+}}\phi\bigl(tz+(1t)x,y\bigr)\leq\phi(x,y); $$ 
(A4)
\(\phi(x,\cdot)\) is convex and weakly lower semicontinuous for each \(x\in C\).
In order to prove our main results, we need the following lemmas.
Lemma 4.4
[15]
Let C be a nonempty closed convex subset of H and let ϕ be a bifunction of \(C\times C\) into \(\mathbb{R}\) satisfying (A1)(A4). Let \(r>0\) and \(x\in H\). Then there exists \(z\in C\) such that
Lemma 4.5
[16]
Assume that \(\phi:C\times C\rightarrow\mathbb {R}\) satisfies (A1)(A4). For \(r>0\) and \(x\in H\), define a mapping \(T_{r}:H\rightarrow C\) as follows:
for all \(z\in H\). Then the following hold:

(1)
\(T_{r}\) is singlevalued.

(2)
\(T_{r}\) is firmly nonexpansive, i.e., for any \(x,y\in H\), \(\Vert T_{r}xT_{r}y \Vert ^{2}\leq \langle T_{r}xT_{r}y,xy \rangle\).
This implies that \(\Vert T_{r}xT_{r}y \Vert \leq \Vert xy \Vert \), ∀x, \(y\in H\), i.e., \(T_{r}\) is a nonexpansive mapping.

(3)
\(F(T_{r})=EP(\phi)\), \(\forall r>0\).

(4)
\(EP(\phi)\) is a closed and convex set.
We say that a mapping T is attracting nonexpansive if it is nonexpansive and satisfies
The following lemma gives a relationship between a nonexpansive mapping and an attracting nonexpansive mapping.
Lemma 4.6
[17]
Suppose that E is strictly convex, \(T_{1}\) an attracting nonexpansive and \(T_{2}\) a nonexpansive mapping which have a common fixed point. Then we have \(F(T_{1}T_{2})=F(T_{2}T_{1})=F(T_{1})\cap F(T_{2})\).
Theorem 4.3
Let C be a nonempty closed convex subset of a real Hilbert space H, \(\phi:C\times C\rightarrow\mathbb {R}\) be a bifunction satisfying the conditions (A1)(A4). Let \(T:C\rightarrow C\) be a nonexpansive mapping with \(F=F(T)\cap EP(\phi)\neq\emptyset\), and \(f:C\rightarrow C\) a contraction with coefficient \(\alpha\in[0,1)\). Let \(\{x_{n} \}\) be a sequence generated by the viscosity implicit midpoint rule
where \(\{\alpha_{n} \}\) is a sequence in \((0,1)\) such that:

(i)
\(\lim_{n\rightarrow\infty}\alpha_{n}=0\),

(ii)
\(\sum_{n=0}^{\infty}\alpha_{n}=\infty\),

(iii)
either \(\sum_{n=0}^{\infty} \vert \alpha_{n+1}\alpha _{n} \vert <\infty\) or \(\lim_{n\rightarrow\infty}\frac{\alpha _{n+1}}{\alpha_{n}}=1\).
Then \(\{x_{n} \}\) converges strongly to a fixed point q of F, which also solves the following variational inequality:
Proof
We can rewrite (4.11) as
By Lemma 4.5, we know that \(T_{r}\) is firmly nonexpansive. Furthermore, we can prove that \(T_{r}\) is attracting nonexpansive. Indeed, for any \(x\notin F(T_{r})\) and \(y\in F(T_{r})\), we have
which implies that
Therefore \(T_{r}\) is attracting nonexpansive. By Lemma 4.6, we find that \(F(TT_{r})=F(T)\cap F(T_{r})=F(T)\cap EP(\phi)=F\). So we easily get the desired results by Theorem 3.1. □
Numerical examples
In the last section, we give two numerical examples where our main results may be applied.
Example 5.1
Assume that \(\mathbb{R}\) is a real line with the Euclidean norm. Let \(f,T:\mathbb{R}\rightarrow\mathbb{R}\) be defined by \(f(x)=\frac{1}{4}x\) and \(Tx=\frac{1}{2}x\) for any \(x\in\mathbb {R}\), respectively. It is easy to see that \(F(T)= \{0 \}\). Let \(\alpha _{n}=\frac{1}{n}\) for each \(n\in\mathbb{N}\). Let \(\{x_{n} \} \) be a sequence generated by (1.2) and \(\{y_{n} \}\) be a sequence generated by (3.1), respectively. Then by Theorem 3.1 and Theorem 3.1 of [11], we find that \(\{x_{n} \}\) and \(\{y_{n} \}\) converge strongly to 0. We can rewrite (1.2) and (3.1) as follows:
Choose \(x_{1}=1\) and \(y_{1}=1\) in (5.1) and (5.2), we get the following numerical results in Figure 1.
Remark 5.2
By Figure 1, we know that \(\{y_{n} \}\) converges to 0 more quickly than \(\{x_{n} \}\). So the rate of convergence of viscosity implicit midpoint rule (3.1) is better than viscosity iterative algorithm (1.2).
Example 5.3
Let \(\langle \cdot,\cdot\rangle:\mathbb{R}^{3}\times\mathbb{R}^{3}\rightarrow \mathbb{R}\) be the inner product defined by
and let \(\Vert \cdot \Vert :\mathbb{R}^{3}\rightarrow \mathbb{R}\) be the usual norm defined by \(\Vert \mathbf{x} \Vert =\sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}}\) for any \(\mathbf{x}=(x_{1},x_{2},x_{3})\), \(\mathbf{y}=(y_{1},y_{2},y_{3})\in\mathbb {R}^{3}\). For all \(x\in\mathbb{R}\), let \(T,f:\mathbb{R}^{3}\rightarrow \mathbb{R}^{3}\) be defined by \(T\mathbf{x}=\frac{1}{3}\mathbf{x}\), and \(f(\mathbf{x})=\frac {1}{3}\mathbf{x}\), respectively. Let \(\alpha_{n}=\frac{1}{n}\) for each \(n\in\mathbb{N}\). Assume that \(\{x_{n} \}\) is a sequence generated by (3.1). We can see easily that \(F(T)= \{0 \}\). Then \(\{ \mathbf{x}_{n} \}\) converges strongly to 0. Moreover, we can rewrite (3.1) as follows:
Choose \(\mathbf{x}_{1}=(1,2,3)\) in (5.3), we obtain the numerical results shown in Figure 2 and Figure 3.
References
 1.
Xu, HK: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279291 (2004)
 2.
Moudafi, A: Viscosity approximation methods for fixed points problems. J. Math. Anal. Appl. 241, 4655 (2000)
 3.
Song, Y, Chen, R, Zhou, H: Viscosity approximation methods for nonexpansive mapping sequences in Banach spaces. Nonlinear Anal. 66, 10161024 (2007)
 4.
Jung, JS: Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 302, 509520 (2005)
 5.
Ceng, LC, Xu, HK, Yao, JC: The viscosity approximation method for asymptotically nonexpansive mappings in Banach spaces. Nonlinear Anal. 69, 14021412 (2008)
 6.
Zegeye, H, Shahzad, N: Viscosity methods of approximation for a common fixed point of a family of quasinonexpansive mappings. Nonlinear Anal. 68, 20052012 (2008)
 7.
Sunthrayuth, P, Kumam, P: Viscosity approximation methods base on generalized contraction mappings for a countable family of strict pseudocontractions, a general system of variational inequalities and a generalized mixed equilibrium problem in Banach spaces. Math. Comput. Model. 58, 18141828 (2013)
 8.
Bader, G, Deuflhard, P: A semiimplicit midpoint rule for stiff systems of ordinary differential equations. Numer. Math. 41, 373398 (1983)
 9.
Deuflhard, P: Recent progress in extrapolation methods for ordinary differential equations. SIAM Rev. 27(4), 505535 (1985)
 10.
Somalia, S: Implicit midpoint rule to the nonlinear degenerate boundary value problems. Int. J. Comput. Math. 79(3), 327332 (2002)
 11.
Xu, HK, Aoghamdi, MA, Shahzad, N: The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces. Fixed Point Theory Appl. 2015, 41 (2015)
 12.
Zhou, H: Convergence theorems for λstrict pseudocontractions in 2uniformly smooth Banach spaces. Nonlinear Anal. 69, 31603173 (2008)
 13.
Ceng, LC, Wang, C, Yao, JC: Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Methods Oper. Res. 67, 375390 (2008)
 14.
Cai, G, Bu, S: Convergence analysis for variational inequality problems and fixed point problems in 2uniformly smooth and uniformly convex Banach spaces. Math. Comput. Model. 55, 538546 (2012)
 15.
Blum, E, Oettli, W: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123145 (1994)
 16.
Combettes, PL, Hirstoaga, SA: Equilibrium programming in Hilbert space. J. Nonlinear Convex Anal. 6, 117136 (2005)
 17.
Chancelier, JP: Iterative schemes for computing fixed points of nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 353, 141153 (2009)
Acknowledgements
This work was supported by the Training Programs of Famous Teachers in Chongqing Normal University (NO.0203030700047) and the Key Project of Teaching Reforms for Postgraduates in Chongqing (NO.yjg20162006).
Author information
Additional information
Competing interests
The authors declare that there is no conflict of interests regarding this manuscript.
Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Received
Accepted
Published
DOI
MSC
 49H09
 47H10
 47J20
Keywords
 strong convergence
 nonexpansive mapping
 implicit midpoint rule
 uniformly smooth Banach space