- Research
- Open Access
- Published:
Refined stability of additive and quadratic functional equations in modular spaces
Journal of Inequalities and Applications volume 2017, Article number: 146 (2017)
Abstract
The purpose of this paper is to obtain refined stability results and alternative stability results for additive and quadratic functional equations using direct method in modular spaces.
1 Introduction
The theory of modulars on linear spaces and the related theory of modular linear spaces have been established by Nakano in 1950 [1]. Since then, these have been thoroughly developed by several mathematicians, for example, Amemiya [2], Koshi and Shimogaki [3], Yamamuro [4], Orlicz [5], Mazur [6], Musielak [7], Luxemburg [8], Turpin [9]. Up to now, the theory of modulars and modular spaces is widely applied in the study of interpolation theory [10, 11] and various Orlicz spaces [5].
First of all, we introduce to adopt the usual terminologies, notations, definitions and properties of the theory of modular spaces.
Definition 1
Let X be a linear space over a field \(\mathbb{K}\) (\(\mathbb{R}\) or \(\mathbb{C}\)). We say that a generalized functional \(\rho: X \rightarrow[0,\infty]\) is a modular if for any \(x, y \in X\),
- (M1):
-
\(\rho(x)=0\) if and only if \(x=0\),
- (M2):
-
\(\rho(\alpha x)=\rho(x)\) for all scalar α with \(|\alpha|=1\),
- (M3):
-
\(\rho(\alpha x + \beta y) \leq\rho(x)+\rho(y)\) for all scalar \(\alpha, \beta\geq0\) with \(\alpha+ \beta=1\).
If (M3) is replaced by
- (M4):
-
\(\rho(\alpha x + \beta y) \leq\alpha\rho(x)+\beta\rho (y)\) for all scalar \(\alpha, \beta\geq0\) with \(\alpha+ \beta=1\), then the functional ρ is called a convex modular.
A modular ρ defines the following vector space:
and we say that \(X_{\rho}\) is a modular space.
Definition 2
Let \(X_{\rho}\) be a modular space and let \(\{ x_{n} \} \) be a sequence in \(X_{\rho}\). Then:
-
(1)
\(\{ x_{n} \} \) is ρ-convergent to a point \(x \in X_{\rho}\) and write \(x_{n} \xrightarrow{\rho} x \) if \(\rho(x_{n}-x) \rightarrow0\) as \(n \rightarrow\infty\).
-
(2)
\(\{ x_{n} \} \) is called ρ-Cauchy if for any \(\varepsilon>0\) one has \(\rho(x_{n}-x_{m})<\varepsilon\) for sufficiently large \(m, n \in\mathbb{N}\).
-
(3)
A subset \(K \subseteq X_{\rho}\) is called ρ-complete if any ρ-Cauchy sequence is ρ-convergent to a point in K.
It is said that the modular ρ has the Fatou property if and only if \(\rho(x) \leq\liminf_{n\rightarrow\infty}\rho(x_{n}) \) whenever the sequence \(\{ x_{n} \}\) is ρ-convergent to x in modular space \(X_{\rho}\).
Proposition 1
In modular spaces,
-
(1)
if \(x_{n} \xrightarrow{\rho} x\) and a is a constant vector, then \(x_{n} +a \xrightarrow{\rho} x+a\), and
-
(2)
if \(x_{n} \xrightarrow{\rho} x\) and \(y_{n} \xrightarrow{\rho} y\), then \(\alpha x_{n} + \beta y_{n} \xrightarrow{\rho} \alpha x + \beta y\), where \(\alpha+ \beta\leq1\) and \(\alpha, \beta\geq0\).
It is noticed that the convergence of a sequence \(\{ x_{n}\}\) to x does not imply that \(\{ cx_{n} \}\) converges to cx if c is chosen from the corresponding scalar field with \(|c|>1\) in modular spaces. Thus, additional conditions on modular spaces were imposed by many mathematicians so that the multiples of convergent sequence \(\{ x_{n}\}\) in the modular spaces converge naturally. A modular ρ is said to satisfy the △2-condition if there exists \(k>0\) such that \(\rho(2x)\leq k\rho(x)\) for all \(x \in X_{\rho}\). Throughout this paper, we say that this constant k is a △2-constant related to \(\Delta_{2}\)-condition.
Remark 1
Suppose that ρ is convex and satisfies △2-condition with △2-constant \(k>0\). If \(k<2\), then \(\rho(x) \leq k \rho(\frac{x}{2})\leq\frac{k}{2}\rho (x) \), which implies \(\rho=0\). Therefore, we must have the △2-constant \(k \ge2 \) if ρ is convex modular.
The study of the stability of functional equations originated with Ulam [12], who raised the stability problem of group homomorphisms. Hyers [13] gave the first affirmative answer to Ulam’s question in the case of a Cauchy functional equation in Banach spaces. In honor of the Hyers answer to the question of Ulam, the stability of functional equations may be called Hyers-Ulam stability. Hyers’ approach to proving Ulam’s problem, which is often called the direct method [13], has been extensively used for studying the stability of various functional equations [14, 15]. Additionally, there are also other methods proving the Hyers-Ulam stability of some functional equations [16], for example, the method using the property of shadowing [17], the method of invariant means [18], the method based on sandwich theorems [19]. The most popular technique of proving the stability of functional equations except for direct method is the fixed point method [16, 20–23].
On the other hand, many authors have investigated the stability using fixed point theorem of quasicontraction mappings in modular spaces without \(\Delta_{2}\)-condition, which has been introduced by Khamsi [24]. Recently, the stability results of additive functional equations in modular spaces equipped with the Fatou property and \(\Delta _{2}\)-condition were investigated by Sadeghi [25] who used Khamsi’s fixed point theorem. Also the stability of quadratic functional equations in modular spaces satisfying the Fatou property without using the \(\Delta_{2}\)-condition was proved by Wongkum, Chaipunya and Kumam [26].
In this paper, by using the direct method, we present stability results and alternative stability results of additive functional equations and of quadratic functional equations which are refined versions of Sadeghi [25], and Wongkum, Chaipunya and Kumam [26].
2 Stability of additive functional equations in modular spaces
Throughout this paper, we assume that V is a linear space and \(X_{\rho}\) is a ρ-complete convex modular space. We present a main theorem, which concerns Hyers-Ulam stability of an additive functional equation in modular spaces without using the Fatou property.
Theorem 1
Suppose \(X_{\rho}\) satisfies the \(\Delta_{2}\)-condition. If there exists a function \(\varphi:V^{2} \to[0,\infty)\) for which a mapping \(f:V\to X_{\rho}\) satisfies
for all \(x, y \in V\), then there exists a unique additive mapping \(A:V \to X_{\rho}\), defined as \(A(x)=\lim_{n\to\infty}2^{n}f(\frac{x}{2^{n}}) \) and
for all \(x\in V\).
Proof
By letting \(x, y\) by \(\frac{x}{2}\) in (1), respectively, we get
for all \(x\in V\), and then it follows from the \(\Delta_{2}\)-condition and the convexity of the modular ρ that
for all \(x \in V\). So, for all \(n,m \in\mathbb{N}\) with \(n \geq m\), we have
for all \(x \in V\). Since the right-hand side of the above inequality tends to zero as m goes to infinity, the sequence \(\{ 2^{n}f(\frac {x}{2^{n}}) \}\) is a ρ-Cauchy sequence in \(X_{\rho}\) and so the sequence \(\{ 2^{n}f {(} \frac{x}{2^{n}} {)} \} \) is a ρ-convergent sequence on \(X_{\rho}\). Thus, we may define a mapping \(A :V \to X_{\rho}\) as
According to the \(\Delta_{2}\)-condition without using the Fatou property, we obtain the following inequality:
for all \(x \in V\). Taking \(n \rightarrow\infty\), we conclude that the estimation (2) of f by A holds for all \(x \in V\).
Now, we claim that the mapping A is additive. Setting \((x, y) := (2^{-n}x, 2^{-n}y)\) in (1) and using the \(\Delta_{2}\)-condition, we see that
for all \(x ,y \in V\). Thus, it follows from the \(\Delta_{2}\)-condition and \(\rho(\alpha x) \leq\alpha\rho(x)\) (\(0\leq\alpha\leq1\), \(x \in V\)) that
for all \(x , y\in V\) and all positive integers n. Taking the limit as \(n\rightarrow\infty\), one sees that A is additive.
To show the uniqueness of A, we assume that there exists an additive mapping \(A' : V \rightarrow X_{\rho}\) which satisfies the inequality
for all \(x \in V\). Then, since A and \(A'\) are additive mappings, we see from the equality \(A(2^{-n}x)=2^{-n}A(x)\) and \(A'(2^{-n}x)=2^{-n}A'(x)\) that
for all \(x \in V\) and all positive integers n. Hence A is a unique additive mapping near f satisfying the approximation (2) in the modular space \(X_{\rho}\). This completes the proof. □
Corollary 1
Suppose V is a normed space with norm \(\| \cdot\|\) and \(X_{\rho}\) satisfies \(\Delta_{2}\)-condition. For given real numbers \(\theta>0\) and \(p>\log_{2}\frac{k^{2}}{2}\), if \(f:V \rightarrow X_{\rho}\) is a mapping such that
for all \(x, y \in V\), then there exists a unique additive mapping \(A:V \rightarrow X_{\rho}\) such that
for all \(x \in V\).
Next, we are going to prove an alternative stability theorem of additive functional equations in modular spaces without using the \(\Delta_{2}\)-condition.
Theorem 2
Let \(X_{\rho}\) satisfy the Fatou property. Suppose that a mapping \(f : V \rightarrow X_{\rho} \) satisfies
and \(\phi:V \times V \rightarrow[0, \infty) \) is a mapping such that
for all \(x, y \in V\). Then there exists a unique additive mapping \(A: V \rightarrow X_{\rho}\) such that
for all \(x \in V\).
Proof
We let \(y=x\) in (3) and have
so we observe without using the △2-condition that
for all \(x \in V\) and all positive integers \(n>1\). This yields
for all \(x \in V\) and all \(n, m \in\mathbb{N}\) with \(n>m\). Thus, we see that the sequence \(\{ \frac{f(2^{n}x)}{2^{n}}\} \) is a ρ-Cauchy sequence on \(X_{\rho}\). Since \(X_{\rho}\) is ρ-complete, there exists a ρ-limit function \(A:V \rightarrow X_{\rho}\) defined by
for all \(x \in V\). Then, it follows from the Fatou property that the inequality
holds for all \(x \in V\). Now, we claim that A satisfies the additive functional equation. Note that
for all \(x,y \in V \) and all \(n \in\mathbb{N}\). Thus, we observe by convexity of ρ that
holds for all \(x , y \in V\), and then taking \(n \rightarrow\infty\), one obtains \(\rho(\frac{1}{4} (A(x+y)-A(x)-A(y)))=0\). This implies that A is additive.
To show the uniqueness of A, we assume that there exists another additive mapping \(A' : V \rightarrow X_{\rho}\) near f satisfying the approximation (4). Since A and \(A'\) are additive mappings, we see from the equality \(A(2^{n}x)=2^{n}A(x)\) and \(A'(2^{n}x)=2^{n}A'(x)\) that
for all \(x \in V\). Taking \(n \rightarrow\infty\), we find that \(A = A'\). Hence A is a unique additive mapping near f satisfying the approximation (4). □
Remark 2
In particular, if \(X_{\rho}\) is a Banach space with norm ρ, then \(\rho(2x)=2\rho(x)\), \(k=2\), and so Theorem 2 is equivalent to the result of Gǎvruta [14] in this case.
The following corollary, which does not use △2-condition of ρ, is a refined version of Sadeghi’s stability result (Theorem 2.1 in [25]) in modular space \(X_{\rho}\).
Corollary 2
Let \(X_{\rho}\) satisfy the Fatou property. Suppose that a mapping \(f : V \rightarrow X_{\rho} \) satisfies
and \(\phi:V \times V \rightarrow[0, \infty) \) is a mapping such that
for all \(x, y \in V\). Then there exists a unique additive mapping \(A: V \rightarrow X_{\rho}\) such that
for all \(x \in V\).
Corollary 3
Let V be a normed space with norm \(\| \cdot\| \) and \(X_{\rho}\) satisfy the Fatou property. For given real numbers \(\theta, \varepsilon >0\) and \(p \in(-\infty, 1)\), if \(f:V \rightarrow X_{\rho}\) is a mapping such that
for all \(x, y \in V\), then there exists a unique additive mapping \(A: V \rightarrow X_{\rho}\) such that
for all \(x \in V\), where \(x \neq0\) if \(p < 0\).
3 Stability of quadratic functional equations in modular spaces
In this section, we investigate refined stability results of the original quadratic functional equation in modular space \(X_{\rho}\). We present the Hyers-Ulam stability of a quadratic functional equation in modular spaces without using the Fatou property.
Theorem 3
Suppose \(X_{\rho}\) satisfies the \(\Delta_{2}\)-condition. If there exists a function \(\varphi:V^{2} \to[0,\infty)\) for which a mapping \(f:V \to X_{\rho}\) satisfies
for all \(x, y \in V\), then there exists a unique quadratic mapping \(B:V \to X_{\rho}\), defined as \(B(x)=\lim_{n\to\infty}4^{n}f(\frac{x}{2^{n}}) \) and
for all \(x\in V\).
Proof
First, we observe that \(f(0) = 0\) because of \(\phi(0,0)=0\) by the convergence of \(\sum_{i=1}^{\infty} {(}\frac{k^{3}}{2} {)}^{i}\phi(0,0)<\infty\). We take \(y=x \) in (5) to have
for all \(x \in V\). By the \(\Delta_{2}\)-condition of ρ and \(\sum_{i=1}^{n}\frac{1}{2^{i}}\leq1\), one can prove the following functional inequality:
for all \(x \in V\). Now, replacing x by \(2^{-m}x\) in (7), we obtain
for all \(x \in V\), which tends to zero as \(m \rightarrow\infty\) because \(\frac{2}{k} \le 1\) and the series of (5) converges. Thus, the sequence \(\{ 4^{n}f(\frac{x}{2^{n}})\} \) is a ρ-Cauchy sequence for all \(x \in V\) and so it is ρ-convergent in \(X_{\rho }\) since the space \(X_{\rho}\) is ρ-complete. Therefore we have a mapping \(B:V \rightarrow X_{\rho}\) as
for all \(x \in V\). So, without using the Fatou property, we can see from the \(\Delta_{2}\)-condition that the inequality
holds for all \(x \in V\) and all positive integers \(n>1\). Taking \(n \rightarrow\infty\), one has the estimation (6) of f by B. Setting \((x,y) := (2^{-n}x, 2^{-n}y)\) in (5), we see that
which tends to zero as \(n\rightarrow\infty\) for all \(x, y \in V\). Thus, it follows from the convexity of ρ that
for all \(x , y \in V\) and all positive integers \(n>1\). Taking the limit as \(n \rightarrow\infty\), one sees that B is quadratic.
To show the uniqueness of B, we assume that there exists a quadratic mapping \(B':V \rightarrow X_{\rho}\) satisfying the approximation
Then we see from the equality \(B(2^{-n}x)=4^{-n}B(x)\) and \(B'(2^{-n}x)=4^{-n}B'(x)\) that
for all \(x \in V\) and all sufficiently large positive integers n. Taking \(n \rightarrow\infty\), we arrive at the uniqueness of B. This completes the proof. □
Corollary 4
Suppose V is a normed space with norm \(\| \cdot\|\) and \(X_{\rho}\) satisfies \(\Delta_{2}\)-condition. For given real numbers \(\theta>0 \) and \(p>\log_{2}\frac{k^{3}}{2}\), if \(f:V \rightarrow X_{\rho}\) is a mapping such that
for all \(x, y \in V\), then there exists a unique quadratic mapping \(B: V \rightarrow X_{\rho}\) such that
for all \(x \in V\).
Next, we provide an alternative stability theorem of Theorem 3 without using both the \(\Delta_{2}\)-condition and the Fatou property in modular spaces.
Theorem 4
Suppose that a mapping \(f : V \rightarrow X_{\rho} \) satisfies
and \(\phi:V \times V \rightarrow[0, \infty) \) is a mapping such that
for all \(x, y \in V\). Then there exists a unique quadratic mapping \(B: V \rightarrow X_{\rho}\) such that
for all \(x \in V\).
Proof
Taking \(y =x\) in (8), one has
where \(\tilde{f}(x)=f(x)-\frac{f(0)}{3}\), and then we obtain from the convexity of ρ and \(\sum_{i=0}^{n-1}\frac{1}{4^{i+1}}\leq1\)
for all \(x \in V\) and all positive integers n. Then, by applying a similar argument to the proof of Theorem 2, one has a ρ-Cauchy sequence \({\{} \frac{\tilde{f}(2^{n}x)}{4^{n}} {\}}\) and the limit function \(B: V \rightarrow X_{\rho}\) defined as
for all \(x \in V\) without using the \(\Delta_{2}\)-condition and the Fatou property. Furthermore, one can prove that the mapping B satisfies the quadratic functional equation in the same way as in the proof of Theorem 3.
Now, we prove the estimation (9) of f by B without using \(\Delta_{2}\)-condition and the Fatou property. By using the convexity of ρ and \(\sum_{i=0}^{n-1}\frac {1}{4^{i+1}} +\frac{1}{4} \leq1\), we obtain the following inequality:
for all \(x \in V\) and all positive integers \(n>1\). Taking \(n \rightarrow\infty\), we arrive at the desired conclusion. □
Corollary 5
Let \(\phi:V \times V \rightarrow[0, \infty) \) be a given function such that
for all \(x, y \in X\) and for some \(L \in(0,1)\). If \(f:V \rightarrow X_{\rho}\) is a mapping such that
for all \(x, y \in V\), then there exists a unique quadratic mapping \(B: V \rightarrow X_{\rho}\) such that
for all \(x \in V\).
Remark 3
In [26], the authors have shown that if the convex modular ρ is lower semicontinuous and \(\phi:V \times V \rightarrow[0, \infty), f:V \rightarrow X_{\rho} \) with \(f(0)=0\) are given functions such that
for all \(x, y \in V\) and for some \(L \in(0,\frac{1}{2})\), then there exists a unique quadratic mapping \(B: V \rightarrow X_{\rho}\) such that
for all \(x \in V\). In Corollary 5, we remark that since \(\phi(2^{i}x, 2^{i}x) \leq(4L)^{i}\phi(x,x)\), \(x \in V\), the series \(\sum_{i=0}^{\infty}\frac{\phi(2^{i}x,2^{i}x)}{4^{i}}\) converges for all \(x \in V\). Thus, we see that Corollary 5 is a refined stability theorem of the result above.
Corollary 6
Suppose V is a normed space with norm \(\| \cdot\|\). For given real numbers \(\theta, \varepsilon>0\) and \(p \in(-\infty, 2)\), if \(f:V \rightarrow X_{\rho}\) is a mapping such that
for all \(x, y \in V\), then there exists a unique quadratic mapping \(B: V \rightarrow X_{\rho}\) such that
for all \(x \in V\), where \(x \neq0\) if \(p<0\).
4 Conclusion
In this article, we have obtained the stability results and alternative stability results of additive functional equation and quadratic functional equation in modular spaces without using the Fatou property or the \(\Delta_{2}\)-condition. These generalize the results of Sadeghi [25] and Wongkum, Chaipunya and Kumam [26].
References
Nakano, H: Modulared Semi-Ordered Linear Spaces. Maruzen, Tokyo (1950)
Amemiya, I: On the representation of complemented modular lattices. J. Math. Soc. Jpn. 9, 263-279 (1957)
Koshi, S, Shimogaki, T: On F-norms of quasi-modular spaces. J. Fac. Sci., Hokkaido Univ., Ser. 1 15, 202-218 (1961)
Yamamuro, S: On conjugate spaces of Nakano spaces. Trans. Am. Math. Soc. 90, 291-311 (1959)
Orlicz, W: Collected Papers, vols. I, II. PWN, Warszawa (1988)
Mazur, B: Modular curves and the Eisenstein ideal. Publ. Math. IHÉS 47, 33-186 (1978)
Musielak, J: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin (1983)
Luxemburg, WA: Banach function spaces. PhD thesis, Delft University of Technology, Delft, The Netherlands (1959)
Turpin, P: Fubini inequalities and bounded multiplier property in generalized modular spaces. Comment. Math. 1, 331-353 (1978)
Krbec, M: Modular interpolation spaces, I. Z. Anal. Anwend. 1, 25-40 (1982)
Maligranda, L: Orlicz Spaces and Interpolation. Seminários de Mathemática, vol. 5. Universidade Estadual de Campinas, Departamento de Matemática, Campinas (1989)
Ulam, SM: Problems in Modern Mathematics. Wiley Interscience, New York (1964). Chapter 6
Hyers, DH: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27, 222-224 (1941)
Gǎvruta, P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184, 431-436 (1994)
Roh, J, Chang, I-S: Asymptotic aspect of derivations in Banach algebras. J. Inequal. Appl. 2017, Article ID 36 (2017). doi:10.1186/s13660-017-1308-0
Ciepliński, K: Applications of fixed point theorems to the Hyers-Ulam stability of functional equations - a survey. Ann. Funct. Anal. 3, 151-164 (2012)
Tabor, J, Tabor, J: General stability of functional equations of linear type. J. Math. Anal. Appl. 328, 192-200 (2007)
Székelyhidi, L: Note on a stability theorem. Can. Math. Bull. 25, 500-501 (1982)
Páles, Z: Generalized stability of the Cauchy functional equation. Aequ. Math. 56, 222-232 (1998)
Baker, JA: The stability of certain functional equations. Proc. Am. Math. Soc. 112, 729-732 (1991)
Jung, S-M, Roh, J, Lee, J: Optimal Hyers-Ulam’s constant for the linear differential equations. J. Inequal. Appl. 2016, Article ID 201 (2016). doi:10.1186/s13660-016-1145-6
Radu, V: The fixed point alternative and the stability of functional equations. Fixed Point Theory 4, 91-96 (2003)
Wongkum, K, Kumam, P, Cho, YJ, Chaipunya, P: On the generalized Ulam-Hyers-Rassias stability for quartic functional equation in modular spaces. J. Nonlinear Sci. Appl. 10, 1399-1406 (2017)
Khamsi, MA: Quasicontraction mappings in modular spaces without △2-condition. Fixed Point Theory Appl. 2008, Article ID 916187 (2008)
Sadeghi, G: A fixed point approach to stability of functional equations in modular spaces. Bull. Malays. Math. Sci. Soc. (2) 37, 333-344 (2014)
Wongkum, K, Chaipunya, P, Kumam, P: On the generalized Ulam-Hyers-Rassias stability of quadratic mappings in modular spaces without △2-conditions. J. Funct. Spaces 2015, Article ID 461719 (2015)
Acknowledgements
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1D1A3B03930971).
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Kim, HM., Shin, HY. Refined stability of additive and quadratic functional equations in modular spaces. J Inequal Appl 2017, 146 (2017). https://doi.org/10.1186/s13660-017-1422-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s13660-017-1422-z
MSC
- 39B52
- 39B72
- 47H09
Keywords
- modular functional
- convex modular
- Hyers-Ulam stability
- Fatou property
- \(\Delta_{2}\)-condition