Skip to content

Advertisement

  • Research
  • Open Access

Dynamic Opial diamond-α integral inequalities involving the power of a function

Journal of Inequalities and Applications20172017:139

https://doi.org/10.1186/s13660-017-1411-2

  • Received: 14 February 2017
  • Accepted: 30 May 2017
  • Published:

Abstract

In this paper, we present some new dynamic Opial-type diamond alpha inequalities on time scales. The obtained results are related to the function \(f^{k}\).

Keywords

  • Opial-type inequality
  • time scale

MSC

  • 34N05
  • 26D10

1 Introduction

A time scale \(\mathbb{T}\) is an arbitrary nonempty closed subset of real numbers. For \(t \in\mathbb{T}\), we define the forward jump operator \(\sigma:\mathbb{T} \to\mathbb{T}\) by \(\sigma ( t ) := \inf \{ s \in\mathbb{T}:s > t \} \) and the backward jump operator \(\rho:\mathbb{T} \to\mathbb{T}\) by \(\rho ( t ) := \sup \{ s \in\mathbb{T}:s < t \} \). If \(\sigma ( t ) > t\), we say that t is right-scattered, whereas if \(\rho ( t ) < t\), we say that t is left-scattered. Points that are simultaneously right-scattered and left-scattered are said to be isolated. If \(\sigma ( t ) = t\), then t is called right-dense; if \(\rho ( t ) = t\), then t is called left-dense. Points that are right-dense and left-dense at the same time are called dense. The mappings \(\mu,\nu:\mathbb{T} \to[ 0,\infty )\), defined by \(\mu ( t ) := \sigma ( t ) - t\) and \(\nu ( t ) := t - \rho ( t )\), are called the forward and backward graininess function, respectively. If \(\mathbb{T}\) has a left-scattered maximum \(t_{1} \), then \(\mathbb{T}^{k} = \mathbb{T} - \{ t_{1} \} \), otherwise \(\mathbb{T}^{k} = \mathbb{T}\). If \(\mathbb{T}\) has a right-scattered minimum \(t_{2} \), then \(\mathbb{T}_{k} = \mathbb{T} - \{ t_{2} \} \), otherwise \(\mathbb{T}_{k} = \mathbb{T}\). Finally, \(\mathbb{T}_{k}^{k} = \mathbb{T}^{k} \cap\mathbb{T}_{k} \).

Theorem 1.1

Assume \(f,g:\mathbb{T} \to\mathbb{R}\) are delta differentiable at \(t \in\mathbb{T}^{k}\). Then:
  1. 1.
    The sum \(f + g:\mathbb{T} \to\mathbb{R}\) is delta differentiable at t with
    $$( f + g )^{\Delta}( t ) = f^{\Delta}( t ) + g^{\Delta}( t ). $$
     
  2. 2.
    For any constant α, \(\alpha f:\mathbb{T} \to \mathbb{R}\) is delta differentiable at t with
    $$( \alpha f )^{\Delta}( t ) = \alpha f^{\Delta}( t ). $$
     
  3. 3.
    The product \(fg:\mathbb{T} \to\mathbb{R}\) is delta differentiable at t with
    $$( fg )^{\Delta}( t ) = f^{\Delta}( t )g ( t ) + f^{\sigma}( t )g^{\Delta}( t ) = f ( t )g^{\Delta}( t ) + f^{\Delta}( t )g^{\sigma}( t ). $$
     

Theorem 1.2

Assume \(f,g:\mathbb{T} \to\mathbb{R}\) are nabla differentiable at \(t \in\mathbb{T}_{k}\). Then:
  1. 1.
    The sum \(f + g:\mathbb{T} \to\mathbb{R}\) is nabla differentiable at t with
    $$( f + g )^{\nabla}( t ) = f^{\nabla}( t ) + g^{\nabla}( t ). $$
     
  2. 2.
    For any constant α, \(\alpha f:\mathbb{T} \to\mathbb{R}\) is nabla differentiable at t with
    $$( \alpha f )^{\nabla}( t ) = \alpha f^{\nabla}( t ). $$
     
  3. 3.
    The product \(fg:\mathbb{T} \to \mathbb{R}\) is nabla differentiable at t with
    $$( fg )^{\nabla}( t ) = f^{\nabla}( t )g ( t ) + f^{\rho}( t )g^{\nabla}( t ) = f ( t )g^{\nabla}( t ) + f^{\nabla}( t )g^{\rho}( t ). $$
     
The following formulas will be used in our paper:
$$\begin{aligned}& \bigl( f^{l + 1} \bigr)^{\Delta}= \Biggl\{ \sum _{k = 0}^{l} f^{k} \bigl( f^{\sigma}\bigr)^{l - k} \Biggr\} f^{\Delta}, \quad l \in N, \\ & \bigl( f^{l + 1} \bigr)^{\nabla}= \Biggl\{ \sum _{k = 0}^{l} f^{k} \bigl( f^{\rho}\bigr)^{l - k} \Biggr\} f^{\nabla}, \quad l \in N. \end{aligned}$$

Definition 1.3

Let \(0 \le\alpha \le1\) and let f be both delta and nabla differentiable at \(t \in\mathbb{T}_{k}^{k}\). Then f is diamond-α differentiable at t and \(f^{\diamondsuit _{\alpha}} ( t ) = \alpha f^{\Delta}( t ) + ( 1 - \alpha )f^{\nabla}( t )\).

Definition 1.4

Let \(a,b \in\mathbb{T}\), \(a < b\), \(f:\mathbb{T} \to\mathbb{R}\) and \(\alpha \in [ 0,1 ]\). The diamond-α integral of t on \([ a,b ]_{\mathbb{T}}\) is defined by
$$\int _{a}^{b} f ( t )\diamondsuit_{\alpha}t = \alpha \int _{a}^{b} f ( t )\Delta t + ( 1 - \alpha ) \int _{a}^{b} f ( t )\nabla t. $$

Theorem 1.5

Let \(f,g:\mathbb{T} \to\mathbb{R}\) be \(\diamondsuit _{\alpha}\)-differentiable at \(t \in\mathbb{T}\). Then
  1. 1.

    \(f + g\) is \(\diamondsuit_{\alpha}\)-differentiable \(t \in \mathbb{T}\) with \(( f + g )^{\diamondsuit_{\alpha}} = f^{\diamondsuit_{\alpha}} + g^{\diamondsuit_{\alpha}}\),

     
  2. 2.

    fg is \(\diamondsuit_{\alpha}\)-differentiable at \(t \in \mathbb{T}\) with \(( fg )^{\diamondsuit_{\alpha}} = f^{\diamondsuit_{\alpha}} g + \alpha f^{\sigma}g^{\Delta}+ ( 1 - \alpha )f^{\rho}g^{\nabla}\).

     

Many authors have studied the theory of integral inequalities on time scales (see, for example, [110]). In [3], the following Opial inequality on time scales was established.

Theorem 1.6

[3]

For a delta differentiable \(f: [ 0,h ] \cap\mathbb{T} \to\mathbb{R}\) with \(f ( 0 ) = 0\), we have
$$ \int _{0}^{h} \bigl\vert { \bigl( f + f^{\sigma}\bigr)f^{\Delta}} \bigr\vert \Delta t \le h \int _{0}^{h} \bigl\vert {f^{\Delta}} \bigr\vert ^{2} \Delta t, $$
(1)
with equality when \(f ( t ) = ct\).

In [1], the authors established the following theorem.

Theorem 1.7

[1]

Let \(\omega ( t )\) be positive and continuous on \(( 0,h )\) with \(\int _{0}^{h} \omega^{1 - q} \Delta t < \infty\), \(q > 1\). For a differentiable \(f: [ 0,h ] \to\mathbb{R}\) with \(f ( 0 ) = 0\), we have
$$\int _{0}^{h} \bigl\vert \bigl( f + f^{\sigma}\bigr)f^{\Delta}\bigr\vert \Delta t \le \biggl( \int _{0}^{h} \omega^{1 - q} \Delta t \biggr)^{\frac{2}{q}} \biggl( \int _{0}^{h} \omega \bigl\vert f^{\Delta}\bigr\vert ^{p} \Delta t \biggr)^{\frac{2}{p}}, $$
where \(p > 1\) and \(\frac{1}{p} + \frac{1}{q} = 1\), and with equality when \(f ( t ) = c\int_{0}^{t} \omega^{1 - q} \Delta\tau\) for a constant c.

2 Main results

In this section, we present our results.

Theorem 2.1

Let T be a time scale. For \(\diamondsuit_{\alpha}\) differentiable \(f: [ 0,h ] \cap T \to R\), with \(f ( 0 ) = 0\) we have
$$ \int _{0}^{h} \bigl\vert {f^{k} } \bigr\vert ^{\diamondsuit_{\alpha}} ( t )\diamondsuit_{\alpha}t \le h^{k - 1} \int _{0}^{h} \bigl\vert {f^{\diamondsuit_{\alpha}} } \bigr\vert ^{k} ( t )\diamondsuit_{\alpha}t. $$
(2)

Proof

Starting with the left side of (2), we obtain
$$\begin{aligned} \int _{0}^{h} \bigl\vert f^{k} \bigr\vert ^{\diamondsuit_{\alpha}} ( t )\diamondsuit _{\alpha}( t ) =& \int _{0}^{h} \bigl\vert f \cdot f^{k - 1} \bigr\vert ^{\diamondsuit_{\alpha}} ( t )\diamondsuit_{\alpha}( t ) \\ =& \int _{0}^{h} \bigl\vert f^{k - 1} f^{\diamondsuit_{\alpha}} + \alpha f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}+ ( 1 - \alpha )f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\diamondsuit_{\alpha}( t ) \\ =& \alpha \int _{0}^{h} \bigl\vert f^{k - 1} f^{\diamondsuit _{\alpha}} + \alpha f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}+ ( 1 - \alpha )f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\Delta t \\ &{}+ ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{k - 1} f^{\diamondsuit_{\alpha}} + \alpha f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}+ ( 1 - \alpha )f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\nabla t \\ \le&\alpha \int _{0}^{h} \bigl\vert f^{k - 1} f^{\diamondsuit _{\alpha}} \bigr\vert ( t )\Delta t + \alpha^{2} \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}\bigr\vert ( t )\Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\Delta t + ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{k - 1} f^{\diamondsuit_{\alpha}} \bigr\vert ( t )\nabla t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}\bigr\vert ( t )\nabla t + ( 1 - \alpha )^{2} \int _{0}^{h} \bigl\vert f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\nabla t. \end{aligned}$$
Using Definition 1.3, we get
$$\begin{aligned} \int _{0}^{h} \bigl\vert f^{k} \bigr\vert ^{\diamondsuit_{\alpha}} ( t )\diamondsuit _{\alpha}( t ) \le&\alpha \int _{0}^{h} \bigl\vert \alpha f^{k - 1} f^{\Delta}+ ( 1 - \alpha )f^{k - 1} f^{\nabla}\bigr\vert ( t )\Delta t \\ & {}+ \alpha^{2} \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}\bigr\vert ( t )\Delta t + \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\Delta t \\ & {}+ ( 1 - \alpha ) \int _{0}^{h} \bigl\vert \alpha f^{k - 1} f^{\Delta}+ ( 1 - \alpha )f^{k - 1} f^{\nabla}\bigr\vert ( t )\nabla t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}\bigr\vert ( t )\nabla t + ( 1 - \alpha )^{2} \int _{0}^{h} \bigl\vert f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\nabla t \\ \le&\alpha^{2} \int _{0}^{h} \bigl\vert f^{k - 1} f^{\Delta}\bigr\vert ( t )\Delta t + \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{k - 1} f^{\nabla}\bigr\vert ( t )\Delta t \\ & {}+ \alpha^{2} \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}\bigr\vert ( t )\Delta t + \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{k - 1} f^{\Delta}\bigr\vert ( t )\nabla t + ( 1 - \alpha )^{2} \int _{0}^{h} \bigl\vert f^{k - 1} f^{\nabla}\bigr\vert ( t )\nabla t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}\bigr\vert ( t )\nabla t + ( 1 - \alpha )^{2} \int _{0}^{h} \bigl\vert f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\nabla t. \end{aligned}$$
We find that
$$\begin{aligned} \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}\bigr\vert ( t )\Delta t =& \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f \cdot f^{k - 2} \bigr)^{\Delta}\bigr\vert ( t ) \Delta t \\ =& \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{\Delta}f^{k - 2} + f^{\sigma}\bigl( f \cdot f^{k - 3} \bigr)^{\Delta}\bigr) \bigr\vert ( t )\Delta t \\ & {}\vdots \\ =& \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{\Delta}f^{k - 2} + f^{\sigma}f^{\Delta}f^{k - 3} + \cdots+ \bigl( f^{\sigma}\bigr)^{2} f^{\Delta}\bigr) \bigr\vert ( t )\Delta t \\ =& \int _{0}^{h} \bigl\vert f^{\sigma}f^{k - 2} + \bigl( f^{\sigma}\bigr)^{2} f^{k - 3} + \cdots+ \bigl( f^{\sigma}\bigr) \bigr\vert \bigl\vert f^{\Delta}\bigr\vert ( t )\Delta t \\ =& \int _{0}^{h} \Biggl\vert \sum _{n = 0}^{k - 2} f^{n} \bigl( f^{\sigma}\bigr)^{k - 1 - n} \Biggr\vert \bigl\vert f^{\Delta}\bigr\vert ( t )\Delta t. \end{aligned}$$
Similarly,
$$\int _{0}^{h} \bigl\vert f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\Delta t = \int _{0}^{h} \Biggl\vert \sum _{n = 0}^{k - 2} f^{n} \bigl( f^{\rho}\bigr)^{k - 1 - n} \Biggr\vert \bigl\vert f^{\nabla}\bigr\vert ( t )\nabla t. $$
Therefore,
$$\begin{aligned} \int _{0}^{h} \bigl\vert f^{k} \bigr\vert ^{\diamondsuit _{\alpha}} ( t )\diamondsuit_{\alpha}t \le& \alpha^{2} \int _{0}^{h} \bigl\vert f^{k - 1} f^{\Delta}\bigr\vert ( t )\Delta t + \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{k - 1} f^{\nabla}\bigr\vert ( t )\Delta t \\ & {}+ \alpha^{2} \int _{0}^{h} \Biggl\vert \sum _{n = 0}^{k - 2} f^{n} \bigl( f^{\sigma}\bigr)^{k - 1 - n} \Biggr\vert \bigl\vert f^{\Delta}\bigr\vert ( t )\Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl\vert \sum _{n = 0}^{k - 2} f^{n} \bigl( f^{\rho}\bigr)^{k - 1 - n} \Biggr\vert \bigl\vert f^{\nabla}\bigr\vert ( t )\Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{k - 1} f^{\Delta}\bigr\vert ( t )\nabla t + ( 1 - \alpha )^{2} \int _{0}^{h} \bigl\vert f^{k - 1} f^{\nabla}\bigr\vert ( t )\nabla t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl\vert \sum _{n = 0}^{k - 2} f^{n} \bigl( f^{\sigma}\bigr)^{k - 1 - n} \Biggr\vert \bigl\vert f^{\Delta}\bigr\vert \nabla t \\ & {}+ ( 1 - \alpha )^{2} \int _{0}^{h} \Biggl\vert \sum _{n = 0}^{k - 2} f^{n} \bigl( f^{\rho}\bigr)^{k - 1 - n} \Biggr\vert \bigl\vert f^{\nabla}\bigr\vert ( t )\nabla t \\ = &\alpha^{2} \int _{0}^{h} \Biggl( \bigl\vert f^{k - 1} \bigr\vert + \Biggl\vert \sum_{n = 0}^{k - 2} f^{n} \bigl( f^{\sigma}\bigr)^{k - 1 - n} \Biggr\vert \Biggr) \bigl\vert f^{\Delta}( t ) \bigr\vert \Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl( \bigl\vert f^{k - 1} \bigr\vert + \Biggl\vert \sum_{n = 0}^{k - 2} f^{n} \bigl( f^{\rho}\bigr)^{k - 1 - n} \Biggr\vert \Biggr) \bigl\vert f^{\nabla}( t ) \bigr\vert \Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl( \bigl\vert f^{k - 1} \bigr\vert + \Biggl\vert \sum_{n = 0}^{k - 2} f^{n} \bigl( f^{\sigma}\bigr)^{k - 1 - n} \Biggr\vert \Biggr) \bigl\vert f^{\Delta}( t ) \bigr\vert \nabla t \\ & {}+ ( 1 - \alpha )^{2} \int _{0}^{h} \Biggl( \bigl\vert f^{k - 1} \bigr\vert + \Biggl\vert \sum_{n = 0}^{k - 2} f^{n} \bigl( f^{\rho}\bigr)^{k - 1 - n} \Biggr\vert \Biggr) \bigl\vert f^{\nabla}( t ) \bigr\vert \nabla t \\ \le&\alpha^{2} \int _{0}^{h} \Biggl( \bigl\vert f^{k - 1} \bigr\vert + \sum_{n = 0}^{k - 2} \bigl\vert f^{n} \bigl( f^{\sigma}\bigr)^{k - 1 - n} \bigr\vert \Biggr) \bigl\vert f^{\Delta}( t ) \bigr\vert \Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl( \bigl\vert f^{k - 1} \bigr\vert + \sum_{n = 0}^{k - 2} \bigl\vert f^{n} \bigl( f^{\rho}\bigr)^{k - 1 - n} \bigr\vert \Biggr) \bigl\vert f^{\nabla}( t ) \bigr\vert \Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl( \bigl\vert f^{k - 1} \bigr\vert + \sum_{n = 0}^{k - 2} \bigl\vert f^{n} \bigl( f^{\sigma}\bigr)^{k - 1 - n} \bigr\vert \Biggr) \bigl\vert f^{\Delta}( t ) \bigr\vert \nabla t \\ & {}+ ( 1 - \alpha )^{2} \int _{0}^{h} \Biggl( \bigl\vert f^{k - 1} \bigr\vert + \sum_{n = 0}^{k - 2} \bigl\vert f^{n} \bigl( f^{\rho}\bigr)^{k - 1 - n} \bigr\vert \Biggr) \bigl\vert f^{\nabla}( t ) \bigr\vert \nabla t \\ = &\alpha^{2} \int _{0}^{h} \Biggl( \sum _{n = 0}^{k - 1} \bigl\vert f^{n} \bigr\vert \bigl\vert \bigl( f^{\sigma}\bigr)^{k - 1 - n} \bigr\vert \Biggr) \bigl\vert f^{\Delta}( t ) \bigr\vert \Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl( \sum _{n = 0}^{k - 1} \bigl\vert f^{n} \bigr\vert \bigl\vert \bigl( f^{\rho}\bigr)^{k - 1 - n} \bigr\vert \Biggr) \bigl\vert f^{\nabla}( t ) \bigr\vert \Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl( \sum _{n = 0}^{k - 1} \bigl\vert f^{n} \bigr\vert \bigl\vert \bigl( f^{\sigma}\bigr)^{k - 1 - n} \bigr\vert \Biggr) \bigl\vert f^{\Delta}( t ) \bigr\vert \nabla t \\ & {}+ ( 1 - \alpha )^{2} \int _{0}^{h} \Biggl( \sum _{n = 0}^{k - 1} \bigl\vert f^{n} \bigr\vert \bigl\vert \bigl( f^{\rho}\bigr)^{k - 1 - n} \bigr\vert \Biggr) \bigl\vert f^{\nabla}( t ) \bigr\vert \nabla t. \end{aligned}$$

Consider \(g ( t ) = \int _{0}^{t} \vert f^{\diamondsuit_{\alpha}} ( s ) \vert \diamondsuit _{\alpha}s\). Then we have \(g^{\Delta}( t ) = \vert f^{\Delta}( t ) \vert \), \(g^{\nabla}( t ) = \vert f^{\nabla}( t ) \vert \), and \(\vert f \vert \le g\), so that \(g ( t ) = \int _{0}^{t} \vert f^{\diamondsuit_{\alpha}} ( s ) \vert \diamondsuit_{\alpha}s \ge \vert \int _{0}^{t} f^{\diamondsuit_{\alpha}} ( s )\diamondsuit_{\alpha}s \vert = \vert f ( t ) - f ( 0 ) \vert = \vert f ( t ) \vert \).

The above inequality becomes
$$\begin{aligned} \int _{0}^{h} \bigl\vert f^{k} \bigr\vert ^{\diamondsuit_{\alpha}} ( t )\diamondsuit _{\alpha} \le& \alpha^{2} \int _{0}^{h} \Biggl( \sum _{n = 0}^{k - 1} g^{n} \bigl( g^{\sigma}\bigr)^{k - 1 - n} \Biggr) \bigl( g^{\Delta}\bigr) ( t )\Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl( \sum _{n = 0}^{k - 1} g^{n} \bigl( g^{\rho}\bigr)^{k - 1 - n} \Biggr) \bigl( g^{\nabla}\bigr) ( t )\Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl( \sum _{n = 0}^{k - 1} g^{n} \bigl( g^{\sigma}\bigr)^{k - 1 - n} \Biggr) \bigl( g^{\Delta}\bigr) ( t )\nabla t \\ & {}+ ( 1 - \alpha )^{2} \int _{0}^{h} \Biggl( \sum _{n = 0}^{k - 1} g^{n} \bigl( g^{\rho}\bigr)^{k - 1 - n} \Biggr) \bigl( g^{\nabla}\bigr) ( t )\nabla t \\ = &\alpha^{2} \int _{0}^{h} \bigl( g^{k} \bigr)^{\Delta}( t )\Delta t + \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl( g^{k} \bigr)^{\nabla}( t )\Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl( g^{k} \bigr)^{\Delta}( t )\nabla t + ( 1 - \alpha )^{2} \int _{0}^{h} \bigl( g^{k} \bigr)^{\nabla}( t )\nabla t \\ = &\alpha \biggl[ \alpha \int _{0}^{h} \bigl( g^{k} \bigr)^{\Delta}\Delta t + ( 1 - \alpha ) \int _{0}^{h} \bigl( g^{k} \bigr)^{\Delta}\nabla t \biggr] \\ & {}+ ( 1 - \alpha ) \biggl[ \int _{0}^{h} \alpha \bigl( g^{k} \bigr)^{\nabla}\Delta t + ( 1 - \alpha ) \int _{0}^{h} \bigl( g^{k} \bigr)^{\nabla}\nabla t \biggr] \\ = &\alpha \int _{0}^{h} \bigl( g^{k} \bigr)^{\Delta}\diamondsuit_{\alpha}+ ( 1 - \alpha ) \int _{0}^{h} \bigl( g^{k} \bigr)^{\nabla}\diamondsuit _{\alpha}= \int _{0}^{h} \bigl( g^{k} \bigr) ( t )^{\diamondsuit_{\alpha}} \diamondsuit_{\alpha}\\ =& g^{k} ( t ) | _{0}^{h} = g^{k} ( h ) - g^{k} ( 0 ) = \bigl[ g ( h ) \bigr]^{k} = \biggl[ \int _{0}^{h} \bigl\vert f^{\diamondsuit _{\alpha}} ( s ) \bigr\vert \diamondsuit_{\alpha}s \biggr]^{k}. \end{aligned}$$
By using Hölder’s inequality with indices \(p = \frac{k}{k - 1}\) and \(q = k\), we obtain
$$\begin{aligned} \biggl[ \int _{0}^{h} 1 \cdot \bigl\vert {f^{\diamondsuit_{\alpha}} ( s )} \bigr\vert \diamondsuit_{\alpha}s \biggr]^{k} \le& \biggl[ \biggl( \int _{0}^{h} 1^{\frac{k}{k - 1}} \diamondsuit _{\alpha}s \biggr)^{\frac{k - 1}{k}} \biggl( \int _{0}^{h} \bigl\vert {f^{\diamondsuit_{\alpha}} ( s )} \bigr\vert ^{k} \diamondsuit_{\alpha}s \biggr)^{\frac{1}{k}} \biggr]^{k} \\ = & \biggl( \int _{0}^{h} \diamondsuit_{\alpha}s \biggr)^{k - 1} \biggl( \int _{0}^{h} \bigl\vert {f^{\diamondsuit _{\alpha}} ( s )} \bigr\vert ^{k} \diamondsuit_{\alpha}s \biggr) \\ = & \bigl( s |_{0}^{h} \bigr)^{k - 1} \int _{0}^{h} \bigl\vert {f^{\diamondsuit_{\alpha}} ( s )} \bigr\vert ^{k} \diamondsuit_{\alpha}s \\ = &h^{k - 1} \int _{0}^{h} \bigl\vert {f^{\diamondsuit_{\alpha}} ( s )} \bigr\vert ^{k} \diamondsuit_{\alpha}s, \end{aligned}$$
hence the proof is complete. □

Theorem 2.2

Let \(\omega ( t )\) be positive and continuous on \(( 0,h )\), with \(\int _{0}^{h} \omega^{1 - q} ( t )\Delta t < \infty\), \(q > 1\). For differentiable \(f: [ 0,h ] \to\mathbb{R}\) with \(f ( 0 ) = 0\) we have
$$ \int _{0}^{h} \bigl\vert {f^{k} } \bigr\vert ^{\Delta}\Delta t \le \biggl( \int _{0}^{h} \omega^{1 - q} \Delta t \biggr)^{\frac{k}{q}} \biggl( \int _{0}^{h} \omega \bigl\vert {f^{\Delta}} \bigr\vert ^{p} \Delta t \biggr)^{\frac{k}{q}}, $$
(3)
where \(p > 1\) and \(\frac{1}{p} + \frac{1}{q} = 1\).

Proof

We take \(g ( t ) = \int _{0}^{t} \vert f^{\Delta}( s ) \vert \Delta s\). Then \(\vert f ( t ) \vert \le g ( t )\), \(g^{\Delta}( t ) = \vert f^{\Delta}( t ) \vert \), so we have
$$\begin{aligned} \int _{0}^{h} \bigl\vert {f^{k} } \bigr\vert ^{\Delta}\Delta t =& \int _{0}^{h} \Biggl\vert {\sum _{k = 0}^{n - 1} f^{k} \bigl( f^{\sigma}\bigr)^{n - 1 - k} } \Biggr\vert \bigl\vert {f^{\Delta}} \bigr\vert ( t )\Delta t \\ \le& \int _{0}^{h} \Biggl( \sum _{k = 0}^{n - 1} g^{k} \bigl( g^{\sigma}\bigr)^{n - 1 - k} \Biggr) \bigl( g^{\Delta}\bigr) ( t )\Delta t = \int _{0}^{h} \bigl( g^{k} \bigr)^{\Delta}\Delta t \\ =& g^{k} ( h ) - g^{k} ( 0 ) = g^{k} ( h ) = \biggl( \int _{0}^{h} \bigl\vert {f^{\Delta}} \bigr\vert ( t )\Delta t \biggr)^{k} \\ =& \biggl( \int _{0}^{h} \omega^{ - \frac{1}{p}} \omega ^{\frac{1}{p}} \bigl\vert {f^{\Delta}} \bigr\vert ( t )\Delta t \biggr)^{k} \\ \le& \biggl[ \biggl( \int _{0}^{h} \bigl( \omega^{ - \frac{1}{p}} \bigr)^{q} \Delta t \biggr)^{\frac{1}{q}} \biggl( \int _{0}^{h} \bigl( \omega^{\frac{1}{p}} \bigl\vert {f^{\Delta}} \bigr\vert \bigr)^{p} ( t )\Delta t \biggr)^{\frac{1}{p}} \biggr]^{k} \\ =& \biggl( \int _{0}^{h} \omega^{1 - q} \Delta t \biggr)^{\frac{k}{q}} \biggl( \int _{0}^{h} \bigl( \omega \bigl\vert f^{\Delta}\bigr\vert \bigr)^{p} ( t )\Delta t \biggr)^{\frac{k}{p}}. \end{aligned}$$
 □

Theorem 2.3

Let \(\omega ( t )\) be positive and continuous on \(( 0,h )\), with \(\int _{0}^{h} \omega^{1 - q} ( t )\nabla t < \infty\), \(q > 1\). For differentiable \(f: [ 0,h ] \to\mathbb{R}\) with \(f ( 0 ) = 0\) we have
$$ \int _{0}^{h} \bigl\vert {f^{k} } \bigr\vert ^{\nabla}\nabla t \le \biggl( \int _{0}^{h} \omega^{1 - q} \nabla t \biggr)^{\frac{k}{q}} \biggl( \int _{0}^{h} \omega \bigl\vert {f^{\nabla}} \bigr\vert ^{p} \nabla t \biggr)^{\frac{k}{q}}, $$
(4)
where \(p > 1\) and \(\frac{1}{p} + \frac{1}{q} = 1\).

Theorem 2.4

Assume that \(p > 1\), \(q = \frac{p}{p - 1}\), \(\alpha \in [ 0,1 ]\), \(h \in ( 0,\infty )_{\mathbb{T}}\), \(\omega \in\mathbb{C} ( [ 0,h ]_{\mathbb{T}} , ( 0,\infty ) )\) and \(f \in \mathbb{C}_{\diamondsuit_{\alpha}}^{1} ( [ 0,h ]_{\mathbb{T}} ,\mathbb{R} )\). If \(\alpha f^{\Delta}\ge 0\), \(( 1 - \alpha )f^{\nabla}\ge0\) and \(f ( 0 ) = 0\) then
$$\begin{aligned}& \alpha^{k} \int _{0}^{h} \bigl\vert { \bigl( f^{k} \bigr)^{\Delta}( t )} \bigr\vert \Delta t + ( 1 - \alpha )^{k} \int _{0}^{h} \bigl\vert { \bigl( f^{k} \bigr)^{\nabla}( t )} \bigr\vert \nabla t \\& \quad \le \biggl( \int _{0}^{h} \omega^{1 - q} ( t ) \diamondsuit _{\alpha}t \biggr)^{\frac{k}{q}} \biggl( \int _{0}^{h} \omega( t ) \bigl\vert f^{\diamondsuit _{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr)^{\frac{k}{p}}. \end{aligned}$$
(5)

Proof

By Theorems 2.2, 2.3, Hölder’s inequality and \(k = \frac{k}{q} + ( 1 + p )\frac{k}{p}\), we get
$$\begin{aligned}& \alpha^{k} \int _{0}^{h} \bigl\vert \bigl( f^{k} \bigr)^{\Delta}( t ) \bigr\vert \Delta t + ( 1 - \alpha )^{k} \int _{0}^{h} \bigl\vert \bigl( f^{k} \bigr)^{\nabla}( t ) \bigr\vert \nabla t \\& \quad = \alpha^{\frac{k}{q} + ( 1 + p )\frac{k}{p}} \int _{0}^{h} \bigl\vert \bigl( f^{k} \bigr)^{\Delta}( t ) \bigr\vert \Delta t + ( 1 - \alpha )^{\frac{k}{q} + ( 1 + p )\frac{k}{p}} \int _{0}^{h} \bigl\vert \bigl( f^{k} \bigr)^{\nabla}( t ) \bigr\vert \nabla t \\& \quad \le\alpha^{\frac{k}{q} + ( 1 + p )\frac{k}{p}} \biggl( \int _{0}^{h} \omega^{1 - q} ( t )\Delta t \biggr)^{\frac{k}{q}} \biggl( \int _{0}^{h} \omega ( t ) \bigl\vert f^{\Delta}( t ) \bigr\vert ^{p} \Delta t \biggr)^{\frac{k}{p}} \\& \qquad{}+ ( 1 - \alpha )^{\frac{k}{q} + ( 1 + p )\frac{k}{p}} \biggl( \int _{0}^{h} \omega^{1 - q} ( t )\nabla t \biggr)^{\frac{k}{q}} \biggl( \int _{0}^{h} \omega ( t ) \bigl\vert f^{\nabla}( t ) \bigr\vert ^{p} \nabla t \biggr)^{\frac{k}{p}} \\& \quad \le \biggl( \alpha \int _{0}^{h} \omega^{1 - q} ( t )\Delta t \biggr)^{\frac{k}{q}} \biggl( \alpha \int _{0}^{h} \omega ( t ) \bigl\vert \alpha f^{\Delta}( t ) + ( 1 - \alpha )f^{\nabla}( t ) \bigr\vert ^{p} \Delta t \biggr)^{\frac{k}{p}} \\& \qquad{}+ \biggl( ( 1 - \alpha ) \int _{0}^{h} \omega^{1 - q} ( t )\nabla t \biggr)^{\frac{k}{q}} \\& \qquad{}\cdot \biggl( ( 1 - \alpha ) \int _{0}^{h} \omega ( t ) \bigl\vert \alpha f^{\Delta}( t ) + ( 1 - \alpha )f^{\nabla}( t ) \bigr\vert ^{p} \nabla t \biggr)^{\frac{k}{p}} \\& \quad = \biggl( \alpha \int _{0}^{h} \omega^{1 - q} ( t )\Delta t \biggr)^{\frac{k}{q}} \biggl( \alpha \int _{0}^{h} \omega ( t ) \bigl\vert f^{\diamondsuit _{\alpha}} ( t ) \bigr\vert ^{p} \Delta t \biggr)^{\frac{k}{p}} \\& \qquad{}+ \biggl( ( 1 - \alpha ) \int _{0}^{h} \omega^{1 - q} ( t )\nabla t \biggr)^{\frac{k}{q}} \biggl( ( 1 - \alpha ) \int _{0}^{h} \omega ( t ) \bigl\vert f^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \nabla t \biggr)^{\frac{k}{p}} \\& \quad \le \biggl[ \biggl( \alpha \int _{0}^{h} \omega^{1 - q} ( t )\Delta t \biggr)^{k} + \biggl( ( 1 - \alpha ) \int _{0}^{h} \omega^{1 - q} ( t )\nabla t \biggr)^{k} \biggr]^{\frac{1}{q}} \\& \qquad{}\cdot \biggl[ \biggl( \alpha \int _{0}^{h} \omega ( t ) \bigl\vert f^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \Delta t \biggr)^{k} + \biggl( ( 1 - \alpha ) \int _{0}^{h} \omega ( t ) \bigl\vert f^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \nabla t \biggr)^{k} \biggr]^{\frac{1}{q}} \\& \quad \le \biggl( \alpha \int _{0}^{h} \omega^{1 - q} ( t )\Delta t + ( 1 - \alpha ) \int _{0}^{h} \omega^{1 - q} ( t )\nabla t \biggr)^{\frac{k}{q}} \\& \qquad{}\cdot \biggl( \alpha \int _{0}^{h} \omega ( t ) \bigl\vert f^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \Delta t + ( 1 - \alpha ) \int _{0}^{h} \omega ( t ) \bigl\vert f^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \nabla t \biggr)^{\frac{k}{p}} \\& \quad = \biggl( \int _{0}^{h} \omega^{1 - q} ( t ) \diamondsuit_{\alpha}t \biggr)^{\frac{k}{q}} \biggl( \int _{0}^{h} \omega ( t ) \bigl\vert f^{\diamondsuit _{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr)^{\frac{k}{p}} . \end{aligned}$$
 □

Theorem 2.5

Assume that \(1 < p \le2\), \(q = \frac{p}{p - 1}\), \(\alpha \in [ 0,1 ]\), \(h \in ( 0,\infty )_{\mathbb{T}}\), \(\omega \in\mathbb{C} ( [ 0,h ]_{\mathbb{T}} , ( 0,\infty ) )\) and \(f \in\mathbb{C}_{\diamondsuit_{\alpha}}^{1} ( [ 0,h ]_{\mathbb{T}} ,\mathbb{R} )\). If \(\alpha f^{\Delta}\ge 0\), \(( 1 - \alpha )f^{\nabla}\ge0\) and \(f ( 0 ) = 0\), then
$$ \begin{aligned}[b] &\alpha^{k} \int _{0}^{u} \bigl\vert { \bigl( f^{k} \bigr)^{\Delta}( t )} \bigr\vert \Delta t + ( 1 - \alpha )^{k} \int _{0}^{u} \bigl\vert { \bigl( f^{k} \bigr)^{\nabla}( t )} \bigr\vert \nabla t \\ &\quad\le\sum_{j = 0}^{k - 2} \alpha^{j} \left ( \begin{matrix} k \\ j \end{matrix} \right ) \gamma^{j} \beta ^{\frac{k - j}{q}} \biggl[ \int _{0}^{h} \omega( t ) \bigl\vert g^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr] ^{\frac{k - 1}{p}} \\ &\qquad{}+ \alpha^{k - 1} \left ( \begin{matrix} k \\ k - 1 \end{matrix} \right )\gamma^{k - 1} \bigl( f ( h ) - f ( 0 ) \bigr), \end{aligned} $$
(6)
where \(\beta: = \min_{u \in [ 0,h ]_{T} } v ( u )\), \(v ( u ) = \max \{ \int _{0}^{u} \omega^{1 - q} ( t )\diamondsuit _{\alpha}t , \int _{u}^{h} \omega^{1 - q} ( t )\diamondsuit_{\alpha}t \} \), \(\gamma: = \max \{ \vert f ( 0 ) \vert , \vert f ( h ) \vert \} \).

Proof

We let \(u \in [ 0,h ]_{\mathbb{T}}\) be arbitrary. By applying Theorem 2.4 to the function \(g ( t ) = f ( t ) - f ( 0 )\), we obtain
$$\begin{aligned}& \alpha^{k} \int _{0}^{u} \bigl\vert \bigl( f^{k} \bigr)^{\Delta}( t ) \bigr\vert \Delta t + ( 1 - \alpha )^{k} \int _{0}^{u} \bigl\vert \bigl( f^{k} \bigr)^{\nabla}( t ) \bigr\vert \nabla t \\& \quad = \alpha^{k} \int _{0}^{u} \left \vert \sum _{j = 0}^{k - 1} \left ( \begin{matrix} k \\ j \end{matrix} \right ) \bigl( g^{k - j} \bigr)^{\Delta}f^{j} ( 0 ) \right \vert \Delta t \\& \qquad{}+ ( 1 - \alpha )^{k} \int _{0}^{u} \left \vert \sum _{j = 0}^{k - 1} \left ( \begin{matrix} k \\ j \end{matrix} \right ) \bigl( g^{k - j} \bigr)^{\nabla}f^{j} ( 0 ) \right \vert \nabla t \\& \quad \le \left ( \begin{matrix} k \\ 0 \end{matrix} \right ) \biggl[ \alpha^{k} \int _{0}^{u} \bigl\vert g^{k} \bigr\vert ^{\Delta}\Delta t + ( 1 - \alpha )^{k} \int _{0}^{u} \bigl\vert g^{k} \bigr\vert ^{\nabla}\nabla t \biggr] \\& \qquad{}+ \alpha \left ( \begin{matrix} k \\ 1 \end{matrix} \right ) \bigl\vert f ( 0 ) \bigr\vert \biggl[ \alpha^{k - 1} \int _{0}^{u} \bigl\vert g^{k - 1} \bigr\vert ^{\Delta}\Delta t + ( 1 - \alpha )^{k - 1} \int _{0}^{u} \bigl\vert g^{k - 1} \bigr\vert ^{\nabla}\nabla t \biggr] \\& \qquad{}+ \alpha^{2} \left ( \begin{matrix} k \\ 2 \end{matrix} \right ) \bigl\vert f^{2} ( 0 ) \bigr\vert \biggl[ \alpha^{k - 2} \int _{0}^{u} \bigl\vert g^{k - 2} \bigr\vert ^{\Delta}\Delta t + ( 1 - \alpha )^{k - 2} \int _{0}^{u} \bigl\vert g^{k - 2} \bigr\vert ^{\nabla}\nabla t \biggr] \\& \qquad{}\vdots \\& \qquad{}+ \alpha^{k - 2} \left ( \begin{matrix} k \\ k - 2 \end{matrix} \right ) \bigl\vert f^{k - 2} ( 0 ) \bigr\vert \biggl[ \alpha^{2} \int _{0}^{u} \bigl\vert g^{2} \bigr\vert ^{\Delta}\Delta t + ( 1 - \alpha )^{2} \int _{0}^{u} \bigl\vert g^{2} \bigr\vert ^{\nabla}\nabla t \biggr] \\& \qquad{}+ \alpha^{k - 1} \left ( \begin{matrix} k \\ k - 1 \end{matrix} \right ) \bigl\vert f^{k - 1} ( 0 ) \bigr\vert \biggl[ \alpha \int _{0}^{u} \vert f \vert ^{\Delta}\Delta t + ( 1 - \alpha ) \int _{0}^{u} \vert f \vert ^{\nabla}\nabla t \biggr] \\& \quad \le \left ( \begin{matrix} k \\ 0 \end{matrix} \right ) \biggl[ \int _{0}^{u} \omega^{1 - q} ( t ) \diamondsuit_{\alpha}t \biggr]^{\frac{k}{q}} \biggl[ \int _{0}^{u} \omega ( t ) \bigl\vert g^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr]^{\frac{k}{p}} \\& \qquad{}+ \alpha \left ( \begin{matrix} k \\ 1 \end{matrix} \right ) \bigl\vert f ( 0 ) \bigr\vert \biggl[ \int _{0}^{u} \omega^{1 - q} ( t ) \diamondsuit_{\alpha}t \biggr]^{\frac{k - 1}{q}} \biggl[ \int _{0}^{u} \omega ( t ) \bigl\vert g^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr]^{\frac{k - 1}{p}} \\& \qquad{} + \alpha^{2} \left ( \begin{matrix} k \\ 2 \end{matrix} \right ) \bigl\vert f^{2} ( 0 ) \bigr\vert \biggl[ \int _{0}^{u} \omega^{1 - q} ( t ) \diamondsuit_{\alpha}t \biggr]^{\frac{k - 2}{q}} \biggl[ \int _{0}^{u} \omega ( t ) \bigl\vert g^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr]^{\frac{k - 2}{p}} \\& \qquad{}\vdots \\& \qquad{} + \alpha^{k - 2} \left ( \begin{matrix} k \\ k - 2 \end{matrix} \right ) \bigl\vert f^{k - 2} ( 0 ) \bigr\vert \biggl[ \int _{0}^{u} \omega^{1 - q} ( t ) \diamondsuit_{\alpha}t \biggr]^{\frac{2}{q}} \\& \qquad{}\cdot \biggl[ \int _{0}^{u} \omega ( t ) \bigl\vert g^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr]^{\frac{2}{p}} \\& \qquad{}+ \alpha^{k - 1} \left ( \begin{matrix} k \\ k - 1 \end{matrix} \right ) \bigl\vert f^{k - 1} ( 0 ) \bigr\vert \alpha \int _{0}^{u} \bigl\vert f^{\Delta}( t ) \bigr\vert \Delta t \\& \qquad{}+ \alpha^{k - 1} \left ( \begin{matrix} k \\ k - 1 \end{matrix} \right ) \bigl\vert f^{k - 1} ( 0 ) \bigr\vert ( 1 - \alpha ) \int _{0}^{u} \bigl\vert f^{\nabla}( t ) \bigr\vert \nabla t \\& \quad \le\sum_{j = 0}^{k - 2} \alpha^{j} \left ( \begin{matrix} k \\ j \end{matrix} \right ) \bigl\vert f^{j} ( 0 ) \bigr\vert \biggl[ \int _{0}^{u} \omega^{1 - q} ( t ) \diamondsuit_{\alpha}t \biggr]^{\frac{k - j}{q}} \biggl[ \int _{0}^{u} \omega ( t ) \bigl\vert g^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr]^{\frac{k - j}{p}} \\& \qquad{} + \alpha^{k - 1} \left ( \begin{matrix} k \\ k - 1 \end{matrix} \right )\gamma^{k - 1} \bigl( f ( u ) - f ( 0 ) \bigr). \end{aligned}$$
Similarly,
$$\begin{aligned}& \alpha^{k} \int _{u}^{h} \bigl\vert \bigl( f^{k} \bigr)^{\Delta}( t ) \bigr\vert \Delta t + ( 1 - \alpha )^{k} \int _{u}^{h} \bigl\vert \bigl( f^{k} \bigr)^{\nabla}( t ) \bigr\vert \nabla t \\& \quad \le\sum_{j = 0}^{k - 2} \alpha^{j} \left ( \begin{matrix} k \\ j \end{matrix} \right ) \bigl\vert f^{j} ( 0 ) \bigr\vert \biggl[ \int _{u}^{h} \omega^{1 - q} ( t ) \diamondsuit _{\alpha}t \biggr]^{\frac{k - j}{q}} \biggl[ \int _{u}^{h} \omega ( t ) \bigl\vert g^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr]^{\frac{k - j}{p}} \\& \qquad{}+ \alpha^{k - 1} \left ( \begin{matrix} k \\ k - 1 \end{matrix} \right )\gamma^{k - 1} \bigl( f ( h ) - f ( u ) \bigr). \end{aligned}$$
Adding these two inequalities and taking into account that \(a^{r} + b^{r} \le ( a + b )^{r}\) holds, for \(a,b \ge0\) and \(r \ge 1\), yield the desired inequality. □

3 Conclusion

In this paper, we have obtained several Opial-type integral inequalities on time scales via the notion of the diamond-alpha derivative. These inequalities are related to the function \(f^{k}\).

Declarations

Acknowledgements

The author would like to thank the anonymous referees for their constructive comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors’ Affiliations

(1)
College of Applied Professional Studies, Filipa Filipovića 20, Vranje, 17000, Serbia

References

  1. Fayyaz, T, Irshad, N, Khan, A, Rahman, G, Roqia, G: Generalized integral inequalities on time scales. J. Inequal. Appl. 2016, 235 (2016) MathSciNetView ArticleMATHGoogle Scholar
  2. Zhao, Z, Xu, B, Li, Y: Dynamic inequalities on time scales. Int. J. Pure Appl. Math. Sci. 22(1), 49-56 (2005) MathSciNetMATHGoogle Scholar
  3. Agarwal, R, Bohner, M, Peterson, A: Inequalities on time scales: a survey. Math. Inequal. Appl. 4, 535-557 (2001) MathSciNetMATHGoogle Scholar
  4. Atasever, N, Kaymakçalan, B, Lešaja, G, Taş, K: Generalized diamond-α dynamic Opial inequalities. Adv. Differ. Equ. 2012, 109 (2012) MathSciNetView ArticleMATHGoogle Scholar
  5. Agarwal, R, Bohner, M: Basic calculus on time scales and some of its applications. Results Math. 35(1-2), 3-22 (1999) MathSciNetView ArticleMATHGoogle Scholar
  6. Agarwal, R, Bohner, M, O’Regan, D, Peterson, A: Dynamic equations on time scales: a survey. J. Comput. Appl. Math. 141, 1-26 (2002) MathSciNetView ArticleMATHGoogle Scholar
  7. Bohner, M, Kaymakçalan, B: Opial inequalities on time scales. Ann. Pol. Math. 77(1), 11-20 (2001) MathSciNetView ArticleMATHGoogle Scholar
  8. Kaymakçalan, B, Ozkan, U: Basics of diamond-α partial dynamic calculus on time scales. Math. Comput. Model. 50(9-10), 1258-1261 (2009) MathSciNetMATHGoogle Scholar
  9. Agarwal, R, Pang, P: Opial-type inequalities involving higher order derivatives. J. Math. Anal. Appl. 189(1), 85-103 (1995) MathSciNetView ArticleMATHGoogle Scholar
  10. Bohner, M, Mahmoud, R, Saker, S: Discrete, continuous, delta, nabla and diamond-alpha Opial inequalities. Math. Inequal. Appl. 18(3), 923-940 (2015) MathSciNetMATHGoogle Scholar

Copyright

© The Author(s) 2017

Advertisement