Skip to main content

Dynamic Opial diamond-α integral inequalities involving the power of a function

Abstract

In this paper, we present some new dynamic Opial-type diamond alpha inequalities on time scales. The obtained results are related to the function \(f^{k}\).

Introduction

A time scale \(\mathbb{T}\) is an arbitrary nonempty closed subset of real numbers. For \(t \in\mathbb{T}\), we define the forward jump operator \(\sigma:\mathbb{T} \to\mathbb{T}\) by \(\sigma ( t ) := \inf \{ s \in\mathbb{T}:s > t \} \) and the backward jump operator \(\rho:\mathbb{T} \to\mathbb{T}\) by \(\rho ( t ) := \sup \{ s \in\mathbb{T}:s < t \} \). If \(\sigma ( t ) > t\), we say that t is right-scattered, whereas if \(\rho ( t ) < t\), we say that t is left-scattered. Points that are simultaneously right-scattered and left-scattered are said to be isolated. If \(\sigma ( t ) = t\), then t is called right-dense; if \(\rho ( t ) = t\), then t is called left-dense. Points that are right-dense and left-dense at the same time are called dense. The mappings \(\mu,\nu:\mathbb{T} \to[ 0,\infty )\), defined by \(\mu ( t ) := \sigma ( t ) - t\) and \(\nu ( t ) := t - \rho ( t )\), are called the forward and backward graininess function, respectively. If \(\mathbb{T}\) has a left-scattered maximum \(t_{1} \), then \(\mathbb{T}^{k} = \mathbb{T} - \{ t_{1} \} \), otherwise \(\mathbb{T}^{k} = \mathbb{T}\). If \(\mathbb{T}\) has a right-scattered minimum \(t_{2} \), then \(\mathbb{T}_{k} = \mathbb{T} - \{ t_{2} \} \), otherwise \(\mathbb{T}_{k} = \mathbb{T}\). Finally, \(\mathbb{T}_{k}^{k} = \mathbb{T}^{k} \cap\mathbb{T}_{k} \).

Theorem 1.1

Assume \(f,g:\mathbb{T} \to\mathbb{R}\) are delta differentiable at \(t \in\mathbb{T}^{k}\). Then:

  1. 1.

    The sum \(f + g:\mathbb{T} \to\mathbb{R}\) is delta differentiable at t with

    $$( f + g )^{\Delta}( t ) = f^{\Delta}( t ) + g^{\Delta}( t ). $$
  2. 2.

    For any constant α, \(\alpha f:\mathbb{T} \to \mathbb{R}\) is delta differentiable at t with

    $$( \alpha f )^{\Delta}( t ) = \alpha f^{\Delta}( t ). $$
  3. 3.

    The product \(fg:\mathbb{T} \to\mathbb{R}\) is delta differentiable at t with

    $$( fg )^{\Delta}( t ) = f^{\Delta}( t )g ( t ) + f^{\sigma}( t )g^{\Delta}( t ) = f ( t )g^{\Delta}( t ) + f^{\Delta}( t )g^{\sigma}( t ). $$

Theorem 1.2

Assume \(f,g:\mathbb{T} \to\mathbb{R}\) are nabla differentiable at \(t \in\mathbb{T}_{k}\). Then:

  1. 1.

    The sum \(f + g:\mathbb{T} \to\mathbb{R}\) is nabla differentiable at t with

    $$( f + g )^{\nabla}( t ) = f^{\nabla}( t ) + g^{\nabla}( t ). $$
  2. 2.

    For any constant α, \(\alpha f:\mathbb{T} \to\mathbb{R}\) is nabla differentiable at t with

    $$( \alpha f )^{\nabla}( t ) = \alpha f^{\nabla}( t ). $$
  3. 3.

    The product \(fg:\mathbb{T} \to \mathbb{R}\) is nabla differentiable at t with

    $$( fg )^{\nabla}( t ) = f^{\nabla}( t )g ( t ) + f^{\rho}( t )g^{\nabla}( t ) = f ( t )g^{\nabla}( t ) + f^{\nabla}( t )g^{\rho}( t ). $$

The following formulas will be used in our paper:

$$\begin{aligned}& \bigl( f^{l + 1} \bigr)^{\Delta}= \Biggl\{ \sum _{k = 0}^{l} f^{k} \bigl( f^{\sigma}\bigr)^{l - k} \Biggr\} f^{\Delta}, \quad l \in N, \\ & \bigl( f^{l + 1} \bigr)^{\nabla}= \Biggl\{ \sum _{k = 0}^{l} f^{k} \bigl( f^{\rho}\bigr)^{l - k} \Biggr\} f^{\nabla}, \quad l \in N. \end{aligned}$$

Definition 1.3

Let \(0 \le\alpha \le1\) and let f be both delta and nabla differentiable at \(t \in\mathbb{T}_{k}^{k}\). Then f is diamond-α differentiable at t and \(f^{\diamondsuit _{\alpha}} ( t ) = \alpha f^{\Delta}( t ) + ( 1 - \alpha )f^{\nabla}( t )\).

Definition 1.4

Let \(a,b \in\mathbb{T}\), \(a < b\), \(f:\mathbb{T} \to\mathbb{R}\) and \(\alpha \in [ 0,1 ]\). The diamond-α integral of t on \([ a,b ]_{\mathbb{T}}\) is defined by

$$\int _{a}^{b} f ( t )\diamondsuit_{\alpha}t = \alpha \int _{a}^{b} f ( t )\Delta t + ( 1 - \alpha ) \int _{a}^{b} f ( t )\nabla t. $$

Theorem 1.5

Let \(f,g:\mathbb{T} \to\mathbb{R}\) be \(\diamondsuit _{\alpha}\)-differentiable at \(t \in\mathbb{T}\). Then

  1. 1.

    \(f + g\) is \(\diamondsuit_{\alpha}\)-differentiable \(t \in \mathbb{T}\) with \(( f + g )^{\diamondsuit_{\alpha}} = f^{\diamondsuit_{\alpha}} + g^{\diamondsuit_{\alpha}}\),

  2. 2.

    fg is \(\diamondsuit_{\alpha}\)-differentiable at \(t \in \mathbb{T}\) with \(( fg )^{\diamondsuit_{\alpha}} = f^{\diamondsuit_{\alpha}} g + \alpha f^{\sigma}g^{\Delta}+ ( 1 - \alpha )f^{\rho}g^{\nabla}\).

Many authors have studied the theory of integral inequalities on time scales (see, for example, [110]). In [3], the following Opial inequality on time scales was established.

Theorem 1.6

[3]

For a delta differentiable \(f: [ 0,h ] \cap\mathbb{T} \to\mathbb{R}\) with \(f ( 0 ) = 0\), we have

$$ \int _{0}^{h} \bigl\vert { \bigl( f + f^{\sigma}\bigr)f^{\Delta}} \bigr\vert \Delta t \le h \int _{0}^{h} \bigl\vert {f^{\Delta}} \bigr\vert ^{2} \Delta t, $$
(1)

with equality when \(f ( t ) = ct\).

In [1], the authors established the following theorem.

Theorem 1.7

[1]

Let \(\omega ( t )\) be positive and continuous on \(( 0,h )\) with \(\int _{0}^{h} \omega^{1 - q} \Delta t < \infty\), \(q > 1\). For a differentiable \(f: [ 0,h ] \to\mathbb{R}\) with \(f ( 0 ) = 0\), we have

$$\int _{0}^{h} \bigl\vert \bigl( f + f^{\sigma}\bigr)f^{\Delta}\bigr\vert \Delta t \le \biggl( \int _{0}^{h} \omega^{1 - q} \Delta t \biggr)^{\frac{2}{q}} \biggl( \int _{0}^{h} \omega \bigl\vert f^{\Delta}\bigr\vert ^{p} \Delta t \biggr)^{\frac{2}{p}}, $$

where \(p > 1\) and \(\frac{1}{p} + \frac{1}{q} = 1\), and with equality when \(f ( t ) = c\int_{0}^{t} \omega^{1 - q} \Delta\tau\) for a constant c.

Main results

In this section, we present our results.

Theorem 2.1

Let T be a time scale. For \(\diamondsuit_{\alpha}\) differentiable \(f: [ 0,h ] \cap T \to R\), with \(f ( 0 ) = 0\) we have

$$ \int _{0}^{h} \bigl\vert {f^{k} } \bigr\vert ^{\diamondsuit_{\alpha}} ( t )\diamondsuit_{\alpha}t \le h^{k - 1} \int _{0}^{h} \bigl\vert {f^{\diamondsuit_{\alpha}} } \bigr\vert ^{k} ( t )\diamondsuit_{\alpha}t. $$
(2)

Proof

Starting with the left side of (2), we obtain

$$\begin{aligned} \int _{0}^{h} \bigl\vert f^{k} \bigr\vert ^{\diamondsuit_{\alpha}} ( t )\diamondsuit _{\alpha}( t ) =& \int _{0}^{h} \bigl\vert f \cdot f^{k - 1} \bigr\vert ^{\diamondsuit_{\alpha}} ( t )\diamondsuit_{\alpha}( t ) \\ =& \int _{0}^{h} \bigl\vert f^{k - 1} f^{\diamondsuit_{\alpha}} + \alpha f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}+ ( 1 - \alpha )f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\diamondsuit_{\alpha}( t ) \\ =& \alpha \int _{0}^{h} \bigl\vert f^{k - 1} f^{\diamondsuit _{\alpha}} + \alpha f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}+ ( 1 - \alpha )f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\Delta t \\ &{}+ ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{k - 1} f^{\diamondsuit_{\alpha}} + \alpha f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}+ ( 1 - \alpha )f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\nabla t \\ \le&\alpha \int _{0}^{h} \bigl\vert f^{k - 1} f^{\diamondsuit _{\alpha}} \bigr\vert ( t )\Delta t + \alpha^{2} \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}\bigr\vert ( t )\Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\Delta t + ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{k - 1} f^{\diamondsuit_{\alpha}} \bigr\vert ( t )\nabla t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}\bigr\vert ( t )\nabla t + ( 1 - \alpha )^{2} \int _{0}^{h} \bigl\vert f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\nabla t. \end{aligned}$$

Using Definition 1.3, we get

$$\begin{aligned} \int _{0}^{h} \bigl\vert f^{k} \bigr\vert ^{\diamondsuit_{\alpha}} ( t )\diamondsuit _{\alpha}( t ) \le&\alpha \int _{0}^{h} \bigl\vert \alpha f^{k - 1} f^{\Delta}+ ( 1 - \alpha )f^{k - 1} f^{\nabla}\bigr\vert ( t )\Delta t \\ & {}+ \alpha^{2} \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}\bigr\vert ( t )\Delta t + \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\Delta t \\ & {}+ ( 1 - \alpha ) \int _{0}^{h} \bigl\vert \alpha f^{k - 1} f^{\Delta}+ ( 1 - \alpha )f^{k - 1} f^{\nabla}\bigr\vert ( t )\nabla t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}\bigr\vert ( t )\nabla t + ( 1 - \alpha )^{2} \int _{0}^{h} \bigl\vert f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\nabla t \\ \le&\alpha^{2} \int _{0}^{h} \bigl\vert f^{k - 1} f^{\Delta}\bigr\vert ( t )\Delta t + \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{k - 1} f^{\nabla}\bigr\vert ( t )\Delta t \\ & {}+ \alpha^{2} \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}\bigr\vert ( t )\Delta t + \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{k - 1} f^{\Delta}\bigr\vert ( t )\nabla t + ( 1 - \alpha )^{2} \int _{0}^{h} \bigl\vert f^{k - 1} f^{\nabla}\bigr\vert ( t )\nabla t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}\bigr\vert ( t )\nabla t + ( 1 - \alpha )^{2} \int _{0}^{h} \bigl\vert f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\nabla t. \end{aligned}$$

We find that

$$\begin{aligned} \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{k - 1} \bigr)^{\Delta}\bigr\vert ( t )\Delta t =& \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f \cdot f^{k - 2} \bigr)^{\Delta}\bigr\vert ( t ) \Delta t \\ =& \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{\Delta}f^{k - 2} + f^{\sigma}\bigl( f \cdot f^{k - 3} \bigr)^{\Delta}\bigr) \bigr\vert ( t )\Delta t \\ & {}\vdots \\ =& \int _{0}^{h} \bigl\vert f^{\sigma}\bigl( f^{\Delta}f^{k - 2} + f^{\sigma}f^{\Delta}f^{k - 3} + \cdots+ \bigl( f^{\sigma}\bigr)^{2} f^{\Delta}\bigr) \bigr\vert ( t )\Delta t \\ =& \int _{0}^{h} \bigl\vert f^{\sigma}f^{k - 2} + \bigl( f^{\sigma}\bigr)^{2} f^{k - 3} + \cdots+ \bigl( f^{\sigma}\bigr) \bigr\vert \bigl\vert f^{\Delta}\bigr\vert ( t )\Delta t \\ =& \int _{0}^{h} \Biggl\vert \sum _{n = 0}^{k - 2} f^{n} \bigl( f^{\sigma}\bigr)^{k - 1 - n} \Biggr\vert \bigl\vert f^{\Delta}\bigr\vert ( t )\Delta t. \end{aligned}$$

Similarly,

$$\int _{0}^{h} \bigl\vert f^{\rho}\bigl( f^{k - 1} \bigr)^{\nabla}\bigr\vert ( t )\Delta t = \int _{0}^{h} \Biggl\vert \sum _{n = 0}^{k - 2} f^{n} \bigl( f^{\rho}\bigr)^{k - 1 - n} \Biggr\vert \bigl\vert f^{\nabla}\bigr\vert ( t )\nabla t. $$

Therefore,

$$\begin{aligned} \int _{0}^{h} \bigl\vert f^{k} \bigr\vert ^{\diamondsuit _{\alpha}} ( t )\diamondsuit_{\alpha}t \le& \alpha^{2} \int _{0}^{h} \bigl\vert f^{k - 1} f^{\Delta}\bigr\vert ( t )\Delta t + \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{k - 1} f^{\nabla}\bigr\vert ( t )\Delta t \\ & {}+ \alpha^{2} \int _{0}^{h} \Biggl\vert \sum _{n = 0}^{k - 2} f^{n} \bigl( f^{\sigma}\bigr)^{k - 1 - n} \Biggr\vert \bigl\vert f^{\Delta}\bigr\vert ( t )\Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl\vert \sum _{n = 0}^{k - 2} f^{n} \bigl( f^{\rho}\bigr)^{k - 1 - n} \Biggr\vert \bigl\vert f^{\nabla}\bigr\vert ( t )\Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl\vert f^{k - 1} f^{\Delta}\bigr\vert ( t )\nabla t + ( 1 - \alpha )^{2} \int _{0}^{h} \bigl\vert f^{k - 1} f^{\nabla}\bigr\vert ( t )\nabla t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl\vert \sum _{n = 0}^{k - 2} f^{n} \bigl( f^{\sigma}\bigr)^{k - 1 - n} \Biggr\vert \bigl\vert f^{\Delta}\bigr\vert \nabla t \\ & {}+ ( 1 - \alpha )^{2} \int _{0}^{h} \Biggl\vert \sum _{n = 0}^{k - 2} f^{n} \bigl( f^{\rho}\bigr)^{k - 1 - n} \Biggr\vert \bigl\vert f^{\nabla}\bigr\vert ( t )\nabla t \\ = &\alpha^{2} \int _{0}^{h} \Biggl( \bigl\vert f^{k - 1} \bigr\vert + \Biggl\vert \sum_{n = 0}^{k - 2} f^{n} \bigl( f^{\sigma}\bigr)^{k - 1 - n} \Biggr\vert \Biggr) \bigl\vert f^{\Delta}( t ) \bigr\vert \Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl( \bigl\vert f^{k - 1} \bigr\vert + \Biggl\vert \sum_{n = 0}^{k - 2} f^{n} \bigl( f^{\rho}\bigr)^{k - 1 - n} \Biggr\vert \Biggr) \bigl\vert f^{\nabla}( t ) \bigr\vert \Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl( \bigl\vert f^{k - 1} \bigr\vert + \Biggl\vert \sum_{n = 0}^{k - 2} f^{n} \bigl( f^{\sigma}\bigr)^{k - 1 - n} \Biggr\vert \Biggr) \bigl\vert f^{\Delta}( t ) \bigr\vert \nabla t \\ & {}+ ( 1 - \alpha )^{2} \int _{0}^{h} \Biggl( \bigl\vert f^{k - 1} \bigr\vert + \Biggl\vert \sum_{n = 0}^{k - 2} f^{n} \bigl( f^{\rho}\bigr)^{k - 1 - n} \Biggr\vert \Biggr) \bigl\vert f^{\nabla}( t ) \bigr\vert \nabla t \\ \le&\alpha^{2} \int _{0}^{h} \Biggl( \bigl\vert f^{k - 1} \bigr\vert + \sum_{n = 0}^{k - 2} \bigl\vert f^{n} \bigl( f^{\sigma}\bigr)^{k - 1 - n} \bigr\vert \Biggr) \bigl\vert f^{\Delta}( t ) \bigr\vert \Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl( \bigl\vert f^{k - 1} \bigr\vert + \sum_{n = 0}^{k - 2} \bigl\vert f^{n} \bigl( f^{\rho}\bigr)^{k - 1 - n} \bigr\vert \Biggr) \bigl\vert f^{\nabla}( t ) \bigr\vert \Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl( \bigl\vert f^{k - 1} \bigr\vert + \sum_{n = 0}^{k - 2} \bigl\vert f^{n} \bigl( f^{\sigma}\bigr)^{k - 1 - n} \bigr\vert \Biggr) \bigl\vert f^{\Delta}( t ) \bigr\vert \nabla t \\ & {}+ ( 1 - \alpha )^{2} \int _{0}^{h} \Biggl( \bigl\vert f^{k - 1} \bigr\vert + \sum_{n = 0}^{k - 2} \bigl\vert f^{n} \bigl( f^{\rho}\bigr)^{k - 1 - n} \bigr\vert \Biggr) \bigl\vert f^{\nabla}( t ) \bigr\vert \nabla t \\ = &\alpha^{2} \int _{0}^{h} \Biggl( \sum _{n = 0}^{k - 1} \bigl\vert f^{n} \bigr\vert \bigl\vert \bigl( f^{\sigma}\bigr)^{k - 1 - n} \bigr\vert \Biggr) \bigl\vert f^{\Delta}( t ) \bigr\vert \Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl( \sum _{n = 0}^{k - 1} \bigl\vert f^{n} \bigr\vert \bigl\vert \bigl( f^{\rho}\bigr)^{k - 1 - n} \bigr\vert \Biggr) \bigl\vert f^{\nabla}( t ) \bigr\vert \Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl( \sum _{n = 0}^{k - 1} \bigl\vert f^{n} \bigr\vert \bigl\vert \bigl( f^{\sigma}\bigr)^{k - 1 - n} \bigr\vert \Biggr) \bigl\vert f^{\Delta}( t ) \bigr\vert \nabla t \\ & {}+ ( 1 - \alpha )^{2} \int _{0}^{h} \Biggl( \sum _{n = 0}^{k - 1} \bigl\vert f^{n} \bigr\vert \bigl\vert \bigl( f^{\rho}\bigr)^{k - 1 - n} \bigr\vert \Biggr) \bigl\vert f^{\nabla}( t ) \bigr\vert \nabla t. \end{aligned}$$

Consider \(g ( t ) = \int _{0}^{t} \vert f^{\diamondsuit_{\alpha}} ( s ) \vert \diamondsuit _{\alpha}s\). Then we have \(g^{\Delta}( t ) = \vert f^{\Delta}( t ) \vert \), \(g^{\nabla}( t ) = \vert f^{\nabla}( t ) \vert \), and \(\vert f \vert \le g\), so that \(g ( t ) = \int _{0}^{t} \vert f^{\diamondsuit_{\alpha}} ( s ) \vert \diamondsuit_{\alpha}s \ge \vert \int _{0}^{t} f^{\diamondsuit_{\alpha}} ( s )\diamondsuit_{\alpha}s \vert = \vert f ( t ) - f ( 0 ) \vert = \vert f ( t ) \vert \).

The above inequality becomes

$$\begin{aligned} \int _{0}^{h} \bigl\vert f^{k} \bigr\vert ^{\diamondsuit_{\alpha}} ( t )\diamondsuit _{\alpha} \le& \alpha^{2} \int _{0}^{h} \Biggl( \sum _{n = 0}^{k - 1} g^{n} \bigl( g^{\sigma}\bigr)^{k - 1 - n} \Biggr) \bigl( g^{\Delta}\bigr) ( t )\Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl( \sum _{n = 0}^{k - 1} g^{n} \bigl( g^{\rho}\bigr)^{k - 1 - n} \Biggr) \bigl( g^{\nabla}\bigr) ( t )\Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \Biggl( \sum _{n = 0}^{k - 1} g^{n} \bigl( g^{\sigma}\bigr)^{k - 1 - n} \Biggr) \bigl( g^{\Delta}\bigr) ( t )\nabla t \\ & {}+ ( 1 - \alpha )^{2} \int _{0}^{h} \Biggl( \sum _{n = 0}^{k - 1} g^{n} \bigl( g^{\rho}\bigr)^{k - 1 - n} \Biggr) \bigl( g^{\nabla}\bigr) ( t )\nabla t \\ = &\alpha^{2} \int _{0}^{h} \bigl( g^{k} \bigr)^{\Delta}( t )\Delta t + \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl( g^{k} \bigr)^{\nabla}( t )\Delta t \\ & {}+ \alpha ( 1 - \alpha ) \int _{0}^{h} \bigl( g^{k} \bigr)^{\Delta}( t )\nabla t + ( 1 - \alpha )^{2} \int _{0}^{h} \bigl( g^{k} \bigr)^{\nabla}( t )\nabla t \\ = &\alpha \biggl[ \alpha \int _{0}^{h} \bigl( g^{k} \bigr)^{\Delta}\Delta t + ( 1 - \alpha ) \int _{0}^{h} \bigl( g^{k} \bigr)^{\Delta}\nabla t \biggr] \\ & {}+ ( 1 - \alpha ) \biggl[ \int _{0}^{h} \alpha \bigl( g^{k} \bigr)^{\nabla}\Delta t + ( 1 - \alpha ) \int _{0}^{h} \bigl( g^{k} \bigr)^{\nabla}\nabla t \biggr] \\ = &\alpha \int _{0}^{h} \bigl( g^{k} \bigr)^{\Delta}\diamondsuit_{\alpha}+ ( 1 - \alpha ) \int _{0}^{h} \bigl( g^{k} \bigr)^{\nabla}\diamondsuit _{\alpha}= \int _{0}^{h} \bigl( g^{k} \bigr) ( t )^{\diamondsuit_{\alpha}} \diamondsuit_{\alpha}\\ =& g^{k} ( t ) | _{0}^{h} = g^{k} ( h ) - g^{k} ( 0 ) = \bigl[ g ( h ) \bigr]^{k} = \biggl[ \int _{0}^{h} \bigl\vert f^{\diamondsuit _{\alpha}} ( s ) \bigr\vert \diamondsuit_{\alpha}s \biggr]^{k}. \end{aligned}$$

By using Hölder’s inequality with indices \(p = \frac{k}{k - 1}\) and \(q = k\), we obtain

$$\begin{aligned} \biggl[ \int _{0}^{h} 1 \cdot \bigl\vert {f^{\diamondsuit_{\alpha}} ( s )} \bigr\vert \diamondsuit_{\alpha}s \biggr]^{k} \le& \biggl[ \biggl( \int _{0}^{h} 1^{\frac{k}{k - 1}} \diamondsuit _{\alpha}s \biggr)^{\frac{k - 1}{k}} \biggl( \int _{0}^{h} \bigl\vert {f^{\diamondsuit_{\alpha}} ( s )} \bigr\vert ^{k} \diamondsuit_{\alpha}s \biggr)^{\frac{1}{k}} \biggr]^{k} \\ = & \biggl( \int _{0}^{h} \diamondsuit_{\alpha}s \biggr)^{k - 1} \biggl( \int _{0}^{h} \bigl\vert {f^{\diamondsuit _{\alpha}} ( s )} \bigr\vert ^{k} \diamondsuit_{\alpha}s \biggr) \\ = & \bigl( s |_{0}^{h} \bigr)^{k - 1} \int _{0}^{h} \bigl\vert {f^{\diamondsuit_{\alpha}} ( s )} \bigr\vert ^{k} \diamondsuit_{\alpha}s \\ = &h^{k - 1} \int _{0}^{h} \bigl\vert {f^{\diamondsuit_{\alpha}} ( s )} \bigr\vert ^{k} \diamondsuit_{\alpha}s, \end{aligned}$$

hence the proof is complete. □

Theorem 2.2

Let \(\omega ( t )\) be positive and continuous on \(( 0,h )\), with \(\int _{0}^{h} \omega^{1 - q} ( t )\Delta t < \infty\), \(q > 1\). For differentiable \(f: [ 0,h ] \to\mathbb{R}\) with \(f ( 0 ) = 0\) we have

$$ \int _{0}^{h} \bigl\vert {f^{k} } \bigr\vert ^{\Delta}\Delta t \le \biggl( \int _{0}^{h} \omega^{1 - q} \Delta t \biggr)^{\frac{k}{q}} \biggl( \int _{0}^{h} \omega \bigl\vert {f^{\Delta}} \bigr\vert ^{p} \Delta t \biggr)^{\frac{k}{q}}, $$
(3)

where \(p > 1\) and \(\frac{1}{p} + \frac{1}{q} = 1\).

Proof

We take \(g ( t ) = \int _{0}^{t} \vert f^{\Delta}( s ) \vert \Delta s\). Then \(\vert f ( t ) \vert \le g ( t )\), \(g^{\Delta}( t ) = \vert f^{\Delta}( t ) \vert \), so we have

$$\begin{aligned} \int _{0}^{h} \bigl\vert {f^{k} } \bigr\vert ^{\Delta}\Delta t =& \int _{0}^{h} \Biggl\vert {\sum _{k = 0}^{n - 1} f^{k} \bigl( f^{\sigma}\bigr)^{n - 1 - k} } \Biggr\vert \bigl\vert {f^{\Delta}} \bigr\vert ( t )\Delta t \\ \le& \int _{0}^{h} \Biggl( \sum _{k = 0}^{n - 1} g^{k} \bigl( g^{\sigma}\bigr)^{n - 1 - k} \Biggr) \bigl( g^{\Delta}\bigr) ( t )\Delta t = \int _{0}^{h} \bigl( g^{k} \bigr)^{\Delta}\Delta t \\ =& g^{k} ( h ) - g^{k} ( 0 ) = g^{k} ( h ) = \biggl( \int _{0}^{h} \bigl\vert {f^{\Delta}} \bigr\vert ( t )\Delta t \biggr)^{k} \\ =& \biggl( \int _{0}^{h} \omega^{ - \frac{1}{p}} \omega ^{\frac{1}{p}} \bigl\vert {f^{\Delta}} \bigr\vert ( t )\Delta t \biggr)^{k} \\ \le& \biggl[ \biggl( \int _{0}^{h} \bigl( \omega^{ - \frac{1}{p}} \bigr)^{q} \Delta t \biggr)^{\frac{1}{q}} \biggl( \int _{0}^{h} \bigl( \omega^{\frac{1}{p}} \bigl\vert {f^{\Delta}} \bigr\vert \bigr)^{p} ( t )\Delta t \biggr)^{\frac{1}{p}} \biggr]^{k} \\ =& \biggl( \int _{0}^{h} \omega^{1 - q} \Delta t \biggr)^{\frac{k}{q}} \biggl( \int _{0}^{h} \bigl( \omega \bigl\vert f^{\Delta}\bigr\vert \bigr)^{p} ( t )\Delta t \biggr)^{\frac{k}{p}}. \end{aligned}$$

 □

Theorem 2.3

Let \(\omega ( t )\) be positive and continuous on \(( 0,h )\), with \(\int _{0}^{h} \omega^{1 - q} ( t )\nabla t < \infty\), \(q > 1\). For differentiable \(f: [ 0,h ] \to\mathbb{R}\) with \(f ( 0 ) = 0\) we have

$$ \int _{0}^{h} \bigl\vert {f^{k} } \bigr\vert ^{\nabla}\nabla t \le \biggl( \int _{0}^{h} \omega^{1 - q} \nabla t \biggr)^{\frac{k}{q}} \biggl( \int _{0}^{h} \omega \bigl\vert {f^{\nabla}} \bigr\vert ^{p} \nabla t \biggr)^{\frac{k}{q}}, $$
(4)

where \(p > 1\) and \(\frac{1}{p} + \frac{1}{q} = 1\).

Theorem 2.4

Assume that \(p > 1\), \(q = \frac{p}{p - 1}\), \(\alpha \in [ 0,1 ]\), \(h \in ( 0,\infty )_{\mathbb{T}}\), \(\omega \in\mathbb{C} ( [ 0,h ]_{\mathbb{T}} , ( 0,\infty ) )\) and \(f \in \mathbb{C}_{\diamondsuit_{\alpha}}^{1} ( [ 0,h ]_{\mathbb{T}} ,\mathbb{R} )\). If \(\alpha f^{\Delta}\ge 0\), \(( 1 - \alpha )f^{\nabla}\ge0\) and \(f ( 0 ) = 0\) then

$$\begin{aligned}& \alpha^{k} \int _{0}^{h} \bigl\vert { \bigl( f^{k} \bigr)^{\Delta}( t )} \bigr\vert \Delta t + ( 1 - \alpha )^{k} \int _{0}^{h} \bigl\vert { \bigl( f^{k} \bigr)^{\nabla}( t )} \bigr\vert \nabla t \\& \quad \le \biggl( \int _{0}^{h} \omega^{1 - q} ( t ) \diamondsuit _{\alpha}t \biggr)^{\frac{k}{q}} \biggl( \int _{0}^{h} \omega( t ) \bigl\vert f^{\diamondsuit _{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr)^{\frac{k}{p}}. \end{aligned}$$
(5)

Proof

By Theorems 2.2, 2.3, Hölder’s inequality and \(k = \frac{k}{q} + ( 1 + p )\frac{k}{p}\), we get

$$\begin{aligned}& \alpha^{k} \int _{0}^{h} \bigl\vert \bigl( f^{k} \bigr)^{\Delta}( t ) \bigr\vert \Delta t + ( 1 - \alpha )^{k} \int _{0}^{h} \bigl\vert \bigl( f^{k} \bigr)^{\nabla}( t ) \bigr\vert \nabla t \\& \quad = \alpha^{\frac{k}{q} + ( 1 + p )\frac{k}{p}} \int _{0}^{h} \bigl\vert \bigl( f^{k} \bigr)^{\Delta}( t ) \bigr\vert \Delta t + ( 1 - \alpha )^{\frac{k}{q} + ( 1 + p )\frac{k}{p}} \int _{0}^{h} \bigl\vert \bigl( f^{k} \bigr)^{\nabla}( t ) \bigr\vert \nabla t \\& \quad \le\alpha^{\frac{k}{q} + ( 1 + p )\frac{k}{p}} \biggl( \int _{0}^{h} \omega^{1 - q} ( t )\Delta t \biggr)^{\frac{k}{q}} \biggl( \int _{0}^{h} \omega ( t ) \bigl\vert f^{\Delta}( t ) \bigr\vert ^{p} \Delta t \biggr)^{\frac{k}{p}} \\& \qquad{}+ ( 1 - \alpha )^{\frac{k}{q} + ( 1 + p )\frac{k}{p}} \biggl( \int _{0}^{h} \omega^{1 - q} ( t )\nabla t \biggr)^{\frac{k}{q}} \biggl( \int _{0}^{h} \omega ( t ) \bigl\vert f^{\nabla}( t ) \bigr\vert ^{p} \nabla t \biggr)^{\frac{k}{p}} \\& \quad \le \biggl( \alpha \int _{0}^{h} \omega^{1 - q} ( t )\Delta t \biggr)^{\frac{k}{q}} \biggl( \alpha \int _{0}^{h} \omega ( t ) \bigl\vert \alpha f^{\Delta}( t ) + ( 1 - \alpha )f^{\nabla}( t ) \bigr\vert ^{p} \Delta t \biggr)^{\frac{k}{p}} \\& \qquad{}+ \biggl( ( 1 - \alpha ) \int _{0}^{h} \omega^{1 - q} ( t )\nabla t \biggr)^{\frac{k}{q}} \\& \qquad{}\cdot \biggl( ( 1 - \alpha ) \int _{0}^{h} \omega ( t ) \bigl\vert \alpha f^{\Delta}( t ) + ( 1 - \alpha )f^{\nabla}( t ) \bigr\vert ^{p} \nabla t \biggr)^{\frac{k}{p}} \\& \quad = \biggl( \alpha \int _{0}^{h} \omega^{1 - q} ( t )\Delta t \biggr)^{\frac{k}{q}} \biggl( \alpha \int _{0}^{h} \omega ( t ) \bigl\vert f^{\diamondsuit _{\alpha}} ( t ) \bigr\vert ^{p} \Delta t \biggr)^{\frac{k}{p}} \\& \qquad{}+ \biggl( ( 1 - \alpha ) \int _{0}^{h} \omega^{1 - q} ( t )\nabla t \biggr)^{\frac{k}{q}} \biggl( ( 1 - \alpha ) \int _{0}^{h} \omega ( t ) \bigl\vert f^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \nabla t \biggr)^{\frac{k}{p}} \\& \quad \le \biggl[ \biggl( \alpha \int _{0}^{h} \omega^{1 - q} ( t )\Delta t \biggr)^{k} + \biggl( ( 1 - \alpha ) \int _{0}^{h} \omega^{1 - q} ( t )\nabla t \biggr)^{k} \biggr]^{\frac{1}{q}} \\& \qquad{}\cdot \biggl[ \biggl( \alpha \int _{0}^{h} \omega ( t ) \bigl\vert f^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \Delta t \biggr)^{k} + \biggl( ( 1 - \alpha ) \int _{0}^{h} \omega ( t ) \bigl\vert f^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \nabla t \biggr)^{k} \biggr]^{\frac{1}{q}} \\& \quad \le \biggl( \alpha \int _{0}^{h} \omega^{1 - q} ( t )\Delta t + ( 1 - \alpha ) \int _{0}^{h} \omega^{1 - q} ( t )\nabla t \biggr)^{\frac{k}{q}} \\& \qquad{}\cdot \biggl( \alpha \int _{0}^{h} \omega ( t ) \bigl\vert f^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \Delta t + ( 1 - \alpha ) \int _{0}^{h} \omega ( t ) \bigl\vert f^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \nabla t \biggr)^{\frac{k}{p}} \\& \quad = \biggl( \int _{0}^{h} \omega^{1 - q} ( t ) \diamondsuit_{\alpha}t \biggr)^{\frac{k}{q}} \biggl( \int _{0}^{h} \omega ( t ) \bigl\vert f^{\diamondsuit _{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr)^{\frac{k}{p}} . \end{aligned}$$

 □

Theorem 2.5

Assume that \(1 < p \le2\), \(q = \frac{p}{p - 1}\), \(\alpha \in [ 0,1 ]\), \(h \in ( 0,\infty )_{\mathbb{T}}\), \(\omega \in\mathbb{C} ( [ 0,h ]_{\mathbb{T}} , ( 0,\infty ) )\) and \(f \in\mathbb{C}_{\diamondsuit_{\alpha}}^{1} ( [ 0,h ]_{\mathbb{T}} ,\mathbb{R} )\). If \(\alpha f^{\Delta}\ge 0\), \(( 1 - \alpha )f^{\nabla}\ge0\) and \(f ( 0 ) = 0\), then

$$ \begin{aligned}[b] &\alpha^{k} \int _{0}^{u} \bigl\vert { \bigl( f^{k} \bigr)^{\Delta}( t )} \bigr\vert \Delta t + ( 1 - \alpha )^{k} \int _{0}^{u} \bigl\vert { \bigl( f^{k} \bigr)^{\nabla}( t )} \bigr\vert \nabla t \\ &\quad\le\sum_{j = 0}^{k - 2} \alpha^{j} \left ( \begin{matrix} k \\ j \end{matrix} \right ) \gamma^{j} \beta ^{\frac{k - j}{q}} \biggl[ \int _{0}^{h} \omega( t ) \bigl\vert g^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr] ^{\frac{k - 1}{p}} \\ &\qquad{}+ \alpha^{k - 1} \left ( \begin{matrix} k \\ k - 1 \end{matrix} \right )\gamma^{k - 1} \bigl( f ( h ) - f ( 0 ) \bigr), \end{aligned} $$
(6)

where \(\beta: = \min_{u \in [ 0,h ]_{T} } v ( u )\), \(v ( u ) = \max \{ \int _{0}^{u} \omega^{1 - q} ( t )\diamondsuit _{\alpha}t , \int _{u}^{h} \omega^{1 - q} ( t )\diamondsuit_{\alpha}t \} \), \(\gamma: = \max \{ \vert f ( 0 ) \vert , \vert f ( h ) \vert \} \).

Proof

We let \(u \in [ 0,h ]_{\mathbb{T}}\) be arbitrary. By applying Theorem 2.4 to the function \(g ( t ) = f ( t ) - f ( 0 )\), we obtain

$$\begin{aligned}& \alpha^{k} \int _{0}^{u} \bigl\vert \bigl( f^{k} \bigr)^{\Delta}( t ) \bigr\vert \Delta t + ( 1 - \alpha )^{k} \int _{0}^{u} \bigl\vert \bigl( f^{k} \bigr)^{\nabla}( t ) \bigr\vert \nabla t \\& \quad = \alpha^{k} \int _{0}^{u} \left \vert \sum _{j = 0}^{k - 1} \left ( \begin{matrix} k \\ j \end{matrix} \right ) \bigl( g^{k - j} \bigr)^{\Delta}f^{j} ( 0 ) \right \vert \Delta t \\& \qquad{}+ ( 1 - \alpha )^{k} \int _{0}^{u} \left \vert \sum _{j = 0}^{k - 1} \left ( \begin{matrix} k \\ j \end{matrix} \right ) \bigl( g^{k - j} \bigr)^{\nabla}f^{j} ( 0 ) \right \vert \nabla t \\& \quad \le \left ( \begin{matrix} k \\ 0 \end{matrix} \right ) \biggl[ \alpha^{k} \int _{0}^{u} \bigl\vert g^{k} \bigr\vert ^{\Delta}\Delta t + ( 1 - \alpha )^{k} \int _{0}^{u} \bigl\vert g^{k} \bigr\vert ^{\nabla}\nabla t \biggr] \\& \qquad{}+ \alpha \left ( \begin{matrix} k \\ 1 \end{matrix} \right ) \bigl\vert f ( 0 ) \bigr\vert \biggl[ \alpha^{k - 1} \int _{0}^{u} \bigl\vert g^{k - 1} \bigr\vert ^{\Delta}\Delta t + ( 1 - \alpha )^{k - 1} \int _{0}^{u} \bigl\vert g^{k - 1} \bigr\vert ^{\nabla}\nabla t \biggr] \\& \qquad{}+ \alpha^{2} \left ( \begin{matrix} k \\ 2 \end{matrix} \right ) \bigl\vert f^{2} ( 0 ) \bigr\vert \biggl[ \alpha^{k - 2} \int _{0}^{u} \bigl\vert g^{k - 2} \bigr\vert ^{\Delta}\Delta t + ( 1 - \alpha )^{k - 2} \int _{0}^{u} \bigl\vert g^{k - 2} \bigr\vert ^{\nabla}\nabla t \biggr] \\& \qquad{}\vdots \\& \qquad{}+ \alpha^{k - 2} \left ( \begin{matrix} k \\ k - 2 \end{matrix} \right ) \bigl\vert f^{k - 2} ( 0 ) \bigr\vert \biggl[ \alpha^{2} \int _{0}^{u} \bigl\vert g^{2} \bigr\vert ^{\Delta}\Delta t + ( 1 - \alpha )^{2} \int _{0}^{u} \bigl\vert g^{2} \bigr\vert ^{\nabla}\nabla t \biggr] \\& \qquad{}+ \alpha^{k - 1} \left ( \begin{matrix} k \\ k - 1 \end{matrix} \right ) \bigl\vert f^{k - 1} ( 0 ) \bigr\vert \biggl[ \alpha \int _{0}^{u} \vert f \vert ^{\Delta}\Delta t + ( 1 - \alpha ) \int _{0}^{u} \vert f \vert ^{\nabla}\nabla t \biggr] \\& \quad \le \left ( \begin{matrix} k \\ 0 \end{matrix} \right ) \biggl[ \int _{0}^{u} \omega^{1 - q} ( t ) \diamondsuit_{\alpha}t \biggr]^{\frac{k}{q}} \biggl[ \int _{0}^{u} \omega ( t ) \bigl\vert g^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr]^{\frac{k}{p}} \\& \qquad{}+ \alpha \left ( \begin{matrix} k \\ 1 \end{matrix} \right ) \bigl\vert f ( 0 ) \bigr\vert \biggl[ \int _{0}^{u} \omega^{1 - q} ( t ) \diamondsuit_{\alpha}t \biggr]^{\frac{k - 1}{q}} \biggl[ \int _{0}^{u} \omega ( t ) \bigl\vert g^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr]^{\frac{k - 1}{p}} \\& \qquad{} + \alpha^{2} \left ( \begin{matrix} k \\ 2 \end{matrix} \right ) \bigl\vert f^{2} ( 0 ) \bigr\vert \biggl[ \int _{0}^{u} \omega^{1 - q} ( t ) \diamondsuit_{\alpha}t \biggr]^{\frac{k - 2}{q}} \biggl[ \int _{0}^{u} \omega ( t ) \bigl\vert g^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr]^{\frac{k - 2}{p}} \\& \qquad{}\vdots \\& \qquad{} + \alpha^{k - 2} \left ( \begin{matrix} k \\ k - 2 \end{matrix} \right ) \bigl\vert f^{k - 2} ( 0 ) \bigr\vert \biggl[ \int _{0}^{u} \omega^{1 - q} ( t ) \diamondsuit_{\alpha}t \biggr]^{\frac{2}{q}} \\& \qquad{}\cdot \biggl[ \int _{0}^{u} \omega ( t ) \bigl\vert g^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr]^{\frac{2}{p}} \\& \qquad{}+ \alpha^{k - 1} \left ( \begin{matrix} k \\ k - 1 \end{matrix} \right ) \bigl\vert f^{k - 1} ( 0 ) \bigr\vert \alpha \int _{0}^{u} \bigl\vert f^{\Delta}( t ) \bigr\vert \Delta t \\& \qquad{}+ \alpha^{k - 1} \left ( \begin{matrix} k \\ k - 1 \end{matrix} \right ) \bigl\vert f^{k - 1} ( 0 ) \bigr\vert ( 1 - \alpha ) \int _{0}^{u} \bigl\vert f^{\nabla}( t ) \bigr\vert \nabla t \\& \quad \le\sum_{j = 0}^{k - 2} \alpha^{j} \left ( \begin{matrix} k \\ j \end{matrix} \right ) \bigl\vert f^{j} ( 0 ) \bigr\vert \biggl[ \int _{0}^{u} \omega^{1 - q} ( t ) \diamondsuit_{\alpha}t \biggr]^{\frac{k - j}{q}} \biggl[ \int _{0}^{u} \omega ( t ) \bigl\vert g^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr]^{\frac{k - j}{p}} \\& \qquad{} + \alpha^{k - 1} \left ( \begin{matrix} k \\ k - 1 \end{matrix} \right )\gamma^{k - 1} \bigl( f ( u ) - f ( 0 ) \bigr). \end{aligned}$$

Similarly,

$$\begin{aligned}& \alpha^{k} \int _{u}^{h} \bigl\vert \bigl( f^{k} \bigr)^{\Delta}( t ) \bigr\vert \Delta t + ( 1 - \alpha )^{k} \int _{u}^{h} \bigl\vert \bigl( f^{k} \bigr)^{\nabla}( t ) \bigr\vert \nabla t \\& \quad \le\sum_{j = 0}^{k - 2} \alpha^{j} \left ( \begin{matrix} k \\ j \end{matrix} \right ) \bigl\vert f^{j} ( 0 ) \bigr\vert \biggl[ \int _{u}^{h} \omega^{1 - q} ( t ) \diamondsuit _{\alpha}t \biggr]^{\frac{k - j}{q}} \biggl[ \int _{u}^{h} \omega ( t ) \bigl\vert g^{\diamondsuit_{\alpha}} ( t ) \bigr\vert ^{p} \diamondsuit_{\alpha}t \biggr]^{\frac{k - j}{p}} \\& \qquad{}+ \alpha^{k - 1} \left ( \begin{matrix} k \\ k - 1 \end{matrix} \right )\gamma^{k - 1} \bigl( f ( h ) - f ( u ) \bigr). \end{aligned}$$

Adding these two inequalities and taking into account that \(a^{r} + b^{r} \le ( a + b )^{r}\) holds, for \(a,b \ge0\) and \(r \ge 1\), yield the desired inequality. □

Conclusion

In this paper, we have obtained several Opial-type integral inequalities on time scales via the notion of the diamond-alpha derivative. These inequalities are related to the function \(f^{k}\).

References

  1. Fayyaz, T, Irshad, N, Khan, A, Rahman, G, Roqia, G: Generalized integral inequalities on time scales. J. Inequal. Appl. 2016, 235 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  2. Zhao, Z, Xu, B, Li, Y: Dynamic inequalities on time scales. Int. J. Pure Appl. Math. Sci. 22(1), 49-56 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Agarwal, R, Bohner, M, Peterson, A: Inequalities on time scales: a survey. Math. Inequal. Appl. 4, 535-557 (2001)

    MathSciNet  MATH  Google Scholar 

  4. Atasever, N, Kaymakçalan, B, Lešaja, G, Taş, K: Generalized diamond-α dynamic Opial inequalities. Adv. Differ. Equ. 2012, 109 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  5. Agarwal, R, Bohner, M: Basic calculus on time scales and some of its applications. Results Math. 35(1-2), 3-22 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  6. Agarwal, R, Bohner, M, O’Regan, D, Peterson, A: Dynamic equations on time scales: a survey. J. Comput. Appl. Math. 141, 1-26 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  7. Bohner, M, Kaymakçalan, B: Opial inequalities on time scales. Ann. Pol. Math. 77(1), 11-20 (2001)

    MathSciNet  Article  MATH  Google Scholar 

  8. Kaymakçalan, B, Ozkan, U: Basics of diamond-α partial dynamic calculus on time scales. Math. Comput. Model. 50(9-10), 1258-1261 (2009)

    MathSciNet  MATH  Google Scholar 

  9. Agarwal, R, Pang, P: Opial-type inequalities involving higher order derivatives. J. Math. Anal. Appl. 189(1), 85-103 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  10. Bohner, M, Mahmoud, R, Saker, S: Discrete, continuous, delta, nabla and diamond-alpha Opial inequalities. Math. Inequal. Appl. 18(3), 923-940 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous referees for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Z Mirković.

Additional information

Competing interests

The author declares that he has no competing interests. The author states that no funding source or sponsor has participated in the realization of this work.

Author’s contributions

The work as a whole is a contribution of the author.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mirković, T.Z. Dynamic Opial diamond-α integral inequalities involving the power of a function. J Inequal Appl 2017, 139 (2017). https://doi.org/10.1186/s13660-017-1411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-017-1411-2

MSC

  • 34N05
  • 26D10

Keywords

  • Opial-type inequality
  • time scale