Zhang, L, Zhou, W, Li, D: A descent modified Polak-Ribière-Polyak conjugate method and its global convergence. IMA J. Numer. Anal. **26**, 629-649 (2006)

Article
MathSciNet
MATH
Google Scholar

Fu, Z, Wu, X, Guan, C, Sun, X, Ren, K: Towards efficient multi-keyword fuzzy search over encrypted outsourced data with accuracy improvement. IEEE Trans. Inf. Forensics Secur. (2016). doi:10.1109/TIFS.2016.2596138

Google Scholar

Gu, B, Sheng, VS, Tay, KY, Romano, W, Li, S: Incremental support vector learning for ordinal regression. IEEE Trans. Neural Netw. Learn. Syst. **26**, 1403-1416 (2015)

Article
MathSciNet
Google Scholar

Gu, B, Sun, X, Sheng, VS: Structural minimax probability machine, IEEE Trans. Neural Netw. Learn. Syst. (2016). doi:10.1109/TNNLS.2016.2544779

Google Scholar

Li, J, Li, X, Yang, B, Sun, X: Segmentation-based image copy-move forgery detection scheme. IEEE Trans. Inf. Forensics Secur. **10**, 507-518 (2015)

Article
Google Scholar

Pan, Z, Lei, J, Zhang, Y, Sun, X, Kwong, S: Fast motion estimation based on content property for low-complexity H.265/HEVC encoder. IEEE Trans. Broadcast. (2016). doi:10.1109/TBC.2016.2580920

Google Scholar

Pan, Z, Zhang, Y, Kwong, S: Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans. Broadcast. **61**, 166-176 (2015)

Article
Google Scholar

Xia, Z, Wang, X, Sun, X, Wang, Q: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. **27**, 340-352 (2015)

Article
Google Scholar

Xia, Z, Wang, X, Sun, X, Liu, Q, Xiong, N: Steg analysis of LSB matching using differences between nonadjacent pixels. Multimed. Tools Appl. **75**, 1947-1962 (2016)

Article
Google Scholar

Xia, Z, Wang, X, Zhang, L, Qin, Z, Sun, X, Ren, K: A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE Trans. Inf. Forensics Secur. (2016). doi:10.1109/TIFS.2016.2590944

Google Scholar

Yuan, GL: A new method with descent property for symmetric nonlinear equations. Numer. Funct. Anal. Optim. **31**, 974-987 (2010)

Article
MathSciNet
MATH
Google Scholar

Yuan, GL, Lu, S, Wei, ZX: A new trust-region method with line search for solving symmetric nonlinear equations. Int. J. Comput. Math. **88**, 2109-2123 (2011)

Article
MathSciNet
MATH
Google Scholar

Yuan, C, Sun, X, Lv, R: Fingerprint liveness detection based on multi-scale LPQ and PCA. China Commun. **13**, 60-65 (2016)

Article
Google Scholar

Yuan, GL, Lu, XW, Wei, ZX: BFGS trust-region method for symmetric nonlinear equations. J. Comput. Appl. Math. **230**, 44-58 (2009)

Article
MathSciNet
MATH
Google Scholar

Yuan, G, Wei, Z: A trust region algorithm with conjugate gradient technique for optimization problems. Numer. Funct. Anal. Optim. **32**, 212-232 (2011)

Article
MathSciNet
MATH
Google Scholar

Yuan, GL, Wei, ZX, Lu, S: Limited memory BFGS method with backtracking for symmetric nonlinear equations. Math. Comput. Model. **54**, 367-377 (2011)

Article
MathSciNet
MATH
Google Scholar

Yuan, GL, Wei, ZX, Lu, XW: A BFGS trust-region method for nonlinear equations. Computing **92**, 317-333 (2011)

Article
MathSciNet
MATH
Google Scholar

Yuan, GL, Wei, ZX, Wang, ZX: Gradient trust region algorithm with limited memory BFGS update for nonsmooth convex minimization. Comput. Optim. Appl. **54**, 45-64 (2013)

Article
MathSciNet
MATH
Google Scholar

Yuan, GL, Wei, ZX, Wu, YL: Modified limited memory BFGS method with nonmonotone line search for unconstrained optimization. J. Korean Math. Soc. **47**, 767-788 (2010)

Article
MathSciNet
MATH
Google Scholar

Yuan, GL, Yao, SW: A BFGS algorithm for solving symmetric nonlinear equations. Optimization **62**, 45-64 (2013)

Article
MathSciNet
MATH
Google Scholar

Zhou, Z, Wang, Y, Wu, QMJ, Yang, C-N, Sun, X: Effective and efficient global context verification for image copy detection. IEEE Trans. Inf. Forensics Secur. (2016). doi:10.1109/TIFS.2016.2601065

Google Scholar

Andrei, N: A hybrid conjugate gradient algorithm for unconstrained optimization as a convex combination of Hestenes-Stiefel and Dai-Yuan. Stud. Inform. Control **17**, 55-70 (2008)

Google Scholar

Dai, Y: A nonmonotone conjugate gradient algorithm for unconstrained optimization. J. Syst. Sci. Complex. **15**, 139-145 (2002)

MathSciNet
MATH
Google Scholar

Dai, Y, Yuan, Y: A nonlinear conjugate gradient with a strong global convergence properties. SIAM J. Optim. **10**, 177-182 (2000)

Article
MATH
Google Scholar

Dai, Y, Yuan, Y: Nonlinear Conjugate Gradient Methods. Shanghai Sci. Technol., Shanghai (1998)

Google Scholar

Dai, Y, Yuan, Y: An efficient hybrid conjugate gradient method for unconstrained optimization. Ann. Oper. Res. **103**, 33-47 (2001)

Article
MathSciNet
MATH
Google Scholar

Fletcher, R: Practical Method of Optimization, Vol I: Unconstrained Optimization, 2nd edn. Wiley, New York (1997)

Google Scholar

Fletcher, R, Reeves, C: Function minimization by conjugate gradients. Comput. J. **7**, 149-154 (1964)

Article
MathSciNet
MATH
Google Scholar

Grippo, L, Lucidi, S: A globally convergent version of the Polak-Ribière gradient method. Math. Program. **78**, 375-391 (1997)

MATH
Google Scholar

Hager, WW, Zhang, H: A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. **16**, 170-192 (2005)

Article
MathSciNet
MATH
Google Scholar

Hager, WW, Zhang, H: Algorithm 851: CG-DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans. Math. Softw. **32**, 113-137 (2006)

Article
MathSciNet
MATH
Google Scholar

Hager, WW, Zhang, H: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. **2**, 35-58 (2006)

MathSciNet
MATH
Google Scholar

Hestenes, MR, Stiefel, E: Method of conjugate gradient for solving linear equations. J. Res. Natl. Bur. Stand. **49**, 409-436 (1952)

Article
MATH
Google Scholar

Polak, E, Ribière, G: Note sur la convergence de directions conjugees. Rev. Fr. Autom. Inform. Rech. Opér. **3**, 35-43 (1969)

MATH
Google Scholar

Powell, MJD: Nonconvex minimization calculations and the conjugate gradient method. In: Numerical Analysis, Lecture Notes in Mathematics, vol. 1066, pp. 122-141. Spinger, Berlin (1984)

Chapter
Google Scholar

Powell, MJD: Convergence properties of algorithm for nonlinear optimization. SIAM Rev. **28**, 487-500 (1986)

Article
MathSciNet
MATH
Google Scholar

Wei, Z, Li, G, Qi, L: New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems. Appl. Math. Comput. **179**, 407-430 (2006)

MathSciNet
MATH
Google Scholar

Wei, Z, Li, G, Qi, L: Global convergence of the PRP conjugate gradient methods with inexact line search for nonconvex unconstrained optimization problems. Math. Comput. **77**, 2173-2193 (2008)

Article
MATH
Google Scholar

Wei, Z, Yao, S, Liu, L: The convergence properties of some new conjugate gradient methods. Appl. Math. Comput. **183**, 1341-1350 (2006)

MathSciNet
MATH
Google Scholar

Yuan, GL: Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems. Optim. Lett. **3**, 11-21 (2009)

Article
MathSciNet
MATH
Google Scholar

Yuan, GL, Duan, XB, Liu, WJ, Wang, XL, Cui, ZR, Sheng, Z: Two new PRP conjugate gradient algorithms for minimization optimization models. PLoS ONE **10**(10), e0140071 (2015)

Article
Google Scholar

Yuan, GL, Lu, XW: A modified PRP conjugate gradient method. Ann. Oper. Res. **166**, 73-90 (2009)

Article
MathSciNet
MATH
Google Scholar

Yuan, GL, Lu, XW, Wei, ZX: A conjugate gradient method with descent direction for unconstrained optimization. J. Comput. Appl. Math. **233**, 519-530 (2009)

Article
MathSciNet
MATH
Google Scholar

Yuan, GL, Wei, ZX: New line search methods for unconstrained optimization. J. Korean Stat. Soc. **38**, 29-39 (2009)

Article
MathSciNet
MATH
Google Scholar

Yuan, GL, Wei, ZX, Zhao, QM: A modified Polak-Ribière-Polyak conjugate gradient algorithm for large-scale optimization problems. IIE Trans. **46**, 397-413 (2014)

Article
Google Scholar

Yuan, GL, Zhang, MJ: A modified Hestenes-Stiefel conjugate gradient algorithm for large-scale optimization. Numer. Funct. Anal. Optim. **34**, 914-937 (2013)

Article
MathSciNet
MATH
Google Scholar

Yuan, GL, Meng, ZH, Li, Y: A modified Hestenes and Stiefel conjugate gradient algorithm for large-scale nonsmooth minimizations and nonlinear equations. J. Optim. Theory Appl. **168**, 129-152 (2016)

Article
MathSciNet
MATH
Google Scholar

Yuan, GL, Wei, ZX: The Barzilai and Borwein gradient method with nonmonotone line search for nonsmooth convex optimization problems. Math. Model. Anal. **17**, 203-216 (2012)

Article
MathSciNet
MATH
Google Scholar

Yuan, GL, Wei, ZX, Li, GY: A modified Polak-Ribière-Polyak conjugate gradient algorithm for nonsmooth convex programs. J. Comput. Appl. Math. **255**, 86-96 (2014)

Article
MathSciNet
MATH
Google Scholar

Yuan, GL, Zhang, MJ: A three-terms Polak-Ribière-Polyak conjugate gradient algorithm for large-scale nonlinear equations. J. Comput. Appl. Math. **286**, 186-195 (2015)

Article
MathSciNet
MATH
Google Scholar

Polak, E: The conjugate gradient method in extreme problems. Comput. Math. Math. Phys. **9**, 94-112 (1969)

Article
Google Scholar

Yuan, GL, Wei, ZX, Lu, XW: Global convergence of BFGS and PRP methods under a modified weak Wolfe-Powell line search. Appl. Math. Model. (2017). doi:10.1016/j.apm.2017.02.008

Google Scholar

Al-Baali, A: Descent property and global convergence of the Flecher-Reeves method with inexact line search. IMA J. Numer. Anal. **5**, 121-124 (1985)

Article
MathSciNet
MATH
Google Scholar

Gilbert, JC, Nocedal, J: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. **2**, 21-42 (1992)

Article
MathSciNet
MATH
Google Scholar

Ahmed, T, Storey, D: Efficient hybrid conjugate gradient techniques. J. Optim. Theory Appl. **64**, 379-394 (1990)

Article
MathSciNet
MATH
Google Scholar

Hu, YF, Storey, C: Global convergence result for conjugate method. J. Optim. Theory Appl. **71**, 399-405 (1991)

Article
MathSciNet
MATH
Google Scholar

Bongartz, I, Conn, AR, Gould, NI, Toint, PL: CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Softw. **21**, 123-160 (1995)

Article
MATH
Google Scholar

Gould, NI, Orban, D, Toint, PL: CUTEr and SifDec: a constrained and unconstrained testing environment, revised. ACM Trans. Math. Softw. **29**, 373-394 (2003)

Article
MATH
Google Scholar

Dolan, ED, Moré, JJ: Benchmarking optimization software with performance profiles. Math. Program. **91**, 201-213 (2002)

Article
MathSciNet
MATH
Google Scholar