 Research
 Open Access
 Published:
RETRACTED ARTICLE: New applications of Schrödinger type inequalities to the existence and uniqueness of Schrödingerean equilibrium
Journal of Inequalities and Applications volume 2017, Article number: 61 (2017)
Abstract
As new applications of Schrödinger type inequalities appearing in Jiang (J. Inequal. Appl. 2016:247, 2016), we first investigate the existence and uniqueness of a Schrödingerean equilibrium. Next we propose a tritrophic HastingsPowell model with two different Schrödingerean time delays. Finally, the stability and direction of the Schrödingerean Hopf bifurcation are also investigated by using the center manifold theorem and normal form theorem.
Introduction
A biological system is a nonlinear system, so it is still a public problem how to control the biological system balance. Previously a lot of research was done. Especially, the research on the predatorprey system’s dynamic behaviors has obtained much attention from the scholars. There is also much research on the stability of predatorprey system with time delays. The time delays have a very complex impact on the dynamic behaviors of the nonlinear dynamic system (see [2]). May and Odter (see [3]) introduced a general example of such a generalized model, that is to say, they investigated a three species model and the results show that the positive equilibrium is always locally stable when the system has two equal time delays.
Hassard and Kazarinoff (see [4]) proposed a three species food chain model with chaotic dynamical behavior in 1991, and then the dynamic properties of the model were studied. Berryman and Millstein (see [5]) studied the control of chaos of a three species HastingsPowell food chain model. The stability of biological feasible equilibrium points of the modified food web model was also investigated. By introducing disease in the prey population, Shilnikov et al. (see [2]) modified the HastingsPowell model and the stability of biological feasible equilibria was also obtained.
In this paper, we provide a differential model to describe the Schrödinger dynamic of a Schrödinger HastingsPowell food chain model. In a three species food chain model x represents the prey, y and z represent two predators, respectively. Based on the Holling type II functional response, we know that the middle predator y feeds on the prey x and the top predator z preys upon y. We write the three species food chain model as follows:
where X, Y, Z are the prey, predator, and top predator, respectively; \(B_{1}\), \(B_{2} \) represent the halfsaturation constants; \(R_{0} \) and \(K_{0} \) represent the intrinsic growth rate and the carrying capacity of the environment of the fish, respectively; \(C_{1} \), \(C_{2} \) are the conversion factors of preytopredator; and \(D_{1} \), \(D_{2} \) represent the death rates of Y and Z, respectively. In this paper, two different Schrödinger delays are incorporated into Schrödingerean tritrophic HastingsPowell (STHP) model which will be given in the following.
We next introduce the following dimensionless version of delayed STHP model:
where x, y, and z represent dimensionless population variables; t represents a dimensionless time variable and all of the parameters \(a_{i} \), \(b_{i} \), \(d_{i}\) (\({i=1,2} \)) are positive; \(\tau_{1} \) and \(\tau_{2} \) represent the period of prey transitioned to predator and predator transitioned to top predator, respectively.
Equilibrium and local stability analysis
Let \(\dot{x}=0\), \(\dot{y}=0\) and \(\dot{z}=0\). We introduce five nonnegative Schrödinger equilibrium points of the system as follows:
and
where
The Jacobian matrix for the Schrödinger system (1) at \(E^{\ast}= ( {x^{\ast},y^{\ast},z^{\ast}} )\) is as follows:
Let
Then we have
from the linearized form of Schrödinger systems (2), (3), (4), and (5).
The characteristic equation of the Schrödinger system (6) at \(E_{0} = ( {0,0,0} )\) is given by the transcendental Schrödinger equation
where
and
If \(\tau_{1} =\tau_{2} =0\), then the corresponding characteristic (7) is rewritten as follows:
Lemma 2.1
Suppose that the following conditions hold (see [1]):

1.
\(A_{11} >0\).

2.
\(A_{11} ( {A_{12} +A_{21} +A_{31} } )>A_{13} +A_{22} +A_{32} \).
Then the positive Schrödinger equilibrium \(E^{\ast}\) of the Schrödinger system (2) is locally asymptotically stable for \(\tau_{1} \) and \(\tau_{2} \).
Existence of Schrödingerean Hopf bifurcation
Case I: \(\tau_{1} =\tau_{2} =\tau\ne0\).
The characteristic (6) reduces to
where
and
Let \(\lambda=i\omega\) (\({\omega>0} \)) be a root of (9). And then we have
from (8).
By separating the real and imaginary parts we know that
From (10) we obtain
which show that
where
and
Let \(z=\omega^{2}\). Then we have
If we define \(H ( z )=az^{4}+bz^{3}+cz^{2}+dz+k\), then we have the following result from \(H ( {+\infty} )=+\infty\).
Lemma 3.1
If \(H ( 0 )<0\), then (13) has at least one positive root. Suppose that (13) has four positive roots, which are defined by \(z_{1}\), \(z_{2}\), \(z_{3}\), and \(z_{4}\). Then (12) has four positive roots \({\omega_{k} =\sqrt{z_{k} }}\), where \(k=1,2,3,4\).
It is easy to see that \(\pm i\omega\) is a pair of purely imaginary roots of (9). It follows from (11) that
where \(k=1,2,3,4\) and \(j=0,1,2,\ldots \) .
Put \(\tau_{0} =\tau_{k}^{ ( j )} =\min_{k\in \{ {1,2,3,4} \}} \{ {\tau_{k}^{ ( 0 )} } \}\). Let \(\lambda ( \tau )=\alpha ( \tau )+i\omega ( \tau )\) be the root of (9) near \(\tau=\tau_{k} \), which satisfies \(\alpha ( {\tau _{k} } )=0\) and \(\omega ( {\tau_{k} } )=\omega_{0} \). Then we have the following result from Lemma 3.1 and (14).
Lemma 3.2
Suppose that \({H}' ( z )\ne0\). Then we have
Meanwhile, \({H}' ( z )\) and \(\frac{d\operatorname{Re}\lambda ( \tau )}{d\tau }\) have the same signs.
Proof
Taking the derivative of λ with respect to τ in (9), we have
Substituting \(\lambda ( \tau )=\alpha ( \tau )+i\omega ( \tau )\) into (15), we have
and
For simplicity we define \(\omega_{k} =\omega\) and \(\tau_{k} =\tau\). From (11), (15), (16), and (17) we have
where \(\Delta=B_{11} ^{2}\omega^{4}+B_{12} ^{2}\omega^{2}\).
Then we obtain
This completes the proof of Lemma 3.2. □
By applying Lemmas 3.1 and 3.2, we have the following result.
Theorem 3.1
For the Schrödinger system (2), the following results hold.

(i)
For the equilibrium point \(E^{\ast}= ( {x^{\ast},y^{\ast},z^{\ast}} )\), the Schrödinger system (2) is asymptotically stable for \(\tau\in[ {0,\tau_{0} } )\). It is unstable when \(\tau>\tau_{0} \).

(ii)
If the Schrödinger system (2) satisfies Lemmas 3.1 and 3.2, then the Schrödinger Hopf bifurcation will occur at \(E^{\ast}( {x^{\ast},y^{\ast},z^{\ast}} )\) when \(\tau=\tau_{0} \).
Case II: \(\tau_{1} \ne0\) and \(\tau_{2} =0\).
Let \(D_{11} =A_{12} +A_{31}\), \(C_{11} =A_{13} +A_{32}\) and rewrite (6) as follows:
By letting \(\lambda=i\omega\) (\({\omega>0} \)) be the root of (18) we have
Similarly we have
where
and
If we define \(z_{1} =\omega^{2}\), then (20) shows that
If we define \(H ( {z_{1} } )=a_{1} z_{1} ^{8}+b_{1} z_{1} ^{6}+c_{1} z_{1} ^{4}+d_{1} z_{1} ^{2}+k_{1}\), then we have the following result from (19) and \(H ( {+\infty} )=+\infty \).
Lemma 3.3
If \(H ( 0 )<0\), then (13) has at least one positive root. Suppose that (13) has four positive roots, which are defined by \(z_{11}\), \(z_{12}\), \(z_{13}\), and \(z_{14} \). Then we know that (12) has four positive roots \(\omega_{k} =\sqrt{z_{1k} }\), where \(k=1,2,3,4\).
It is easy to see that \(\pm i\omega\) is a pair of purely imaginary roots of (9). From (19) and (21) we know that
where \(k=1,2,3,4\) and \(j=0,1,2,\ldots \) .
Define \(\tau_{10} =\tau_{1k}^{ ( j )} =\min_{k\in \{ {1,2,3,4} \}} \{ {\tau_{1k}^{ ( 0 )} } \}\),
and
Let \(\lambda ( \tau )=\alpha ( \tau )+i\omega ( \tau )\) be the root of (9) near \(\tau=\tau_{10} \), which satisfies \(\alpha ( {\tau_{10} } )=0\) and \(\omega ( {\tau _{10} } )=\omega_{0} \). Then we obtain the following result.
Lemma 3.4
Suppose that \(P_{R} Q_{R} +P_{I} Q_{I} \ne0\). Then we have
Proof
By taking the derivative of λ with respect to \(\tau_{1}\) in (17), we have (see [6])
By substituting \(\lambda=i\omega\) into (22) we have
Since \(P_{R} Q_{R} +P_{I} Q_{I} \ne0\), we obtain
So we complete the proof of Lemma 3.3. □
By applying Lemmas 3.3 and 3.4, we prove the existence of the Schrödinger Hopf bifurcation.
Theorem 3.2
For the Schrödinger system (2), the following results hold.

(i)
For the equilibrium point \(E^{\ast}( {x^{\ast},y^{\ast},z^{\ast}} )\), the Schrödinger system (2) is asymptotically stable for \(\tau_{1} \in[ {0,\tau_{10} } )\). And it is unstable for \(\tau_{1} >\tau_{10} \).

(ii)
If the Schrödinger system (2) satisfies Lemmas 3.3 and 3.4, then the Schrödinger system (2) undergoes the Schrödinger Hopf bifurcation at \(E^{\ast}( {x^{\ast},y^{\ast},z^{\ast}} )\) when \(\tau_{1} =\tau_{10} \).
Case III: \(\tau_{1} =0\) and \(\tau_{2} \ne0\).
Equation (7) can be written as (see [7])
where \(D_{12} =A_{12} +A_{21}\) and \(C_{12} =A_{13} +A_{22} \).
By letting \(\lambda=i\omega\) (\({\omega>0} \)) be the root of (24) we have
which shows that
where
and
Let \(z_{2} =\omega^{2}\). It follows from (24) that
If we define \(H ( {z_{2} } )=a_{2} z_{2} ^{4}+b_{2} z_{2} ^{3}+c_{2} z_{2} ^{2}+d_{2} z_{2} +k_{2} \), then we have the following result from \(H ( {+\infty} )=+\infty\).
Lemma 3.5
If \(H ( 0 )<0\), then (27) has at least one positive root. Suppose that (27) has four positive roots, which are defined by \(z_{21}\), \(z_{22}\), \(z_{23}\), and \(z_{24} \). Then (26) has four positive roots \(\omega_{k} =\sqrt{z_{2k} }\), where \(k=1,2,3,4\).
It is easy to see that \(\pm i\omega\) is a pair of purely imaginary roots of (24). Denote
where \(k=1,2,3,4\) and \(j=0,1,2,\ldots \) .
Define \(\tau_{20} =\tau_{2k}^{ ( j )} =\min_{k\in \{ {1,2,3,4} \}} \{ {\tau_{2k}^{ ( 0 )} } \}\). Let \(\lambda ( \tau )=\alpha ( \tau )+i\omega ( \tau )\) be the root of (9) near \(\tau=\tau_{20} \), which satisfies \(\alpha ( {\tau_{20} } )=0\) and \(\omega ( {\tau_{20} } )=\omega_{0} \). Then we obtain the following result from (25) and (28).
Lemma 3.6
Suppose that \(z_{2} =\omega^{2}\). Then
Proof
This proof is similar to the proof of Lemma 3.4, so we omit it here. □
By applying Lemmas 3.5 and 3.6 to (24) we have the following result.
Theorem 3.3
For the Schrödinger system (2), the following results hold.

(i)
\(E^{\ast}( {x^{\ast},y^{\ast},z^{\ast}} )\) is asymptotically stable when \(\tau_{2} \in[ {0,\tau_{20} } )\) and unstable when \(\tau_{2} >\tau_{20} \).

(ii)
If the Schrödinger system (2) satisfies Lemmas 3.5 and 3.6, then the Schrödinger Hopf bifurcation occurs at \(E^{\ast}( {x^{\ast},y^{\ast},z^{\ast}} )\) when \(\tau_{2} =\tau_{20} \).
Case IV: \(\tau_{1} \ne\tau_{2} \ne0\).
We consider (7) with \(\tau_{1} \) in the stability range. Regarding \(\tau _{2} \) as a parameter, and without loss of generality, we only consider the Schrödinger system (2) under the case I.
By letting \(\lambda=i\omega\) (\({\omega>0} \)) be the root of (7) we have
It is easy to see from (29)
Lemma 3.7
Suppose that equation (30) has at least finite positive roots, which are defined by \(z_{31}, z_{32},\ldots, z_{3k}\). So (26) also has four positive roots \(\omega_{k} =\sqrt {z_{3i} }\), where \(i=1,2,\ldots,k\).
Put
where \(i=1,2,\ldots,k\), \(j=0,1,2,\ldots\) ,
It is obvious that \(\pm i\omega\) is a pair of purely imaginary roots of (7). Define \(\tau_{30} =\tau_{3i}^{ ( j )} =\min\{\tau _{3i}^{ ( j )} \vert {i=1,2,\ldots,k,j=0,1,2,\ldots} \}\). Let \(\lambda ( \tau )=\alpha ( \tau )+i\omega ( \tau )\) be the root of (9) near \(\tau=\tau _{30} \), which satisfies \(\alpha ( {\tau_{30} } )=0\) and \(\omega ( {\tau_{30} } )=\omega_{0} \).
Put
and
From (30) and (31) we have the following result.
Lemma 3.8
Suppose that \(P_{R} Q_{R} +P_{I} Q_{I} \ne0\). Then we have
By applying Lemmas 3.5 and 3.6 to (24), we have the following theorem based on the Schrödingerean Hopf theorem for FDEs.
Theorem 3.4
Let \(\tau _{1} \in [ {0,\tau_{10} } )\). Then the following results for the Schrödinger system (2) hold.

(i)
\(E^{\ast}( {x^{\ast},y^{\ast},z^{\ast}} )\) is asymptotically stable for \(\tau_{2} \in [ {0,\tau_{30} } )\) and unstable when \(\tau_{2} >\tau_{30} \).

(ii)
If Lemmas 3.7 and 3.8 hold, then the Schrödingerean Hopf bifurcation occurs at \(E^{\ast}( {x^{\ast},y^{\ast},z^{\ast}} )\) when \(\tau_{2} =\tau_{30} \).
Numerical simulations
In this section we give some numerical examples to verify above results. We consider the Schrödinger system (2) with the following coefficients in the different cases:
Through a simple calculation, we have \(E^{\ast}= ( {1.2454,0.1523,0.9467} )\). Firstly, we get \({\tau_{0} =2.31}\) when \(\tau_{1} =\tau_{2} =\tau\ne0\). Then we have \(\tau_{10} =2.58\) when \(\tau_{2} =0\). Next we obtain \({\tau_{20} =2.945}\) when \(\tau_{1} =0\). Finally, by regarding \(\tau_{2} \) as a parameter and letting \(\tau_{1} =2.5\) in its stable interval, we prove that \(E^{\ast}\) is locally asymptotically stable for \(\tau_{2} \in ( {0,\tau_{30} } )\) and unstable for \(\tau_{2} >\tau_{30} \).
Change history
24 November 2021
This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1186/s13660021027246
References
Jiang, Z: Some Schrödinger type inequalities for stabilization of discrete linear systems associated with the stationary Schrödinger operator. J. Inequal. Appl. 2016, 247 (2016)
Shilnikov, LP, Shilnikov, A, Turaev, D, Chua, L: Methods of Qualitative Theory in Nonlinear Dynamics. World Scientific Series on Nonlinear Science Series A, vol. 4. World Scientific, Singapore (1998)
May, RM, Odter, GF: Bifurcations and dynamic complexity in simple ecological models. Am. Nat. 110, 573599 (1976)
Hassard, BD, Kazarinoff, ND, Wan, YH: Theory and Applications of Schrödingerean Hopf. Cambridge University Press, London (1981)
Berryman, AA, Millstein, JA: Are ecological systems chaotic  and if not, why not? Trends Ecol. Evol. 4, 2628 (1989)
Yan, Z: Sufficient conditions for nonstability of stochastic differential systems. J. Inequal. Appl. 2015, 377 (2015)
Xue, G, Yuzbasi, E: Fixed point theorems for solutions of the stationary Schrödinger equation on cones. Fixed Point Theory Appl. 2015, 34 (2015)
Acknowledgements
The first author was supported by Shanxi Province Education Science “13th FiveYear” Program (Grant No. GH16043). The authors would like to thank the referee for invaluable comments and insightful suggestions. Portions of this paper were written during a short stay of the corresponding author at the Institute of Mathematical Physics, Technische Universität Berlin, as a visiting professor.
Author information
Authors and Affiliations
Corresponding author
Additional information
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
HR completed the main study. JW pointed out some mistakes and verified the calculation. Both authors read and approved the final manuscript.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This article has been retracted. Please see the retraction notice for more detail:https://doi.org/10.1186/s13660021027246
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Wang, J., Roncalver, H. RETRACTED ARTICLE: New applications of Schrödinger type inequalities to the existence and uniqueness of Schrödingerean equilibrium. J Inequal Appl 2017, 61 (2017). https://doi.org/10.1186/s1366001713320
Received:
Accepted:
Published:
DOI: https://doi.org/10.1186/s1366001713320
Keywords
 Schrödinger type inequalities
 Schrödingerean equilibrium
 Schrödingerean Hopf bifurcation