Skip to main content

Lyapunov-type inequalities for quasilinear elliptic equations with Robin boundary condition

Abstract

The aim of this study is to prove Lyapunov-type inequalities for a quasilinear elliptic equation in \(\mathbb{R}^{2}\). Also the lower bound for the first positive eigenvalue of the boundary value problem is obtained.

Introduction

In [1], Lyapunov proved that, if \(p(x)\) is a nonnegative and continuous function and \(u(x)\in C(I,\mathbb{R})\), a necessary condition for the following boundary value problem:

$$ \left \{ \textstyle\begin{array}{l}u^{\prime\prime}(x)+p(x)u(x)=0, \quad u(x)\neq0,\forall x\in I, \\ u(a_{1})=0=u(b_{1}), \end{array}\displaystyle \right . $$
(1.1)

to have nontrivial solutions is

$$ 4/(b_{1}-a_{1})\leq \int_{a_{1}}^{b_{1}}p(x)\,\mathrm{d}x, $$
(1.2)

where \(I= [ a_{1},b_{1} ] \).

Since Lyapunov’s study, because the inequality of (1.2) plays a key role for the qualitative properties, such as oscillatory and disconjugacy etc., of differential equations’ solutions, several authors focused on the inequality of (1.2). Those authors improved and generalized the inequality of (1.2) in \(\mathbb{R}\). In this work the literature of the one-dimensional case is not studied in detail but it is listed in the references for the interested reader. See [117] and the references cited therein.

In addition to studies in \(\mathbb{R}\), several authors [1824] have extended the inequality of (1.2) in \(\mathbb{R}^{n}\) recently. To the best of our knowledge, it was extended by Cañada, Montero, and Villegas [19] for the first time. In [19] Cañada et al. considered the linear elliptic problem as follows:

$$ \left \{ \textstyle\begin{array}{l}-\triangle u=a(x)u,\quad x\in\Omega, \\ \partial u/\partial n=0,\quad x\in\partial\Omega, \end{array}\displaystyle \right . $$
(1.3)

where \(\Omega\subset \mathbb{R}^{N}\) is a smooth bounded domain with \(N\geq2\) and the function \(a:\Omega \rightarrow \mathbb{R}\) belongs to the set

$$ \Lambda= \biggl\{ a\in L^{N/2}(\Omega)\setminus\{0\}: \int_{\Omega}a(x)\,\mathrm{d}x\geq0\text{ and (1.3) has a nontrivial solution} \biggr\} $$
(1.4)

if \(N\geq3\),

$$\begin{aligned} \Lambda =&\biggl\{ a:\Omega\rightarrow \mathbb{R} \text{ s.t. } \exists q\in( 1,\infty ] \text{ with }a\in L^{q}(\Omega)\setminus \{0\}: \int_{\Omega}a(x)\,\mathrm{d}x\geq0 \\ &\text{and (1.3) has a nontrivial solution}\biggr\} \end{aligned}$$
(1.5)

if \(N=2\), we define

$$ \beta_{q}:=\inf_{a\in\wedge\cap L^{q}(\Omega)}\Vert a\Vert _{L^{q}(\Omega)}, \quad 1\leq q\leq\infty. $$
(1.6)

Their main result is as follows.

Theorem A

The following statements hold.

  1. (1)

    If \(N=2\) then \(\beta_{q}>0 \Leftrightarrow 1< q\leq\infty\). If \(N\geq3\) then \(\beta _{q}>0 \Leftrightarrow\frac{N}{2}\leq q\leq\infty\).

  2. (2)

    If \(\frac{N}{2}< q\leq\infty\) then \(\beta_{q}\) is attained. In this case, any function \(a\in\wedge\cap L^{q}(\Omega)\) from which \(\beta_{q}\) is attained has one of the following forms:

    1. (i)

      \(a(x)=\lambda_{1}\), if \(p=\infty\), where \(\lambda_{1}\) is the first strictly positive eigenvalue of (1.3).

    2. (ii)

      \(a(x)=\vert u(x)\vert ^{{\frac{2}{p-1}}}\), if \(\frac{N}{2}< q<\infty\), where u is a solution of the problem as follows:

      $$ \left \{ \textstyle\begin{array}{l}-\triangle u=\vert u(x)\vert ^{2/(p-1)}u, \quad x\in\Omega, \\ \partial u/\partial n=0, \quad x\in\partial\Omega. \end{array}\displaystyle \right . $$
      (1.7)
  3. (3)

    The map \((\frac{N}{2},\infty)\rightarrow \mathbb{R}\), \(p\mapsto\beta_{p}\), is continuous and the map \([\frac{N}{2},\infty ) \rightarrow \mathbb{R}\), \(p\mapsto \vert \Omega \vert ^{\frac{-1}{p}}\beta_{p}\), is strictly increasing.

  4. (4)

    The limits \(\lim_{p\rightarrow\infty}\beta_{p}\) and \(\lim_{p\rightarrow(\frac{N}{2})^{+}}\beta_{p}\) always exist and take the values

    1. (i)

      \(\lim_{p\rightarrow\infty}\beta_{p}=\beta_{\infty}\), if \(N\geq2\),

    2. (ii)

      \(\lim_{p\rightarrow(\frac{N}{2})^{+}}\beta _{p}\geq \beta_{\frac{N}{2}}>0\), if \(N\geq3\), \(\lim_{p\rightarrow1^{+}}\beta_{p}=0\), if \(N=2\).

Here, we also note that in the study Cañada et al. they proved that the relation between the p and \(\frac{N}{2}\) plays a crucial role. They also considered the equation in (1.3) with zero Dirichlet boundary condition. They presented similar inequalities at their study. Then others established Lyapunov-type inequalities for different equations with boundary conditions. For more information about the studies in \(\mathbb{R}^{n}\), the interested reader can refer to [1824] and the references cited therein.

The aim of this paper is to prove a Lyapunov-type inequality for the two-dimensional quasilinear elliptic problem as follows:

$$ \left \{ \textstyle\begin{array}{l}-(\Phi_{p}(u_{xy}))_{y}=r(x,y)\Phi_{p}(u),\quad (x,y)\in\Omega, \\ u(a_{1},y)=0=u(b_{1},y), \quad a_{2}\leq y\leq b_{2}, \\ u_{x}(x,a_{2})=0=u_{x}(x,b_{2}),\quad a_{1}\leq x\leq b_{1}, \end{array}\displaystyle \right . $$
(1.8)

where \(\Omega= [ a_{1},b_{1} ] \times [ a_{2},b_{2} ] \) and \(r(x,y)\) is a measurable function on Ω, and \(\Phi_{p}(u(x,y))=\vert u(x,y)\vert ^{p-2}u(x,y)\) for \(p>1\). In addition to this, we note that by a solution of the problem (1.8), we mean that \(u(x,y)\in W^{3,p}(\Omega)\) in that

$$ W^{3,p}(\Omega)= \bigl\{ u: u,u_{x},u_{xy}\text{ and }u_{xyy}\in L^{p}(\Omega) \bigr\} . $$
(1.9)

As usual, \(L^{p}(\Omega)\) is a space of Lebesgue measurable functions.

Main results

Now, we give a key lemma as a proof of our main conclusions.

Lemma 1

Assume that \(u(x,y)\in W^{3,p}(\Omega )\), it satisfies the boundary conditions in (1.8) and \(u(x,y)\neq0\) for \(\forall(x,y)\in\Omega^{0}\). Then

$$\begin{aligned}& \bigl(4\bigl\vert u(x,y)\bigr\vert \bigr)^{p}/(b_{1}-a_{1})^{p-1}(b_{2}-a_{2})^{p-1} \leq { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \vert u_{xy}\vert ^{p}\,\mathrm{d}y\,\mathrm{d}x, \end{aligned}$$
(2.1)
$$\begin{aligned}& \bigl( 2^{p}/(b_{2}-a_{2})^{p-1} \bigr) { \int_{a_{1}}^{b_{1}}} \vert u_{x}\vert ^{p}\,\mathrm{d}x\leq { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \vert u_{xy}\vert ^{p}\,\mathrm{d}y\,\mathrm{d}x, \end{aligned}$$
(2.2)

hold, respectively, where \(\Omega^{0}\) is the set of all interior points of Ω.

Proof

Let \((x,y)\in\Omega\). Since \(u(x,y)\) satisfies the boundary conditions in (1.8), it is easy to see

$$u(x,y)= { \int_{a_{1}}^{x}} { \int_{a_{2}}^{y}} u_{ts}\,\mathrm{d}s\, \mathrm{d}t, $$

taking the absolute value, we obtain

$$ \bigl\vert u(x,y)\bigr\vert \leq { \int_{a_{1}}^{x}} { \int_{a_{2}}^{y}} \vert u_{ts}\vert \, \mathrm{d}s\,\mathrm{d}t. $$
(2.3)

Similarly, we get

$$\begin{aligned}& \bigl\vert u(x,y)\bigr\vert \leq { \int_{a_{1}}^{x}} { \int_{y}^{b_{2}}} \vert u_{ts}\vert \, \mathrm{d}s\,\mathrm{d}t, \end{aligned}$$
(2.4)
$$\begin{aligned}& \bigl\vert u(x,y)\bigr\vert \leq { \int_{x}^{b_{1}}} { \int_{a_{2}}^{y}} \vert u_{ts}\vert \, \mathrm{d}s\,\mathrm{d}t, \end{aligned}$$
(2.5)

and

$$ \bigl\vert u(x,y)\bigr\vert \leq { \int_{x}^{b_{1}}} { \int_{y}^{b_{2}}} \vert u_{ts}\vert \, \mathrm{d}s\,\mathrm{d}t. $$
(2.6)

Adding (2.3)-(2.6), we have

$$ 4\bigl\vert u(x,y)\bigr\vert \leq { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \vert u_{xy}\vert \, \mathrm{d}y\,\mathrm{d}x. $$
(2.7)

Then, applying Hölder’s inequality

$$ \int_{a_{1}}^{b_{1}}\bigl\vert f(t)g(t)\bigr\vert \, \mathrm{d}t\leq \biggl( \int_{a_{1}}^{b_{1}}\bigl\vert f(t)\bigr\vert ^{q}\,\mathrm{d}t \biggr) ^{1/q} \biggl( \int_{a_{1}}^{b_{1}}\bigl\vert g(t)\bigr\vert ^{p}\,\mathrm{d}t \biggr) ^{1/p} $$
(2.8)

to the right-hand side of (2.7), we get

$$ \bigl( 4\bigl\vert u(x,y)\bigr\vert \bigr) ^{p}\leq ( b_{1}-a_{1} ) ^{p-1}{ \int_{a_{1}}^{b_{1}}} \biggl[ { \int_{a_{2}}^{b_{2}}} \vert u_{xy}\vert \, \mathrm{d}y \biggr] ^{p}\,\mathrm{d}x. $$
(2.9)

Applying Hölder’s inequality to the right hand side of (2.9) again, we obtain

$$\frac{(4\vert u(x,y)\vert )^{p}}{(b_{1}-a_{1})^{p-1}(b_{2}-a_{2})^{p-1}}\leq { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \vert u_{xy}\vert ^{p}\,\mathrm{d}y\,\mathrm{d}x. $$

Thereby, the proof of (2.1) is completed.

Similarly we have

$$ \bigl\vert u_{x}(x,y)\bigr\vert \leq { \int_{a_{2}}^{y}} \vert u_{xs}\vert \, \mathrm{d}s $$
(2.10)

and

$$ \bigl\vert u_{x}(x,y)\bigr\vert \leq { \int_{y}^{b_{2}}} \vert u_{xs}\vert \, \mathrm{d}s. $$
(2.11)

Adding (2.10) and (2.11), we get

$$ 2\bigl\vert u_{x}(x,y)\bigr\vert \leq { \int_{a_{2}}^{b_{2}}} \vert u_{xs}\vert \, \mathrm{d}s. $$
(2.12)

Applying Hölder’s inequality to the right hand side of (2.12) and integrating from \(a_{1}\) to \(b_{1}\), we have

$$\frac{2^{p}}{(b_{2}-a_{2})^{p-1}}{ \int_{a_{1}}^{b_{1}}} \vert u_{x}\vert ^{p}\,\mathrm{d}x\leq { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \vert u_{xy}\vert ^{p}\,\mathrm{d}y\,\mathrm{d}x. $$

Consequently, the proof of (2.2) is completed. □

Theorem 1

If \(u(x,y)\in W^{3,p}(\Omega )\) is a nontrivial solution of the problem (1.8), then the following inequality:

$$ 2^{2p+1}/(b_{1}-a_{1})^{p-1}(b_{2}-a_{2})^{p} \leq { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \bigl\vert r(x,y)\bigr\vert ^{q}\,\mathrm{d}y\,\mathrm{d}x $$
(2.13)

holds, where q is the Hölder conjugate of p.

Proof

Let \(u(x,y)\in W^{3,p}(\Omega)\) is a nontrivial solution of the problem (1.8). Multiplying the equation in (1.8) by \(u_{x}\) and integrating on Ω,we obtain

$$ { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} -\bigl(\vert u_{xy} \vert ^{p-2}u_{xy}\bigr)_{y}u_{x}\, \mathrm{d}y\,\mathrm{d}x= { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} r(x,y)\vert u\vert ^{p-2}uu_{x}\,\mathrm{d}y\,\mathrm{d}x. $$
(2.14)

Then, applying partial integration in \({ \int_{a_{2}}^{b_{2}}} -(\vert u_{xy}\vert ^{p-2}u_{xy})_{y}u_{x}\, \mbox{d}y\) and using the boundary conditions in (1.8), we have

$$ { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \vert u_{xy}\vert ^{p}\,\mathrm{d}y\,\mathrm{d}x={ \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} r(x,y)\vert u\vert ^{p-2}uu_{x}\,\mathrm{d}y\,\mathrm{d}x. $$
(2.15)

By taking the absolute value on right hand side of (2.15), we get

$$ { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \vert u_{xy}\vert ^{p}\,\mathrm{d}y\,\mathrm{d}x\leq { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \bigl\vert r(x,y)\bigr\vert \vert u\vert ^{p-1}\vert u_{x}\vert \,\mathrm{d}y\, \mathrm{d}x. $$
(2.16)

Hence, applying Hölder’s inequality to the right hand side of (2.16), we find

$$\begin{aligned}& { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \vert u_{xy}\vert ^{p}\,\mathrm{d}y\,\mathrm{d}x \\& \quad \leq \biggl( { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \bigl\vert r(x,y)\bigr\vert ^{q}\vert u\vert ^{(p-1)q}\,\mathrm{d}y\, \mathrm{d}x \biggr) ^{1/q} \biggl( { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \vert u_{x}\vert ^{p}\,\mathrm{d}y\,\mathrm{d}x \biggr) ^{1/p}. \end{aligned}$$
(2.17)

Now, considering only the second term of right hand side in (2.17) from Fubini’s theorem, we can rewrite the inequality (2.17) as follows:

$$\begin{aligned}& { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \vert u_{xy}\vert ^{p}\,\mathrm{d}y\,\mathrm{d}x \\& \quad \leq \biggl( { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \bigl\vert r(x,y)\bigr\vert ^{q}\vert u\vert ^{(p-1)q}\,\mathrm{d}y\, \mathrm{d}x \biggr) ^{1/q} \biggl( { \int_{a_{2}}^{b_{2}}} \biggl[ { \int_{a_{1}}^{b_{1}}} \vert u_{x}\vert ^{p}\,\mathrm{d}x \biggr] \,\mathrm{d}y \biggr) ^{1/p}. \end{aligned}$$
(2.18)

Hence, using the inequality (2.2) in (2.18), we obtain

$$\begin{aligned}& \biggl( { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \vert u_{xy}\vert ^{p}\,\mathrm{d}y\,\mathrm{d}x \biggr) ^{(p-1)/p} \\& \quad \leq \bigl( (b_{2}-a_{2})/2 \bigr) \biggl( { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \bigl\vert r(x,y)\bigr\vert ^{q}\vert u\vert ^{(p-1)q}\,\mathrm{d}y\, \mathrm{d}x \biggr) ^{1/q}. \end{aligned}$$
(2.19)

Then, replacing the point of \((x,y)\), which is used in Lemma 1, with the maximum point of \(\vert u(x,y)\vert \), from (2.1), we get

$$\begin{aligned}& \bigl(4\max\bigl\vert u(x,y)\bigr\vert \bigr)^{(p-1)}/(b_{1}-a_{1})^{(p-1)/q}(b_{2}-a_{2})^{(p-1)/q} \\& \quad \leq \biggl( { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \vert u_{xy}\vert ^{p}\,\mathrm{d}y\,\mathrm{d}x \biggr) ^{(p-1)/p}. \end{aligned}$$
(2.20)

Then, using the inequality (2.20) in the inequality (2.19), we have

$$\begin{aligned}& \bigl(4\max\bigl\vert u(x,y)\bigr\vert \bigr)^{(p-1)}/(b_{1}-a_{1})^{(p-1)/q}(b_{2}-a_{2})^{(p-1)/q} \\& \quad \leq \bigl( (b_{2}-a_{2})/2 \bigr) \biggl( { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \bigl\vert r(x,y)\bigr\vert ^{q}\vert u\vert ^{(p-1)q}\,\mathrm{d}y\, \mathrm{d}x \biggr) ^{1/q} \\& \quad \leq \bigl( (b_{2}-a_{2})/2 \bigr) \biggl( { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \bigl\vert r(x,y)\bigr\vert ^{q}\,\mathrm{d}y\,\mathrm{d}x \biggr) ^{1/q}\bigl( \max\bigl\vert u(x,y)\bigr\vert \bigr)^{(p-1)}. \end{aligned}$$
(2.21)

Since \(u(x,y)\) is a nontrivial solution, we have \(\max \vert u(x,y)\vert \neq0\). Therefore, we obtain

$$ 2^{2p+1}/(b_{1}-a_{1})^{p-1}(b_{2}-a_{2})^{p} \leq { \int_{a_{1}}^{b_{1}}} { \int_{a_{2}}^{b_{2}}} \bigl\vert r(x,y)\bigr\vert ^{q}\,\mathrm{d}y\,\mathrm{d}x. $$
(2.22)

Thus, the proof is completed. □

Corollary 1

Let \(\lambda_{1}\) be the first eigenvalue of the equation that is defined on Ω as follows:

$$-\bigl(\Phi_{p}(u_{xy})\bigr)_{y}= \lambda_{1}r(x,y)\Phi_{p}(u), $$

where Ω is a domain, which is defined in the beginning of the paper, and with the boundary conditions in (1.8). Then we have

$$ 2^{2p+1}/(b_{1}-a_{1})^{p-1}(b_{2}-a_{2})^{p} \bigl\Vert r(x,y) \bigr\Vert _{L^{q}(\Omega)}^{q}\leq \lambda_{1}. $$
(2.23)

Remark 1

If we take the Dirichlet boundary conditions, which are \(u(a_{1},y)=0=u(b_{1},y)\) and \(u(x,a_{2})=0=u(x,b_{2})\), instead of the Robin boundary conditions in the problem (1.8), then we obtain the identical conclusions given above.

Remark 2

The result, which is obtained in this study, is also the necessary condition for the problem of (1.8) to have a nontrivial solution.

References

  1. Lyapunov, AM: Problème général de la stabilité du mouvement. Ann. Fac. Sci. Univ. Toulouse 2, 203-407 (1907)

    Google Scholar 

  2. Hartman, P, Wintner, A: On an oscillation criterion of Lyapunov. Am. J. Math. 73, 885-890 (1951)

    Article  MATH  Google Scholar 

  3. Cheng, SS: Lyapunov inequalities for differential and difference equations. Fasc. Math. 23, 25-41 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Kwong, MK: On Lyapunov’s inequality for disfocality. J. Math. Anal. Appl. 83, 486-494 (1981)

    MathSciNet  Article  MATH  Google Scholar 

  5. Panigrahi, S: Lyapunov-type integral inequalities for certain higher order differential equations. Electron. J. Differ. Equ. 2009, 28 (2009)

    MATH  Google Scholar 

  6. Parhi, N, Panigrahi, S: Disfocality and Liapunov-type inequalities for third-order equations. Appl. Math. Lett. 16, 227-233 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  7. Parhi, N, Panigrahi, S: Lyapunov-type inequality for higher order differential equations. Math. Slovaca 52, 31-46 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Parhi, N, Panigrahi, S: Lyapunov-type inequality for delay-differential equations of third order. Czechoslov. Math. J. 52, 385-399 (2002)

    Article  MATH  Google Scholar 

  9. Parhi, N, Panigrahi, S: On Lyapunov-type inequality for third-order differential equations. J. Math. Anal. Appl. 233, 445-460 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  10. Lee, C, Yeh, C, Hong, C, Agarwal, RP: Lyapunov and Wirtinger inequalities. Appl. Math. Lett. 17, 847-853 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  11. Yang, X, Kim, Y, Lo, K: Lyapunov-type inequalities for a class of quasilinear systems. Math. Comput. Model. 53, 1162-1166 (2011)

    Article  MATH  Google Scholar 

  12. Yang, X: On inequalities of Lyapunov-type. Appl. Math. Comput. 134, 293-300 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Yang, X: On Liapunov-type inequality for certain higher-order differential equations. Appl. Math. Comput. 134, 307-317 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Pachpatte, BG: On Lyapunov-type inequalities for certain higher order differential equations. J. Math. Anal. Appl. 195, 527-536 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  15. He, X, Tang, XH: Lyapunov-type inequalities for even order differential equations. Commun. Pure Appl. Anal. 11, 465-473 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  16. Youmei, Z, Qingling, Z, Tamaki, T, Min, C: Admissibility for positive continuous-time descriptor systems. Int. J. Syst. Sci. 44, 2158-2165 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  17. Agarwal, RP, Özbekler, A: Lyapunov type inequalities for even order differential equations with mixed nonlinearities. J. Inequal. Appl. 2015, 142 (2015)

    MathSciNet  Article  Google Scholar 

  18. Cañada, A, Montero, JA, Villegas, S: Lyapunov-type inequalities and applications to PDE. In: Elliptic and Parabolic Problems. Progr. Nonlinear Differential Equations Appl., vol. 63, pp. 103-110. Birkhäuser, Basel (2005)

    Chapter  Google Scholar 

  19. Cañada, A, Montero, JA, Villegas, S: Lyapunov inequalities for partial differential equations. J. Funct. Anal. 237, 176-193 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  20. Hashizuma, M, Takahashi, F: Lyapunov inequality for an elliptic problem with the robin boundary condition. Preprint

  21. Timoshin, SA: Lyapunov inequality for elliptic equations involving limiting nonlinearities. Proc. Jpn. Acad. Ser. A. 86, 139-142 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  22. Anastassiou, GA: Multivariate Lyapunov inequalities. Appl. Math. Lett. 24, 2167-2171 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  23. de Nápoli, PL, Pinasco, JP: Lyapunov-type inequalities for partial differential equations. arXiv:1304.6988 [math.AP]

  24. de Nápoli, PL, Pinasco, JP: Estimates for eigenvalues of quasilinear elliptic systems. J. Differ. Equ. 227, 102-115 (2006)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for the careful reading of this paper and for the valuable suggestions to improve the presentation and style of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülkü Dinlemez Kantar.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Both authors contributed equally to the writing of this paper. Both authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dinlemez Kantar, Ü., Özden, T. Lyapunov-type inequalities for quasilinear elliptic equations with Robin boundary condition. J Inequal Appl 2017, 45 (2017). https://doi.org/10.1186/s13660-017-1320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-017-1320-4

MSC

  • 35J40
  • 35J66
  • 46E35

Keywords

  • Lyapunov-type inequalities
  • elliptic equations
  • Robin boundary conditions