Skip to main content

Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals


Some Hermite-Hadamard type inequalities for generalized k-fractional integrals (which are also named \((k,s)\)-Riemann-Liouville fractional integrals) are obtained for a fractional integral, and an important identity is established. Also, by using the obtained identity, we get a Hermite-Hadamard type inequality.


Let \(f:I\subseteq\mathbb{R}\rightarrow\mathbb{R}\) be a convex function defined on the interval I of real numbers and \(a,b\in I\) with \(a< b\). The following inequality

$$ f \biggl(\frac{a+b}{2} \biggr)\leq\frac{1}{b-a} \int_{a}^{b}f(x)\,dx\leq\frac {f(a)+f(b)}{2} $$

holds. This double inequality is known in the literature as a Hermite-Hadamard integral inequality for convex functions [1].

Sarikaya et al. established the following results for Riemann-Liouville fractional integrals.

Theorem 1.1

see Theorem 2 in [2]

Let \(f:[a,b]\rightarrow\mathbb{R}\) be a positive function with \(0\leq a< b\) and \(f\in L_{1}[a,b]\). If f is a convex function on \([a,b]\), then the following inequality for fractional integrals holds:

$$ f \biggl(\frac{a+b}{2} \biggr)\leq\frac{\Gamma(1+\alpha)}{2(b-a)^{\alpha}} \bigl[J_{a^{+}}^{\alpha}f(b)+J_{b^{-}}^{\alpha}f(a) \bigr]\leq\frac{f(a)+f(b)}{2} $$

with \(\alpha>0\), where the symbols \(J_{a^{+}}^{\alpha}\) and \(J_{b^{-}}^{\alpha}\) denote the left-sided and right-sided Riemann-Liouville fractional integrals of the order \(\alpha\in\mathbb{R}^{+}\) that are defined by

$$J_{a^{+}}^{\alpha}f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x} f(t) (x-t)^{\alpha -1}\,dt \quad (0 \leq a < x\leq b) $$


$$J_{b^{-}}^{\alpha}f(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b} f(t) (t-x)^{\alpha -1}\,dt\quad (0\leq a \leq x< b) $$

respectively. Here \(\Gamma(\cdot)\) denotes the classical gamma function [3], Chapter 6.

Theorem 1.2

see Theorem 3 in [2]

Let \(f:[a,b]\rightarrow\mathbb {R}\) be a differentiable mapping on \((a,b)\) with \(a< b\). If \(f'\in L[a,b]\), then the following inequality for Riemann-Liouville fractional integrals holds:

$$\begin{aligned}& \biggl\vert \frac{f(a)+f(b)}{2}-\frac{\Gamma(\alpha+1)}{2(b-a)^{\alpha}} \bigl[J_{a^{+}}^{\alpha}f(b)+J_{b^{-}}^{\alpha}f(a) \bigr]\biggr\vert \\& \quad \leq\frac{b-a}{2(\alpha+1)} \biggl(1-\frac{1}{2^{\alpha}} \biggr) \bigl(\bigl\vert f'(a)\bigr\vert +\bigl\vert f'(b)\bigr\vert \bigr) \end{aligned}$$

with \(\alpha>0\).

The Pochhammer k-symbol \((x)_{n,k}\) and the k-gamma function \(\Gamma _{k}\) are defined as follows (see [4]):

$$ (x)_{n,k}:=x(x+k) (x+2k)\cdots \bigl(x+(n-1)k \bigr) \quad (n \in\mathbb {N}; k >0 ) $$


$$ \Gamma_{k}(x):= \lim_{n \rightarrow\infty} \frac{n! k^{n} (nk)^{\frac {x}{k}-1}}{(x)_{n,k}}\quad \bigl(k >0; x \in\mathbb{C}\setminus k \mathbb{Z}_{0}^{-} \bigr), $$

where \(k \mathbb{Z}_{0}^{-}:= \{kn : n \in\mathbb{Z}_{0}^{-} \}\). It is noted that the case \(k=1\) of (1.4) and (1.5) reduces to the familiar Pochhammer symbol \((x)_{n}\) and the gamma function Γ. The function \(\Gamma_{k}\) is given by the following integral:

$$ \Gamma_{k}(x)= \int_{0}^{\infty}t^{x-1} e^{-\frac{t^{k}}{k}} \,dt \quad \bigl(\Re(x)>0\bigr). $$

The function \(\Gamma_{k}\) defined on \(\mathbb{R}^{+}\) is characterized by the following three properties: (i) \(\Gamma_{k}(x+k)=x \Gamma_{k}(x)\); (ii) \(\Gamma_{k}(k)=1\); (iii) \(\Gamma _{k}(x)\) is logarithmically convex. It is easy to see that

$$ \Gamma_{k}(x)= k^{\frac{x}{k}-1} \Gamma \biggl( \frac{x}{k} \biggr)\quad \bigl(\Re (x)>0; k >0 \bigr). $$

We want to recall the preliminaries and notations of some well-known fractional integral operators that will be used to obtain some remarks and corollaries.

The \((k,s)\)-Riemann-Liouville fractional integral operator \(_{k}^{s}\mathcal{J}_{a}^{\alpha}\) of order \(\alpha>0\) for a real-valued continuous function \(f(t)\) is defined as (see [5], p.79, 2.1. Definition):

$$ {}_{k}^{s}\mathcal{J}_{a}^{\alpha}f(x)=\frac{(s+1)^{1-\frac{\alpha }{k}}}{k\Gamma_{k}(\alpha)} \int_{a}^{x}\bigl(x^{s+1}-t^{s+1} \bigr)^{\frac{\alpha }{k}-1}t^{s}f(t)\,dt, $$

where \(k>0\), \(\beta>0\) and \(s \in\mathbb{R}\setminus\{-1\}\).

The most important feature of \((k,s)\)-fractional integrals is that they generalize some types of fractional integrals (Riemann-Liouville fractional integral, k-Riemann-Liouville fractional integral, generalized fractional integral and Hadamard fractional integral). These important special cases of the integral operator \({}_{k}^{s}\mathcal {J}_{a}^{\alpha}\) are mentioned below.

  1. (1)

    For \(k=1\), the operator in (1.8) yields the following generalized fractional integrals defined by Katugompola in [6]:

    $$ {}_{a}^{r}\mathcal{J}_{t}^{\alpha}f(x)=\frac{(r+1)^{1-\alpha}}{\Gamma(\alpha )} \int_{a}^{x}\bigl(x^{r+1}-t^{r+1} \bigr)^{\alpha-1}t^{r}f(t)\,dt. $$
  2. (2)

    Firstly by taking \(k=1\), after that by taking limit \(r\rightarrow{-1^{+}}\) and using L’Hôpital’s rule, the operator in (1.8) leads to the Hadamard fractional integral operator [1, 7]. That is,

    $$\begin{aligned} \lim_{r \rightarrow-1^{+}} {}_{a}^{r} \mathcal{J}_{t}^{\alpha}f(x) =&\lim_{r \rightarrow-1^{+}} \frac{(r+1)^{1-\alpha}}{\Gamma(\alpha)} \int_{a}^{x}\frac{f(t)t^{r}}{(x^{r+1}-t^{r+1})^{1-\alpha}}\,dt \\ =&\frac{1}{\Gamma(\alpha)} \int_{a}^{x}\lim_{r \rightarrow -1^{+}}f(t)t^{r} \biggl(\frac{r+1}{x^{r+1}-t^{r+1}} \biggr)^{1-\alpha}\,dt \\ =& \frac{1}{\Gamma(\alpha)} \int_{a}^{x}f(t)\lim_{r\rightarrow-1^{+}} \biggl( \frac{r+1}{x^{r+1}-t^{r+1}} \biggr)^{1-\alpha}\frac {dt}{t} \\ =&\frac{1}{\Gamma(\alpha)} \int_{a}^{x}f(t) \biggl(\lim_{r \rightarrow -1^{+}} \frac{r+1}{x^{r+1}-t^{r+1}} \biggr)^{1-\alpha}\frac{dt}{t} \\ =&\frac{1}{\Gamma(\alpha)} \int_{a}^{x} \biggl(\log\frac{x}{t} \biggr)f(t)\frac {dt}{t} \\ =& _{H}\mathcal{J}^{\alpha}\bigl[f(t)\bigr] \end{aligned}$$

    (see [8], p.569, eq. (3.13)).

  3. (3)

    If we take \(s=0\) in (1.8), operator (1.8), reduces to the k-Riemann-Liouville fractional integral operator, which has been firstly defined by Mubeen and Habibullah in [9]. This relation is as follows:

    $$ \mathcal{J}_{a,k}^{\alpha}\, f(x)=\frac{1}{k\Gamma_{k}(\alpha)} \int _{a}^{x}(x-t)^{\frac{\alpha}{k}-1}f(t)\,dt. $$
  4. (4)

    Again, taking \(s=0\) and \(k=1\), operator (1.8) gives us the Riemann-Liouville fractional integration operator

    $$ J_{a^{+}}^{\alpha}f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1}f(t)\,dt. $$

In recent years, these fractional operators have been studied and used to extend especially Grüss, Chebychev-Grüss and Pólya-Szegö type inequalities. For more details, one may refer to the recent works and books [7, 1021].

Main results

Let \(f:I^{\circ}\rightarrow\mathbb{R}\) be a given function, where \(a,b\in I^{\circ}\) and \(0< a< b<\infty\). We suppose that \(f\in L_{\infty}(a,b)\) such that \({}_{k}^{s}J_{a^{+}}^{\alpha}f ( x )\) and \({}_{k}^{s}J_{b^{-}}^{\alpha}f ( x )\) are well defined. We define functions

$$\tilde{f}(x):=f(a+b-x),\quad x\in[a,b] $$


$$F(x):=f(x)+\tilde{f}(x),\quad x\in[a,b]. $$

Hermite-Hadamard’s inequality for convex functions can be represented in a \((k,s)\)-fractional integral form as follows by using the change of variables \(u=\frac{t-a}{x-a}\); we have from (1.8)

$$\begin{aligned} {}_{k}^{s}\mathcal{J}_{a}^{\alpha}f(x) =&(x-a) \frac{(s+1)^{1-\frac{\alpha }{k}}}{k\Gamma_{k}(\alpha)} \int_{0}^{1}\frac {(ux+(1-u)a)^{s}}{((ux+(1-u)a)^{s+1}-t^{s+1})^{\frac{\alpha }{k}-1}} \\ &{}\times f\bigl(ux+(1-u)a\bigr) \,ds, \end{aligned}$$

where \(x>a\).

Theorem 2.1

Let \(\alpha,k>0\) and \(s\in\mathbb{R}\setminus\{-1\}\). If f is a convex function on \([a,b]\), then we have

$$\begin{aligned} f \biggl(\frac{a+b}{2} \biggr) \leq&\frac{(s+1)^{\frac{\alpha}{k}}\Gamma_{k}(\alpha +k)}{4(b^{s+1}-a^{s+1})^{\frac{\alpha}{k}}} \bigl[ {}_{k}^{s}J_{a^{+}}^{\alpha}F(b)+ {}_{k}^{s}J_{b^{-}}^{\alpha}F(a) \bigr] \\ \leq&\frac{f(a)+f(b)}{2}. \end{aligned}$$


For \(u\in[0,1]\), let \(\xi=au+(1-u)b \) and \(\eta=(1-u)a+bu\). Using the convexity of f, we get

$$ f \biggl(\frac{a+b}{2} \biggr)=f \biggl(\frac{\xi+\eta}{2} \biggr) \leq \frac{1}{2}f(\xi)+\frac{1}{2}f(\eta). $$

That is,

$$ f \biggl(\frac{a+b}{2} \biggr) \leq\frac{1}{2}f \bigl(au+(1-u)b \bigr)+\frac{1}{2}f \bigl((1-u)a+bu \bigr). $$

Now, multiplying both sides of (2.3) by

$$(b-a)\frac{(s+1)^{1-\frac{\alpha}{k}}}{k\Gamma_{k}(\alpha)} \frac{(ub+(1-u)a)^{s}}{ [b^{s+1}-(ub+(1-u)a)^{s+1} ]^{1-\frac {\alpha}{k}}} $$

and integrating over \((0,1)\) with respect to u, we get

$$\begin{aligned}& (b-a)\frac{(s+1)^{1-\frac{\alpha}{k}}}{k\Gamma_{k}(\alpha)}f \biggl(\frac {a+b}{2} \biggr) \int_{0}^{1}\frac{(ub+(1-u)a)^{s} \,du}{ [b^{s+1}-(ub+(1-u)a)^{s+1} ]^{1-\frac{\alpha}{k}}} \\& \quad \leq\frac{1}{2}(b-a)\frac{(s+1)^{1-\frac{\alpha}{k}}}{k\Gamma_{k}(\alpha)} \int_{0}^{1}\frac{(ub+(1-u)a)^{s}f(au+(1-u)b)\,du }{ [b^{s+1}-(ub+(1-u)a)^{s+1} ]^{1-\frac{\alpha}{k}}} \\& \qquad {}+\frac{1}{2}(b-a)\frac{(s+1)^{1-\frac{\alpha}{k}}}{k\Gamma_{k}(\alpha)} \int_{0}^{1}\frac{(ub+(1-u)a)^{s}f((1-u)a+bu)\,du }{ [b^{s+1}-(ub+(1-u)a)^{s+1} ]^{1-\frac{\alpha}{k}}}. \end{aligned}$$

Note that we have

$$\int_{0}^{1}\frac{(ub+(1-u)a)^{s} \,du}{ [b^{s+1}-(ub+(1-u)a)^{s+1} ]^{1-\frac{\alpha}{k}}} =\frac{k (b^{s+1}-a^{s+1} )^{\frac{\alpha}{k}}}{\alpha(s+1)(b-a)}. $$

Using the identity

$$\tilde{f}\bigl((1-u)a+bu\bigr)=f\bigl(au+(1-u)b\bigr), $$

and from (2.1), we obtain

$$(b-a)\frac{(s+1)^{1-\frac{\alpha}{k}}}{k\Gamma_{k}(\alpha)} \int_{0}^{1}\frac{(ub+(1-u)a)^{s} f(au+(1-u)b) \,du}{ [b^{s+1}-(ub+(1-u)a)^{s+1} ]^{1-\frac{\alpha}{k}}} = {}_{k}^{s}J_{a^{+}}^{\alpha}\tilde{f}(b) $$


$$(b-a)\frac{(s+1)^{1-\frac{\alpha}{k}}}{k\Gamma_{k}(\alpha)} \int_{0}^{1}\frac{(ub+(1-u)a)^{s} f((1-u)a+bu) \,du}{ [b^{s+1}-(ub+(1-u)a)^{s+1} ]^{1-\frac{\alpha}{k}}} = {}_{k}^{s}J_{a^{+}}^{\alpha}f(b). $$

Accordingly, we have

$$ \frac{(b^{s+1}-a^{s+1})^{\frac{\alpha}{k}}}{(s+1)^{\frac{\alpha }{k}}\Gamma_{k}(\alpha+k)}f \biggl(\frac{a+b}{2} \biggr) \leq \frac{ {}_{k}^{s}J_{a^{+}}^{\alpha}F(b)}{2}. $$

Similarly, multiplying both sides of (2.3) by

$$(b-a)\frac{(s+1)^{1-\frac{\alpha}{k}}}{k\Gamma_{k}(\alpha)} \frac{(ub+(1-u)a)^{s}}{ [(bu+(1-u)a)^{s+1}-a^{s+1} ]^{1-\frac {\alpha}{k}}}, $$

integrating over \((0,1)\) with respect to u, and from (2.1), we also get

$$ \frac{(b^{s+1}-a^{s+1})^{\frac{\alpha}{k}}}{(s+1)^{\frac{\alpha }{k}}\Gamma_{k}(\alpha+k)}f \biggl(\frac{a+b}{2} \biggr) \leq \frac{ {}_{k}^{s}J_{b^{-}}^{\alpha}F(a)}{2}. $$

By adding inequalities (2.4) and (2.5), we get

$$ f \biggl(\frac{a+b}{2} \biggr) \leq\frac{(s+1)^{\frac{\alpha}{k}}\Gamma_{k}(\alpha +k)}{4(b^{s+1}-a^{s+1})^{\frac{\alpha}{k}}} \bigl[ {}_{k}^{s}J_{a^{+}}^{\alpha}F(b)+ {}_{k}^{s}J_{b^{-}}^{\alpha }F(a) \bigr], $$

which is the left-hand side of inequality (2.2).

Since f is convex, for \(u\in[0,1]\), we have

$$ f \bigl(au+(1-u)b \bigr)+f \bigl((1-u)a+bu \bigr)\leq f(a)+f(b). $$

Multiplying both sides of (2.6) by

$$(b-a)\frac{(s+1)^{1-\frac{\alpha}{k}}}{k\Gamma_{k}(\alpha)} \frac{(ub+(1-u)a)^{s}}{ [b^{s+1}-(ub+(1-u)a)^{s+1} ]^{1-\frac {\alpha}{k}}} $$

and integrating over \((0,1)\) with respect to u, we get

$$\begin{aligned} \begin{aligned} &(b-a)\frac{(s+1)^{1-\frac{\alpha}{k}}}{k\Gamma_{k}(\alpha)} \int_{0}^{1}\frac{(ub+(1-u)a)^{s}f (au+(1-u)b )\,du}{ [b^{s+1}-(ub+(1-u)a)^{s+1} ]^{1-\frac{\alpha}{k}}} \\ &\qquad {}+(b-a)\frac{(s+1)^{1-\frac{\alpha}{k}}}{k\Gamma_{k}(\alpha)} \int_{0}^{1} \frac{(ub+(1-u)a)^{s}f ((1-u)a+bu )\,du}{ [b^{s+1}-(ub+(1-u)a)^{s+1} ]^{1-\frac{\alpha}{k}}} \\ &\quad \leq (b-a)\frac{(s+1)^{1-\frac{\alpha}{k}}}{k\Gamma_{k}(\alpha)} \bigl[f(a)+f(b) \bigr] \int_{0}^{1}\frac{(ub+(1-u)a)^{s} \,du}{ [b^{s+1}-(ub+(1-u)a)^{s+1} ]^{1-\frac{\alpha}{k}}}. \end{aligned} \end{aligned}$$

That is,

$$ {}_{k}^{s}J_{a^{+}}^{\alpha}F(b) \leq\frac{ (b^{s+1}-a^{s+1} )^{\frac{\alpha}{k}}}{(s+1)^{\frac {\alpha}{k}}\Gamma_{k}(\alpha+k)} \bigl[f(a)+f(b) \bigr]. $$

Similarly, multiplying both sides of (2.6) by

$$(b-a)\frac{(s+1)^{1-\frac{\alpha}{k}}}{k\Gamma_{k}(\alpha)} \frac{(ub+(1-u)a)^{s}}{ [(ub+(1-u)a)^{s+1}-a^{s+1} ]^{1-\frac {\alpha}{k}}} $$

and integrating over \((0,1)\) with respect to u, we also get

$$ {}_{k}^{s}J_{b^{-}}^{\alpha}F(a) \leq\frac{ (b^{s+1}-a^{s+1} )^{\frac{\alpha}{k}}}{(s+1)^{\frac {\alpha}{k}}\Gamma_{k}(\alpha+k)} \bigl[f(a)+f(b) \bigr]. $$

Adding inequalities (2.7) and (2.8), we obtain

$$ \frac{(s+1)^{\frac{\alpha}{k}}\Gamma_{k}(\alpha +k)}{4(b^{s+1}-a^{s+1})^{\frac{\alpha}{k}}} \bigl[ {}_{k}^{s}J_{a^{+}}^{\alpha}F(b)+ {}_{k}^{s}J_{b^{-}}^{\alpha }F(a) \bigr]\leq \frac{f(a)+f(b)}{2}, $$

which is the right-hand side of inequality (2.2). So the proof is complete. □

We want to give the following function that we will use later: For \(\alpha,k>0\) and \(s\in\mathbb{R}\setminus\{-1\}\), let \(\nabla _{\alpha,s}:[0,1]\rightarrow\mathbb{R}\) be the function defined by

$$\begin{aligned} \nabla_{\alpha,s}(t): =& \bigl(\bigl(ta+(1-t)b\bigr)^{s+1}-a^{s+1} \bigr)^{\frac {\alpha}{k}} - \bigl(\bigl(bt+(1-t)a\bigr)^{s+1}-a^{s+1} \bigr)^{\frac{\alpha}{k}} \\ &{}+ \bigl(b^{s+1}-\bigl(tb+(1-t)a\bigr)^{s+1} \bigr)^{\frac{\alpha}{k}} - \bigl(b^{s+1}-\bigl(ta+(1-t)b \bigr)^{s+1} \bigr)^{\frac{\alpha}{k}}. \end{aligned}$$

In order to prove our main result, we need the following identity.

Lemma 2.1

Let \(\alpha,k>0\) and \(s\in\mathbb{R}I^{\circ}\). If f is a differentiable function on \(I^{\circ}\) such that \(f'\in L[a,b]\) with \(a< b\), then we have the following identity:

$$\begin{aligned}& \frac{f(a)+f(b)}{2}-\frac{(s+1)^{\frac{\alpha}{k}}\Gamma_{k}(\alpha +k)}{4(b^{s+1}-a^{s+1})^{\frac{\alpha}{k}}} \bigl[ {}_{k}^{s}J_{a^{+}}^{\alpha}F(b)+ {}_{k}^{s}J_{b^{-}}^{\alpha }F(a) \bigr] \\& \quad =\frac{(b-a)}{4(b^{s+1}-a^{s+1})^{\frac{\alpha}{k}}} \int_{0}^{1}\nabla_{\alpha ,s}(t)f' \bigl(ta+(1-t)b\bigr)\,dt. \end{aligned}$$


Using integration by parts, we obtain

$$\begin{aligned} {}_{k}^{s}J_{a^{+}}^{\alpha}F(b) =&\frac{ (b^{s+1}-a^{s+1} )^{\frac{\alpha}{k}}}{(s+1)^{\frac {\alpha}{k}}\Gamma_{k}(\alpha+k)}F(a) +\frac{(b-a)}{(s+1)^{\frac{\alpha}{k}}\Gamma_{k}(\alpha+k)} \\ &{}\times \int_{0}^{1} \bigl[ \bigl(b^{s+1}- \bigl(bu+(1-u)a\bigr)^{s+1} \bigr) \bigr]^{\frac{\alpha}{k}}F'\bigl(bu+(1-u)a\bigr)\,du. \end{aligned}$$

Similarly, we get

$$\begin{aligned} {}_{k}^{s}J_{b^{-}}^{\alpha}F(a) =&\frac{ (b^{s+1}-a^{s+1} )^{\frac{\alpha}{k}}}{(s+1)^{\frac {\alpha}{k}}\Gamma_{k}(\alpha+k)}F(b) -\frac{(b-a)}{(s+1)^{\frac{\alpha}{k}}\Gamma_{k}(\alpha+k)} \\ &{}\times \int_{0}^{1} \bigl[\bigl(bu+(1-u)a \bigr)^{s+1}-a^{s+1} \bigr]^{\frac{\alpha }{k}}F'\bigl(bu+(1-u)a\bigr)\,du. \end{aligned}$$

Using the fact that \(F(x)=f(x)+\tilde{f}(x)\) and by simple computation, from equalities (2.10) and (2.11), we get

$$\begin{aligned}& \frac{4(b^{s+1}-a^{s+1})^{\frac{\alpha}{k}}}{(b-a)} \biggl(\frac{f(a)+f(b)}{2} -\frac{(s+1)^{\frac{\alpha}{k}}\Gamma_{k}(\alpha +k)}{4(b^{s+1}-a^{s+1})^{\frac{\alpha}{k}}} \bigl[ {}_{k}^{s}J_{a^{+}}^{\alpha}F(b)+ {}_{k}^{s}J_{b^{-}}^{\alpha }F(a) \bigr] \biggr) \\& \quad = \int_{0}^{1} \bigl[ \bigl(\bigl(bu+(1-u)a \bigr)^{s+1}-a^{s+1} \bigr)^{\frac{\alpha}{k}} - \bigl(b^{s+1}-\bigl(bu+(1-u)a\bigr)^{s+1} \bigr)^{\frac{ \alpha}{k}} \bigr] \\& \qquad {}\times F'\bigl(bu+(1-u)a\bigr)\,du. \end{aligned}$$

Note that we have

$$F'\bigl(bu+(1-u)a\bigr)=f'\bigl(bu+(1-u)a \bigr)-f'\bigl(au+(1-u)b\bigr), \quad u\in[0,1]. $$

Then we can easily obtain

$$\begin{aligned}& \int_{0}^{1} \bigl(\bigl(bu+(1-u)a \bigr)^{s+1}-a^{s+1} \bigr)^{\frac{\alpha }{k}}F'\bigl(bu+(1-u)a\bigr)\,du \\& \quad = \int_{0}^{1} \bigl(\bigl(ta+(1-t)b \bigr)^{s+1}-a^{s+1} \bigr)^{\frac{\alpha }{k}}f'\bigl(ta+(1-t)b\bigr)\,dt \\& \qquad {}- \int_{0}^{1} \bigl(\bigl(bt+(1-t)a \bigr)^{s+1}-a^{s+1} \bigr)^{\frac{\alpha}{k}}f'\bigl(ta+(1-t)b\bigr)\,dt \end{aligned}$$


$$\begin{aligned}& \int_{0}^{1} \bigl(b^{s+1}-\bigl(bu+(1-u)a \bigr)^{s+1} \bigr)^{\frac{\alpha }{k}}F' \bigl(bu+(1-u)a\bigr)\,du \\& \quad = \int_{0}^{1} \bigl(b^{s+1}-\bigl(ta+(1-t)b \bigr)^{s+1} \bigr)^{\frac{\alpha }{k}}f' \bigl(ta+(1-t)b\bigr)\,dt \\& \qquad {}- \int_{0}^{1} \bigl(b^{s+1}-\bigl(bt+(1-t)a \bigr)^{s+1} \bigr)^{\frac{\alpha}{k}}f' \bigl(ta+(1-t)b\bigr)\,dt. \end{aligned}$$

Thus, the desired inequality (2.9) follows from inequalities (2.12), (2.13) and (2.14). □

For \(\alpha,k>0\), we introduce the following operator:

$$\Im(s,x,y):= \int_{a}^{\frac{a+b}{2}}\vert x-u\vert\bigl\vert y^{s+1}-u^{s+1}\bigr\vert ^{\frac{\alpha}{k}}\,du - \int_{\frac{a+b}{2}}^{b}\vert x-u\vert\bigl\vert y^{s+1}-u^{s+1}\bigr\vert ^{\frac {\alpha}{k}}\,du, $$

\(s\in\mathbb{R}\setminus\{-1\}\), \(x,y\in[a,b]\).

Using Lemma 2.1, we can obtain the following \((k,s)\)-fractional integral inequality.

Theorem 2.2

Let \(\alpha,k>0\) and \(s\in\mathbb{R}\setminus\{-1\}\). If f is a differentiable function on \(I^{\circ}\) such that \(f'\in L[a,b]\) with \(a< b\) and \(\vert f' \vert\) is convex on \([a,b]\), then

$$\begin{aligned}& \biggl\vert \frac{f(a)+f(b)}{2}-\frac{(s+1)^{\frac{\alpha}{k}}\Gamma _{k}(\alpha+k)}{4(b^{s+1}-a^{s+1})^{\frac{\alpha}{k}}} \bigl[ {}_{k}^{s}J_{a^{+}}^{\alpha}F(b)+ {}_{k}^{s}J_{b^{-}}^{\alpha }F(a) \bigr]\biggr\vert \\& \quad \leq\frac{\Psi(s,\alpha,a,b)}{4(b^{s+1}-a^{s+1})^{\frac{\alpha }{k}}(b-a)}\bigl(\bigl\vert f'(a)\bigr\vert + \bigl\vert f'(b)\bigr\vert \bigr), \end{aligned}$$


$$\Psi(s,\alpha,a,b)=\Im(s,b,b)+\Im(s,a,b)-\Im(s,b,a)-\Im(s,a,a). $$


Using Lemma 2.1 and the convexity of \(\vert f'\vert\), we obtain

$$\begin{aligned}& \biggl\vert \frac{f(a)+f(b)}{2}-\frac{(s+1)^{\frac{\alpha}{k}}\Gamma _{k}(\alpha+k)}{4(b^{s+1}-a^{s+1})^{\frac{\alpha}{k}}} \bigl[ {}_{k}^{s}J_{a^{+}}^{\alpha}F(b)+ {}_{k}^{s}J_{b^{-}}^{\alpha }F(a) \bigr]\biggr\vert \\& \quad \leq \frac{(b-a)}{4(b^{s+1}-a^{s+1})^{\frac{\alpha}{k}}} \int_{0}^{1}\bigl\vert \nabla_{\alpha,s}(t) \bigr\vert \bigl\vert f'\bigl(ta+(1-t)b\bigr)\bigr\vert \,dt \\& \quad \leq \frac{(b-a)}{4(b^{s+1}-a^{s+1})^{\frac{\alpha}{k}}} \biggl(\bigl\vert f'(a)\bigr\vert \int_{0}^{1} t\bigl\vert \nabla_{\alpha,s}(t) \bigr\vert \,dt +\bigl\vert f'(b)\bigr\vert \int_{0}^{1} (1-t)\bigl\vert \nabla_{\alpha,s}(t) \bigr\vert \,dt \biggr). \end{aligned}$$

Note that

$$ \int_{0}^{1} t\bigl\vert \nabla_{\alpha,s}(t) \bigr\vert \,dt=\frac {1}{(b-a)^{2}} \int_{a}^{b}\bigl\vert \wp(u)\bigr\vert (b-u)\,du, $$


$$\begin{aligned} \wp(u) =&\bigl(u^{s+1}-a^{s+1}\bigr)^{\frac{\alpha }{k}}-\bigl((b+a-u)^{s+1}-a^{s+1}\bigr)^{\frac{\alpha}{k}} \\ &{}+\bigl(b^{s+1}-(b+a-u)^{s+1}\bigr)^{\frac{\alpha}{k}}-\bigl(b^{s+1}-u^{s+1}\bigr)^{\frac {\alpha}{k}}, \quad u\in[a,b]. \end{aligned}$$

Observe that is a non-decreasing function on \([a,b]\). Moreover, we have \(\wp(a)=-2(b^{s+1}-a^{s+1})^{\frac{\alpha}{k}}<0\) and \(\wp(\frac{a+b}{2})=0\). Thus, we have

$$\textstyle\begin{cases} \wp(u)\leq0 & \mbox{if } a\leq u\leq\frac{a+b}{2}, \\ \wp(u)>0 & \mbox{if } \frac{a+b}{2}< u\leq b. \end{cases} $$

So, we obtain

$$(b-a)^{2} \int_{0}^{1}t \bigl\vert \nabla_{\alpha,s}(t) \bigr\vert \,dt=\zeta _{1}+\zeta_{2}+\zeta_{3}+ \zeta_{4}, $$


$$\begin{aligned}& \zeta_{1} = \int_{a}^{\frac{a+b}{2}}(b-u) \bigl(b^{s+1}-u^{s+1} \bigr)^{\frac{\alpha}{k}}\,du - \int_{\frac{a+b}{2}}^{b} (b-u) \bigl(b^{s+1}-u^{s+1} \bigr)^{\frac{\alpha}{k}}\,du , \\& \zeta_{2} = - \int_{a}^{\frac{a+b}{2}}(b-u) \bigl(u^{s+1}-a^{s+1} \bigr)^{\frac{\alpha}{k}}\,du + \int_{\frac{a+b}{2}}^{b} (b-u) \bigl(u^{s+1}-a^{s+1} \bigr)^{\frac{\alpha}{k}}\,du, \\& \zeta_{3} = \int_{a}^{\frac{a+b}{2}}(b-u) \bigl((b+a-u)^{s+1}-a^{s+1} \bigr)^{\frac{\alpha}{k}}\,du - \int_{\frac{a+b}{2}}^{b} (b-u) \bigl((b+a-u)^{s+1}-a^{s+1} \bigr)^{\frac{\alpha}{k}}\,du, \\& \zeta_{4} = - \int_{a}^{\frac{a+b}{2}}(b-u) \bigl(b^{s+1}-(b+a-u)^{s+1} \bigr)^{\frac{\alpha}{k}}\,du + \int_{\frac{a+b}{2}}^{b} (b-u) \bigl(b^{s+1}-(b+a-u)^{s+1} \bigr)^{\frac{\alpha}{k}}\,du. \end{aligned}$$

Observe that \(\zeta_{1}=\Im(s,b,b)\) and \(\zeta_{2}=-\Im(s,b,a)\). Using the change of variable \(v=a+b-u\), we get \(\zeta_{3}=-\Im(s,a,a)\) and \(\zeta_{4}=\Im(s,a,b)\). Thus, we obtain

$$ \int_{0}^{1}t \bigl\vert \nabla_{\alpha,s}(t) \bigr\vert \,dt=\frac{\Im (s,b,b)+\Im(s,a,b)-\Im(s,b,a)-\Im(s,a,a)}{(b-a)^{2}}. $$


$$ \int_{0}^{1}(1-t) \bigl\vert \nabla_{\alpha,s}(t) \bigr\vert \,dt=\frac{\Im (s,b,b)+\Im(s,a,b)-\Im(s,b,a)-\Im(s,a,a)}{(b-a)^{2}}. $$

So, the desired inequality (2.15) follows from inequalities (2.16), (2.17) and (2.18). □


Lastly, we conclude this paper by remarking that we have obtained a Hermite-Hadamard inequality, an identity and a Hermite-Hadamard type inequality for a generalized k-fractional integral operator. Therefore, by suitably choosing the parameters, one can further easily obtain additional integral inequalities involving the various types of fractional integral operators from our main results.


  1. Hadamard, J: Étude sur les propriétés des fonctions entiéres et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 9, 171-216 (1893)

    Google Scholar 

  2. Sarıkaya, MZ, Set, E, Yaldiz, H, Başak, N: Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 57(9), 2403-2407 (2013)

    Article  MATH  Google Scholar 

  3. Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables. United States Department of Commerce, Washington (1972)

    MATH  Google Scholar 

  4. Diaz, R, Pariguan, E: On hypergeometric functions and Pochhammer k-symbol. Divulg. Mat. 15(2), 179-192 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Sarikaya, MZ, Dahmani, Z, Kiris, ME, Ahmad, F: \((k,s )\)-Riemann-Liouville fractional integral and applications. Hacet. J. Math. Stat. 45(1), 77-89 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Katugompola, UN: New approach generalized fractional integral. Appl. Math. Comput. 218, 860-865 (2011)

    MathSciNet  Google Scholar 

  7. Kilbas, AA, Srivastava, HM, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  8. Katugompola, UN: Mellin transforms of generalized fractional integrals and derivatives. Appl. Math. Comput. 257, 566-580 (2015)

    MathSciNet  Google Scholar 

  9. Mubeen, S, Habibullah, GM: k-Fractional integrals and application. Int. J. Contemp. Math. Sci. 7(2), 89-94 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Agarwal, P: Some inequalities involving Hadamard-type k-fractional integral operators. Math. Methods Appl. Sci. (2017). doi:10.1002/mma.4270

    Google Scholar 

  11. Aldhaifallah, M, Tomar, M, Nisar, KS, Purohit, SD: Some new inequalities for \((k, s)\)-fractional integrals. J. Nonlinear Sci. Appl. 9, 5374-5381 (2016)

    MathSciNet  Google Scholar 

  12. Anastassiou, GA: Fractional Differentiation Inequalities. Springer, New York (2009)

    Book  MATH  Google Scholar 

  13. Belarbi, S, Dahmani, Z: On some new fractional integral inequalities. J. Inequal. Pure Appl. Math. 10(3), 1-12 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Dahmani, Z, Mechouar, O, Brahami, S: Certain inequalities related to the Chebyshev’s functional involving a Riemann-Liouville operator. Bull. Math. Anal. Appl. 3(4), 38-44 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Jleli, M, Regan, DO, Samet, B: On Hermite-Hadamard type inequalities via generalized fractional integrals. Turk. J. Math. 40, 1221-1230 (2016)

    MathSciNet  Article  Google Scholar 

  16. Liu, WJ, Ngo, QA, Huy, VN: Several interesting integral inequalities. J. Math. Inequal. 3(2), 201-212 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  17. Ntouyas, SK, Purohit, SD, Tariboon, J: Certain Chebyshev type integral inequalities involving the Hadamard’s fractional operators. Abstr. Appl. Anal. 2014, Article ID 249091 (2014)

    MathSciNet  Article  Google Scholar 

  18. Ntouyas, SK, Agarwal, P, Tariboon, J: On Pólya-Szegö and Chebyshev types inequalities involving the Riemann-Liouville fractional integral operators. J. Math. Inequal. 10(2), 491-504 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  19. Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  20. Set, E, Tomar, M, Sarikaya, MZ: On generalized Grüss type inequalities via k-Riemann-Liouville fractional integral. Appl. Math. Comput. 269, 29-34 (2015)

    MathSciNet  Google Scholar 

  21. Tomar, M, Mubeen, S, Choi, J: Certain inequalities associated with Hadamard k-fractional integral operators. J. Inequal. Appl. 2016, 234 (2016)

    MathSciNet  Article  MATH  Google Scholar 

Download references


The authors would like to express profound gratitude to referees for deeper review of this paper and for their useful suggestions that led to an improved presentation of the paper. Mohamed Jleli extends his sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this Prolific Research group (PRG-1436-20).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Praveen Agarwal.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to the manuscript. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agarwal, P., Jleli, M. & Tomar, M. Certain Hermite-Hadamard type inequalities via generalized k-fractional integrals. J Inequal Appl 2017, 55 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • 26A33
  • 26A51
  • 26D15


  • Hermite-Hadamard inequality
  • generalized k-fractional integral
  • \((k, s)\)-fractional integral
  • \((k, s)\)-Riemann-Liouville fractional integral