Skip to main content

Two explicit formulas for the generalized Motzkin numbers

Abstract

In the paper, by the Faà di Bruno formula, the authors establish two explicit formulas for the Motzkin numbers, the generalized Motzkin numbers, and the restricted hexagonal numbers.

Introduction and main results

The Motzkin numbers \(M_{n}\) enumerate various combinatorial objects. In 1977, fourteen different manifestations of the Motzkin numbers \(M_{n}\) were given in [1]. In particular, the Motzkin numbers \(M_{n}\) give the numbers of paths from \((0,0)\) to \((n,0)\) which never dip below the x-axis \(y=0\) and are made up only of the steps \((1,0)\), \((1,1)\), and \((1,-1)\).

The first seven Motzkin numbers \(M_{n}\) for \(0\le n\le6\) are \(1, 1, 2, 4, 9, 21, 51\). All the Motzkin numbers \(M_{n}\) can be generated by

$$ M(x)=\frac{1-x-\sqrt{1-2x-3x^{2}} }{2x^{2}} =\frac{1}{1-x+\sqrt{1-2x-3x^{2}} } =\sum _{k=0}^{\infty}M_{k}x^{k}. $$
(1.1)

They can be connected with the Catalan numbers

$$ C_{n}=\frac{1}{n+1}\binom{2n}{n} $$

by

$$ M_{n}=\sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{2k}C_{k} \quad\mbox{and}\quad C_{n+1}=\sum _{k=0}^{n}\binom{n}{k}M_{k}, $$

where \(\lfloor x\rfloor\) denotes the floor function whose value is the largest integer less than or equal to x. For detailed information, please refer to [2] and the closely related references therein. For information on many results, applications, and generalizations of the Catalan numbers \(C_{n}\), please refer to the monographs [3, 4], the papers [513], the survey article [14], and the closely related references therein.

In [15], the \((u,l,d)\)-Motzkin numbers \(m_{n}^{(u,l,d)}\) were introduced and it was shown in [15], Theorem 2.1, that \(m_{n}^{(u,l,d)}=m_{n}^{(1,l,ud)}\),

$$ M_{u,l,d}(x)=\frac{1-lx-\sqrt{(1-lx)^{2}-4udx^{2}} }{2udx^{2}}=\sum _{n=0}^{\infty}m_{n}^{(u,l,d)}x^{n}, $$
(1.2)

and

$$ m_{n}^{(u,l,d)}=l^{n}\sum _{j=0}^{n/2}\frac{1}{j+1}\binom{2j}{j} \binom {n}{2j} \biggl(\frac{ud}{l^{2}} \biggr)^{j}. $$
(1.3)

Comparing (1.1) with (1.2) reveals that \(m_{n}^{(1,1,1)}=M_{n}\) and the \((u,l,d)\)-Motzkin numbers \(m_{n}^{(u,l,d)}\) generalize the Motzkin numbers \(M_{n}\).

In [16], the Motzkin numbers \(M_{n}\) were generalized in terms of the Catalan numbers \(C_{n}\) to

$$ M_{n}(a,b)=a^{n}\sum_{k=0}^{\lfloor n/2\rfloor} \binom{n}{2k} \biggl(\frac {b}{a^{2}} \biggr)^{k}C_{k} $$

for \(a,b\in\mathbb{N}\) and the generating function

$$ M_{a,b}(x)=\frac{1-ax-\sqrt{(1-ax)^{2}-4bx^{2}} }{2bx^{2}} =\sum _{k=0}^{\infty}M_{k}(a,b)x^{k} $$
(1.4)

was discovered. It was pointed out in [2] that

$$ M_{n}(1,1)=M_{n}, \qquad M_{n}(2,1)=C_{n+1}, \quad\mbox{and} \quad M_{n}(3,1)=H_{n}, $$
(1.5)

where \(H_{n}\) denote the restricted hexagonal numbers and were described in [17].

For more information on many results, applications, and generalizations of the Motzkin numbers \(M_{n}\), please refer to [1, 2, 16, 18, 19] and the closely related references therein.

From (1.2) and (1.3), it is easy to see that \(m_{n}^{(u,l,d)}=m_{n}^{(d,l,u)}\). Comparing (1.2) with (1.4) reveals that \(M_{k}(a,b)\) and \(m_{k}^{(u,l,d)}\) are equivalent to each other and satisfy

$$ M_{k}(a,b)=m_{n}^{(1,a,b)}=m_{k}^{(b,a,1)} \quad\mbox{and}\quad m_{k}^{(u,l,d)}=M_{k}(l,ud). $$
(1.6)

Therefore, it suffices to consider the generalized Motzkin numbers \(M_{k}(a,b)\), rather than the \((u,l,d)\)-Motzkin numbers \(m_{n}^{(u,l,d)}\), in this paper.

The main aim of this paper is to establish explicit formulas for the Motzkin numbers \(M_{k}\) and the generalized Motzkin numbers \(M_{k}(a,b)\). As consequences, two explicit formulas for the restricted hexagonal numbers \(H_{n}\) are derived.

Our main results in this paper can be stated as the following theorems.

Theorem 1

For \(k\ge0\), the Motzkin numbers \(M_{k}\) can be computed by

$$ M_{k}=\frac{9}{8} \biggl(\frac{3}{2} \biggr)^{k}\sum_{\ell=0}^{k+2} \biggl( \frac{2}{3} \biggr)^{\ell}\frac{(2\ell-3)!!}{\ell!}\binom{\ell}{k-\ell+2}, $$
(1.7)

where \(\binom{p}{q}=0\) for \(q>p\ge0\) and the double factorial of negative odd integers \(-(2n+1)\) is defined by

$$ \bigl[-(2n+1)\bigr]!!=\frac{(-1)^{n}}{(2n-1)!!}=(-1)^{n}\frac{2^{n}n!}{(2n)!}, \quad n=0,1,\ldots. $$

Theorem 2

For \(k\ge0\) and \(a,b\in\mathbb{N}\), the generalized Motzkin numbers \(M_{k}(a,b)\) can be computed by

$$ M_{k}(a,b)=\frac{1}{2b} \biggl(\frac{4b-a^{2}}{2a} \biggr)^{k+2} \sum_{\ell =0}^{k+2} \biggl(\frac{2a^{2}}{4b-a^{2}} \biggr)^{\ell}\frac{(2\ell-3)!!}{\ell !} \binom{\ell}{k-\ell+2}. $$
(1.8)

Consequently, the Catalan numbers \(C_{k}\) and the restricted hexagonal numbers \(H_{k}\) can be computed by

$$ C_{k}=2^{k}\frac{(2k-1)!!}{(k+1)!} $$
(1.9)

and

$$ H_{k}=(-1)^{k}\frac{25}{72} \biggl( \frac{5}{6} \biggr)^{k} \sum_{\ell=0}^{k+2} (-1)^{\ell}\biggl(\frac{18}{5} \biggr)^{\ell}\frac{(2\ell-3)!!}{\ell!}\binom {\ell}{k-\ell+2}, $$
(1.10)

respectively.

Theorem 3

For \(n\ge0\) and \(a,b\in\mathbb{N}\), the generalized Motzkin numbers \(M_{n}(a,b)\) can be computed by

$$ M_{n}(a,b)= \textstyle\begin{cases} 1, & n=0;\\ \displaystyle\frac{a^{2}}{2b} \biggl(\frac{4b-a^{2}}{2a} \biggr)^{n} \sum_{k=0}^{n} \biggl(\frac{2a^{2}}{4b-a^{2}} \biggr)^{k} \frac{(2k+1)!!}{(k+2)!} \binom {k+2}{n-k}, & n\in\mathbb{N}. \end{cases} $$
(1.11)

Consequently, equation (1.9) for the Catalan numbers \(C_{n}\) is valid, the Motzkin numbers \(M_{n}\) and the restricted hexagonal numbers \(H_{k}\) can be computed by

$$ M_{n}= \textstyle\begin{cases} 1, & n=0,\\ \displaystyle\frac{1}{2} \biggl(\frac{3}{2} \biggr)^{n} \sum_{k=0}^{n} \biggl(\frac{2}{3} \biggr)^{k} \frac{(2k+1)!!}{(k+2)!} \binom{k+2}{n-k}, & n\in\mathbb{N,} \end{cases} $$
(1.12)

and

$$ H_{n}= \textstyle\begin{cases} 1, & n=0,\\ \displaystyle(-1)^{n}\frac{9}{2} \biggl(\frac{5}{6} \biggr)^{n} \sum_{k=0}^{n} (-1)^{k} \biggl(\frac{18}{5} \biggr)^{k} \frac{(2k+1)!!}{(k+2)!} \binom{k+2}{n-k}, & n\in \mathbb{N,} \end{cases} $$
(1.13)

respectively.

Proofs of main results

Now we are in a position to prove our main results.

Proof of Theorem 1

From (1.1), it follows that

$$ \sqrt{1-2x-3x^{2}} =1-x-2\sum_{k=0}^{\infty}M_{k}x^{k+2}. $$

This implies that

$$ M_{k}=-\frac{1}{2}\frac{1}{(k+2)!}\lim _{x\to0} \bigl(\sqrt{1-2x-3x^{2}} \bigr)^{(k+2)}, \quad k\ge0. $$
(2.1)

In combinatorial analysis, the Faà di Bruno formula plays an important role and can be described in terms of the Bell polynomials of the second kind

$$ \mathrm {B}_{n,k}(x_{1},x_{2},\dotsc,x_{n-k+1})= \sum_{\substack{1\le i\le n,\ell _{i}\in\{0\}\cup\mathbb{N}\\ \sum_{i=1}^{n}i\ell_{i}=n\\ \sum_{i=1}^{n}\ell_{i}=k}}\frac{n!}{\prod_{i=1}^{n-k+1}\ell_{i}!} \prod _{i=1}^{n-k+1} \biggl(\frac{x_{i}}{i!} \biggr)^{\ell_{i}} $$

for \(n\ge k\ge0\), see [20], p.134, Theorem A, by

$$ \frac{\mathrm {d}^{n}}{\mathrm {d}t^{n}}\bigl[f\circ h(t)\bigr]=\sum _{k=0}^{n}f^{(k)}\bigl(h(t)\bigr) \mathrm {B}_{n,k} \bigl(h'(t),h''(t), \dotsc,h^{(n-k+1)}(t) \bigr) $$
(2.2)

for \(n\ge0\); see [20], p.139, Theorem C. The Bell polynomials of the second kind \(\mathrm {B}_{n,k}(x_{1},x_{2}, \ldots, x_{n-k+1})\) satisfy the formula

$$ \mathrm {B}_{n,k} \bigl(abx_{1},ab^{2}x_{2}, \dotsc,ab^{n-k+1}x_{n-k+1} \bigr) =a^{k}b^{n} \mathrm {B}_{n,k}(x_{1},x_{2},\dotsc,x_{n-k+1}) $$
(2.3)

for \(n\ge k\ge0\); see [20], p.135. In [21], Theorem 4.1, [10], Eq. (2.8), and [22], Section 3, it was established that

$$ \mathrm {B}_{n,k}(x,1,0,\ldots,0) =\frac{(n-k)!}{2^{n-k}} \binom{n}{k}\binom{k}{n-k}x^{2k-n}, \quad n\ge k\ge0. $$
(2.4)

Then, for \(k\ge0\), we have

$$\begin{aligned} \bigl(\sqrt{1-2x-3x^{2}} \bigr)^{(k+2)} &=\sum _{\ell=0}^{k+2} \biggl\langle \frac{1}{2} \biggr\rangle _{\ell} \bigl(1-2x-3x^{2} \bigr)^{1/2-\ell} \mathrm {B}_{k+2,\ell}(-2-6x,-6,0,\dotsc,0) \\ &\to \sum_{\ell=0}^{k+2} \biggl\langle \frac{1}{2} \biggr\rangle _{\ell} \mathrm {B}_{k+2,\ell}(-2,-6,0, \dotsc,0) \\ &=\sum_{\ell=0}^{k+2} \biggl\langle \frac{1}{2} \biggr\rangle _{\ell} (-6)^{\ell} \mathrm {B}_{k+2,\ell} \biggl(\frac{1}{3},1,0,\dotsc,0 \biggr) \\ &=\sum_{\ell=0}^{k+2}(-1)^{\ell}\biggl\langle \frac{1}{2} \biggr\rangle _{\ell} \frac{(k-\ell+2)!}{2^{k-2\ell+2}3^{\ell-k-2}} \binom{k+2}{\ell}\binom {\ell}{k-\ell+2} \end{aligned}$$

as \(x\to0\), where

$$ \langle x\rangle_{n}= \textstyle\begin{cases} x(x-1)\dotsm(x-n+1), & n\ge1,\\ 1,& n=0, \end{cases} $$

denotes the falling factorial of \(x\in\mathbb{R}\). Consequently, by (2.1), it follows that

$$ M_{k}=-\frac{9}{8} \biggl(\frac{3}{2} \biggr)^{k}\frac{1}{(k+2)!}\sum_{\ell=0}^{k+2} (-1)^{\ell}\biggl\langle \frac{1}{2} \biggr\rangle _{\ell} \biggl(\frac{4}{3} \biggr)^{\ell}(k-\ell+2)!\binom{k+2}{\ell} \binom{\ell }{k-\ell+2} $$

for \(k\ge0\), which can be rewritten as (1.7). The proof of Theorem 1 is complete. □

Proof of Theorem 2

From (1.4), it is derived that

$$ \sqrt{(1-ax)^{2}-4bx^{2}} =1-ax-2b\sum _{k=0}^{\infty}M_{k}(a,b)x^{k+2}. $$

This implies that

$$ M_{k}(a,b)=-\frac{1}{2b}\frac{1}{(k+2)!}\lim _{x\to0} \bigl[\sqrt {(1-ax)^{2}-4bx^{2}} \bigr]^{(k+2)}, \quad k\ge0. $$
(2.5)

By virtue of (2.2), (2.3), and (2.4), it follows that

$$\begin{aligned} & \bigl[\sqrt{(1-ax)^{2}-4bx^{2}} \bigr]^{(k+2)} \\ &\quad=\sum_{\ell=0}^{k+2} \biggl\langle \frac{1}{2} \biggr\rangle _{\ell} \bigl[(1-ax)^{2}-4bx^{2} \bigr]^{1/2-\ell} \\ &\qquad{}\times \mathrm {B}_{k+2,\ell} \bigl(-2 \bigl[a+ \bigl(4b-a^{2} \bigr)x \bigr], 2 \bigl(a^{2}-4b \bigr),0,\dotsc,0 \bigr) \\ &\quad\to\sum_{\ell=0}^{k+2} \biggl\langle \frac{1}{2} \biggr\rangle _{\ell} \mathrm {B}_{k+2,\ell} \bigl(-2a,2 \bigl(a^{2}-4b \bigr),0,\dotsc,0 \bigr) \\ &\quad=\sum_{\ell=0}^{k+2} \biggl\langle \frac{1}{2} \biggr\rangle _{\ell} \bigl[2 \bigl(a^{2}-4b \bigr) \bigr]^{\ell} \mathrm {B}_{k+2,\ell} \biggl(\frac {a}{4b-a^{2}},1,0, \dotsc,0 \biggr) \\ &\quad=\sum_{\ell=0}^{k+2} \biggl\langle \frac{1}{2} \biggr\rangle _{\ell} \bigl[2 \bigl(a^{2}-4b \bigr) \bigr]^{\ell}\frac{(k-\ell+2)!}{2^{k-\ell+2}} \binom{k+2}{\ell} \binom{\ell}{k-\ell+2} \biggl(\frac{a}{4b-a^{2}} \biggr)^{2\ell-k-2} \end{aligned}$$

as \(x\to0\). Substituting this into (2.5) and simplifying yield

$$ M_{k}(a,b)=-\frac{1}{2b}\sum_{\ell=0}^{k+2} \biggl\langle \frac{1}{2} \biggr\rangle _{\ell} \bigl[2 \bigl(a^{2}-4b \bigr) \bigr]^{\ell}\frac{1}{2^{k-\ell+2}} \frac{1}{\ell !}\binom{\ell}{k-\ell+2} \biggl(\frac{a}{4b-a^{2}} \biggr)^{2\ell-k-2} $$

for \(k\ge0\), which can be further rearranged as (1.8).

Letting \((a,b)=(2,1)\) and \((a,b)=(3,1)\), respectively, in (1.8) and considering the last two relations in (1.5) lead to (1.9) and (1.10) immediately. The proof of Theorem 2 is complete. □

Proof of Theorem 3

For \(|x [ (a^{2}-4b )x-2a ] |<1\), the generating function \(M_{a,b}(x)\) in (1.4) can be expanded into

$$\begin{aligned} M_{a,b}(x)&=\frac{1}{2bx^{2}} \bigl[1-ax-\sqrt{1-2ax+ \bigl(a^{2}-4b\bigr)x^{2}} \bigr] \\ &=\frac{1}{2bx^{2}} \Biggl\{ 1-ax-\sum_{k=0}^{\infty}\biggl\langle \frac{1}{2} \biggr\rangle _{k} \frac{x^{k} [ (a^{2}-4b )x-2a ]^{k}}{k!} \Biggr\} \\ &=\frac{1}{2bx^{2}} \Biggl\{ -\frac{a^{2}-4b}{2}x^{2}-\sum _{k=2}^{\infty}\biggl\langle \frac{1}{2} \biggr\rangle _{k} \frac{x^{k} [ (a^{2}-4b )x-2a ]^{k}}{k!} \Biggr\} \\ &=-\frac{1}{2b} \Biggl\{ \frac{a^{2}-4b}{2}+\sum _{k=2}^{\infty}\biggl\langle \frac{1}{2} \biggr\rangle _{k} \frac{x^{k-2} [ (a^{2}-4b )x-2a ]^{k}}{k!} \Biggr\} . \end{aligned}$$

By (1.4) once again, it follows that

$$\begin{aligned} M_{n}(a,b)&=\frac{1}{n!}\lim_{x\to0} \bigl[M_{a,b}(x)\bigr]^{(n)} \\ &=-\frac{1}{2b}\frac{1}{n!}\lim_{x\to0} \Biggl\{ \frac{a^{2}-4b}{2} +\sum_{k=2}^{\infty}\biggl\langle \frac{1}{2} \biggr\rangle _{k} \frac{x^{k-2} [ (a^{2}-4b )x-2a ]^{k}}{k!} \Biggr\} ^{(n)}, \end{aligned}$$

which means that

$$\begin{aligned} M_{0}(a,b)&=-\frac{1}{2b}\lim_{x\to0} \Biggl\{ \frac{a^{2}-4b}{2} +\sum_{k=2}^{\infty}\biggl\langle \frac{1}{2} \biggr\rangle _{k} \frac{x^{k-2} [ (a^{2}-4b )x-2a ]^{k}}{k!} \Biggr\} \\ &=-\frac{1}{2b} \biggl[\frac{a^{2}-4b}{2} + \biggl\langle \frac{1}{2} \biggr\rangle _{2} \frac{4a^{2}}{2!} \biggr] \\ &=1 \end{aligned}$$

and

$$\begin{aligned} M_{n}(a,b)={}&{-}\frac{1}{2b}\frac{1}{n!}\lim _{x\to0}\sum_{k=2}^{\infty}\biggl\langle \frac{1}{2} \biggr\rangle _{k} \frac{ \{x^{k-2} [ (a^{2}-4b )x-2a ]^{k} \}^{(n)}}{k!} \\ ={}&{-}\frac{1}{2b}\frac{1}{n!}\lim_{x\to0}\sum _{k=0}^{\infty}\biggl\langle \frac{1}{2} \biggr\rangle _{k+2} \frac{ \{x^{k} [ (a^{2}-4b )x-2a ]^{k+2} \}^{(n)}}{(k+2)!} \\ ={}&{-}\frac{1}{2b}\frac{1}{n!}\lim_{x\to0}\sum _{k=0}^{\infty}\frac{\langle 1/2\rangle_{k+2}}{(k+2)!} \\ &{}\times\Biggl\{ \sum _{\ell=0}^{k+2}\binom{k+2}{\ell} \bigl(a^{2}-4b \bigr)^{\ell}(-2a)^{k-\ell+2} x^{k+\ell} \Biggr\} ^{(n)} \\ ={}&{-}\frac{1}{2b}\frac{1}{n!}\lim_{x\to0}\sum _{k=0}^{\infty}\frac{\langle 1/2\rangle_{k+2}}{(k+2)!} \sum _{\ell=0}^{k+2}\binom{k+2}{\ell} \bigl(a^{2}-4b \bigr)^{\ell}(-2a)^{k-\ell+2} \bigl(x^{k+\ell} \bigr)^{(n)} \\ ={}&\frac{1}{2b}\lim_{x\to0}\sum _{k=0}^{\infty}\frac{(2k+1)!!}{(k+2)!} \sum _{\ell=n-k}^{k+2}\binom{k+2}{\ell} \biggl( \frac{4b-a^{2}}{2} \biggr)^{\ell}a^{k-\ell+2} \binom{k+\ell}{n}x^{k+\ell-n} \\ ={}&\frac{1}{2b}\sum_{k=0}^{n} \frac{(2k+1)!!}{(k+2)!} \binom{k+2}{n-k} \biggl(\frac{4b-a^{2}}{2} \biggr)^{n-k} a^{2k-n+2} \\ ={}&\frac{a^{2}}{2b} \biggl(\frac{4b-a^{2}}{2a} \biggr)^{n} \sum _{k=0}^{n}\frac {(2k+1)!!}{(k+2)!} \binom{k+2}{n-k} \biggl(\frac{2a^{2}}{4b-a^{2}} \biggr)^{k} \end{aligned}$$

for \(n\in\mathbb{N}\). In conclusion, equation (1.11) follows.

Taking \((a,b)=(2,1)\), \((a,b)=(1,1)\), and \((a,b)=(3,1)\), respectively, in (1.11) and considering the three relations in (1.5) lead to (1.9), (1.12), and (1.13) readily. The proof of Theorem 3 is complete. □

Remarks

Finally, we list several remarks.

Remark 1

The explicit formula (1.8) is a generalization of (1.7).

Remark 2

Equation (1.9) and many other alternative formulas for the Catalan numbers \(C_{k}\) can also be found in [36, 8, 9, 1214] and the closely related references therein.

Remark 3

By the second relation in (1.6), equation (1.3) can be reformulated as

$$ M_{n}(a,b)=a^{n}\sum _{j=0}^{n/2}\frac{1}{j+1}\binom{2j}{j} \binom{n}{2j} \biggl(\frac{b}{a^{2}} \biggr)^{j}, $$
(3.1)

which is different from the two equations (1.8) and (1.11).

Remark 4

Making use of any one among equations (1.8), (1.11), and (3.1), we can present the first nine generalized Motzkin numbers \(M_{n}(a,b)\) for \(0\le n\le8\) and \(a,b\in \mathbb{N}\) as follows:

$$\begin{aligned}& 1, \quad a,\quad a^{2}+b, \quad a \bigl(a^{2}+3 b \bigr), \quad a^{4}+6 a^{2} b+2 b^{2},\quad a \bigl(a^{4}+10 a^{2} b+10 b^{2} \bigr), \\& a^{6}+15 a^{4} b+30 a^{2} b^{2}+5 b^{3}, \quad a \bigl(a^{6}+21 a^{4} b+70 a^{2} b^{2}+35 b^{3} \bigr), \\& a^{8}+28 a^{6} b+140 a^{4} b^{2}+140 a^{2} b^{3}+14 b^{4}. \end{aligned}$$

In particular, the first nine restricted hexagonal numbers \(H_{n}\) for \(0\le n\le8\) are

$$ 1,\quad 3,\quad 10,\quad 36,\quad 137,\quad 543,\quad 2{,}219,\quad 9{,}285, \quad 39{,}587. $$

Conclusions

By the Faà di Bruno formula and some properties of the Bell polynomials of the second kind, we establish two explicit formulas for the Motzkin numbers, the generalized Motzkin numbers, and the restricted hexagonal numbers.

References

  1. Donaghey, R, Shapiro, LW: Motzkin numbers. J. Comb. Theory, Ser. A 23, 291-301 (1977)

    MathSciNet  Article  MATH  Google Scholar 

  2. Wang, Y, Zhang, Z-H: Combinatorics of generalized Motzkin numbers. J. Integer Seq. 18(2), 15.2.4 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Koshy, T: Catalan Numbers with Applications. Oxford University Press, Oxford (2009)

    MATH  Google Scholar 

  4. Stanley, RP: Catalan Numbers. Cambridge University Press, New York (2015). doi:10.1017/CBO9781139871495

    Book  MATH  Google Scholar 

  5. Liu, F-F, Shi, X-T, Qi, F: A logarithmically completely monotonic function involving the gamma function and originating from the Catalan numbers and function. Glob. J. Math. Anal. 3, 140-144 (2015). doi:10.14419/gjma.v3i4.5187

    Article  Google Scholar 

  6. Mahmoud, M, Qi, F: Three identities of the Catalan-Qi numbers. Mathematics 4(2), 35 (2016). doi:10.3390/math4020035

    Article  Google Scholar 

  7. Qi, F, Guo, B-N: Logarithmically complete monotonicity of a function related to the Catalan-Qi function. Acta Univ. Sapientiae Math. 8, 93-102 (2016). doi:10.1515/ausm-2016-0006

    MathSciNet  MATH  Google Scholar 

  8. Qi, F, Guo, B-N: Logarithmically complete monotonicity of Catalan-Qi function related to Catalan numbers. Cogent Math. 3, 1179379 (2016). doi:10.1080/23311835.2016.1179379

    Google Scholar 

  9. Qi, F, Mahmoud, M, Shi, X-T, Liu, F-F: Some properties of the Catalan-Qi function related to the Catalan numbers. SpringerPlus 5, 1126 (2016). doi:10.1186/s40064-016-2793-1

    Article  MATH  Google Scholar 

  10. Qi, F, Shi, X-T, Liu, F-F, Kruchinin, DV: Several formulas for special values of the Bell polynomials of the second kind and applications. J. Appl. Anal. Comput. (2017, in press); (ResearchGate Technical Report (2015). Available online at doi:10.13140/RG.2.1.3230.1927)

  11. Qi, F, Shi, X-T, Mahmoud, M, Liu, F-F: Schur-convexity of the Catalan-Qi function related to the Catalan numbers. Tbilisi Math. J. 9(2), 141–150 (2016). Available online at http://dx.doi.org/10.1515/tmj-2016-0026.

    MathSciNet  Article  MATH  Google Scholar 

  12. Qi, F, Shi, X-T, Mahmoud, M, Liu, F-F: The Catalan numbers: a generalization, an exponential representation, and some properties. J. Comput. Anal. Appl. 23, 937-944 (2017)

    Google Scholar 

  13. Shi, X-T, Liu, F-F, Qi, F: An integral representation of the Catalan numbers. Glob. J. Math. Anal. 3, 130-133 (2015). doi:10.14419/gjma.v3i3.5055

    Article  Google Scholar 

  14. Qi, F: Some properties and generalizations of the Catalan, Fuss, and Fuss-Catalan numbers. ResearchGate Research (2015). Available online at doi:10.13140/RG.2.1.1778.3128

  15. Mansour, T, Schork, M, Sun, Y: Motzkin numbers of higher rank: generating function and explicit expression. J. Integer Seq. 10, 07.7.4 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Sun, Z-W: Congruences involving generalized central trinomial coefficients. Sci. China Math. 57, 1375-1400 (2014). doi:10.1007/s11425-014-4809-z

    MathSciNet  Article  MATH  Google Scholar 

  17. Harary, F, Read, RC: The enumeration of tree-like polyhexes. Proc. Edinb. Math. Soc. (2) 17, 1-13 (1970)

    MathSciNet  Article  MATH  Google Scholar 

  18. Lengyel, T: Exact p-adic orders for differences of Motzkin numbers. Int. J. Number Theory 10, 653-667 (2014). doi:10.1142/S1793042113501157

    MathSciNet  Article  MATH  Google Scholar 

  19. Lengyel, T: On divisibility properties of some differences of Motzkin numbers. Ann. Math. Inform. 41, 121-136 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Comtet, L: Advanced Combinatorics: The Art of Finite and Infinite Expansions, Revised and Enlarged edn. Reidel, Dordrecht (1974)

    Book  MATH  Google Scholar 

  21. Guo, B-N, Qi, F: Explicit formulas for special values of the Bell polynomials of the second kind and the Euler numbers. ResearchGate Technical Report (2015). Available online at doi:10.13140/2.1.3794.8808

  22. Qi, F, Zheng, M-M: Explicit expressions for a family of the Bell polynomials and applications. Appl. Math. Comput. 258, 597-607 (2015). doi:10.1016/j.amc.2015.02.027

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by China Postdoctoral Science Foundation with Grant Number 2015M582619.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiao-Lian Zhao.

Additional information

Competing interests

None of the authors has any competing interests in the manuscript.

Authors’ contributions

All authors contributed to this paper equally. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, JL., Qi, F. Two explicit formulas for the generalized Motzkin numbers. J Inequal Appl 2017, 44 (2017). https://doi.org/10.1186/s13660-017-1313-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-017-1313-3

MSC

  • 05A15
  • 05A19
  • 05A20
  • 05A15
  • 11B37
  • 11B83

Keywords

  • explicit formula
  • Motzkin number
  • generalized Motzkin number
  • restricted hexagonal number
  • Catalan number
  • generating function
  • Faà di Bruno formula
  • Bell polynomial of the second kind