We will use the idea for Hamiltonian systems in [24] to prove our results. In Section 2.1, one KAM step iteration is presented. The key lies in solving a homological equation. Then we will show the KAM step can iterate infinitely in Section 2.2. Convergence of the iteration and the estimate of measure will be presented in Sections 2.3 and 2.4.
2.1 KAM-step
Iteration Lemma
Consider a symplectic mapping
\(\Phi (\cdot;\xi)\)
defined in Theorem
1.1. Let
\(0< E<1, 0<\rho=(1-\sigma)s/10<\frac{s}{5}\)
and
\(0<\eta<\frac{1}{8}\). Let
\(K>0\)
satisfy
\(\eta^{2}e^{-K\rho}=E\). Let
$$\max_{\xi\in\Pi_{h}} \biggl\vert \frac{\partial\omega}{\partial\xi} \biggr\vert \leqslant T,\qquad h=\frac{\alpha}{2(1+K)^{\tau+1}T}. $$
Moreover, \(\omega(\xi)\)
satisfies that: for
\(k\in\mathbb{Z}^{n}\setminus\{0\}\), \(l \in\mathbb{Z}\),
$$ \bigl\vert \langle k, \omega\rangle+2\pi l \bigr\vert \ge \frac{2\alpha}{(1+\vert k \vert )^{\tau}}. $$
(2.1)
Suppose Assumptions
1, 2
hold. Suppose that
P
satisfies
$$\Vert X_{P} \Vert _{r;D(s,r)\times\Pi_{d}}\leqslant\epsilon= \eta^{2}\alpha ^{2\bar{\nu}} \rho^{2\nu}E , $$
with
\(0<\alpha<1, \bar{\nu}=\bar{n}+1, \nu=\tau(\bar{n}+1)+n+\bar{n}\). Then we have the following results:
-
(1)
\(\forall\xi\in\Pi_{h}\), there exists a symplectic diffeomorphism
\(\Psi(\cdot;\xi)\)
with
$$\begin{aligned}& \Vert \Psi-\operatorname{id} \Vert _{r;D(s-3\rho, \frac{r}{4})\times\Pi_{h}}\leq\frac{c \epsilon}{\alpha^{\bar{\nu}} \rho^{\nu}}, \\& \Vert D \Psi-\operatorname{id} \Vert _{r;D(s-3\rho, \frac{r}{4})\times\Pi_{h}}\leq \frac {c \epsilon}{\alpha^{\bar{\nu}} \rho^{\nu+1}}, \end{aligned}$$
such that the conjugate mapping
\(\Phi_{+}(\cdot;\xi)=\Psi ^{-1}\circ\Phi\circ\Psi\)
is generated by
\(H_{+}(\cdot;\xi)=N_{+}+P_{+}\), where
$$N_{+}= \bigl\langle x+\omega_{+}(\xi),\hat{y} \bigr\rangle + \langle A_{ +}u,\hat{v}\rangle+\frac{1}{2}\langle B_{ +}u,u\rangle+\frac{1}{2}\langle C_{ +}\hat{v}, \hat{v}\rangle $$
and
\(P_{+}\)
satisfies
$$\Vert X_{P} \Vert _{r_{+};D(s_{+},r_{+})\times\Pi_{d}}\leqslant\eta_{+}^{2} \alpha^{2\bar{\nu}}_{+}\rho^{\nu}_{+}E_{+}= \epsilon_{+}, $$
with
$$\begin{aligned}& s_{+}=s-5\rho,\qquad \rho_{+}=\sigma\rho,\qquad \eta_{+}=E_{+}, \\& r_{+}= \eta r,\qquad E_{+}=E^{\frac{4}{3}},\qquad \frac{\alpha}{2} \leqslant \alpha_{+} \leqslant\alpha. \end{aligned}$$
Furthermore, we have
$$ \bigl\vert \omega_{+}(\xi)-\omega(\xi) \bigr\vert \leq\epsilon,\quad\forall\xi\in\Pi_{h}. $$
(2.2)
-
(2)
Let
\(\alpha_{+}=\alpha-(K+1)^{\tau+1}\epsilon\),
$$ \bar{\Pi}= \biggl\{ \xi\in\Pi: \bigl\vert \bigl\langle k, \omega_{+}(\xi) \bigr\rangle \bigr\vert < \frac{2\alpha_{+}}{(1+\vert k \vert )^{\tau}}, k\in Z^{n}, K< \vert k \vert \leq K_{+} \biggr\} , $$
(2.3)
and
\(\Pi_{+}=\Pi\setminus\bar{ \Pi}\). Then, for
\(\forall\xi\in\Pi_{+},\forall k\in Z^{n}\)
and
\(0<\vert k \vert \leq K_{+}\), we have
$$ \bigl\vert \bigl\langle k, \omega_{+}(\xi) \bigr\rangle \bigr\vert \geqslant \frac{2\alpha_{+}}{(1+\vert k \vert )^{\tau}} , $$
(2.4)
where
\(K_{+}>0\)
such that
\(\frac{ e^{-K_{+}\rho_{+}}}{\eta_{+}^{2}}= E_{+}\).
-
(3)
Let
\(T_{+}=T+\frac{6\epsilon}{h}\)
and
\(h_{+}=\frac{\alpha _{+}}{2(K_{+}+1)^{\tau+1}T_{+}}\). If
\(h_{+}\leq\frac{5}{6}h\), we have
\(\max_{\xi\in\Pi_{h_{+}}} \vert \frac{\partial\omega_{+}}{\partial\xi} \vert \leq T_{+}\), where
\(\Pi_{h_{+}}\)
is the complex
\(h_{+}\)-neighborhood of
\(\Pi_{+}\).
A. The equivalent form of (
1.2
).
Let
$$\begin{aligned} P(p, \hat{q})={}&P_{000}(x)+ \bigl\langle P_{100}(x), \hat{y} \bigr\rangle + \bigl\langle P_{010}(x), u \bigr\rangle + \bigl\langle P_{001}(x), \hat{v} \bigr\rangle \\ &{}+ \bigl\langle P_{011}(x)u, \hat{v} \bigr\rangle +\frac{1}{2} \bigl\langle P_{020}(x)u, u \bigr\rangle +\frac{1}{2} \bigl\langle P_{002}(x)\hat{v}, \hat{v} \bigr\rangle \\ &{}+ \sum_{\vert i \vert +\vert j \vert +2\vert l \vert \ge 3}P_{lij}\hat{y}^{l}u^{i}\hat{v}^{j} \end{aligned}$$
(2.5)
with
$$P_{lij}=\frac{\partial^{l+i+j} P}{\partial{\hat{y}}^{l} \partial u^{i}\partial{\hat{v}}^{j} }\bigg\vert _{ u=0, \hat{y}=0, \hat{v}=0}. $$
Let
$$Q(x,u,\hat{v})= \bigl\langle Q_{2}(x)u, \hat{v} \bigr\rangle + \frac{1}{2} \bigl\langle Q_{1}(x)u, u \bigr\rangle + \frac{1}{2} \bigl\langle Q_{3}(x)\hat{v}, \hat{v} \bigr\rangle $$
with \(Q_{1}(x)=P_{020}(x), Q_{2}(x)=P_{011}(x), Q_{3}(x)=P_{002}(x)\).
Then we rewrite H as
where \(N+Q\) is the new main term and \(P-Q\) is the new small term.
Now we will study the following function which is equivalent to (1.2):
$$ H(x,u, \hat{y},\hat{v};\xi)=N(x,u, \hat{y},\hat{v};\xi)+P(x,u, \hat{y}, \hat{v};\xi), $$
(2.6)
where
$$N= \bigl\langle x+\omega(\xi), \hat{y} \bigr\rangle +\langle Au,\hat{v}\rangle + \frac{1}{2}\langle B u, u \rangle+\frac{1}{2}\langle C\hat{v}, \hat{v} \rangle+Q(x,u,\hat{v}) $$
and
$$P= P_{000}(x)+ \bigl\langle P_{100}(x), \hat{y} \bigr\rangle + \bigl\langle P_{010}(x), u \bigr\rangle + \bigl\langle P_{001}(x), \hat{v} \bigr\rangle + \sum_{2\vert l \vert +\vert i \vert +\vert j \vert \geqslant3}P_{lij} \hat{y}^{l}u^{i}\hat{v}^{j}. $$
B. Generating functions of conjugate mappings.
For convenience, let \(p=(x,u)\) and \(q=(y,v)\). p̂ and q̂ have a similar meaning. The symplectic structure becomes \(dp\wedge dq\) on \(\mathbb{R}^{n+m}\times \mathbb{R}^{n+m}\). Consider a symplectic mapping \(\Phi:(p, q)\rightarrow(\hat{p},\hat{q})\) generated by
$$ \hat{p}=\partial_{\hat{q}} H(p,\hat{q}), \qquad q=\partial_{p} H(p,\hat{q}), $$
(2.7)
where \(H(p,\hat{q})= N(p,\hat{q})+P(p, \hat{q})\), where N is the main term and P is a small perturbation.
We need a symplectic transformation \(\Psi:(p_{+}, q_{+})\rightarrow(p, q)\) generated by
$$ q=q_{+}+F_{1}(p,q_{+}),\qquad p_{+}=p+F_{2}(p,q_{+}), $$
(2.8)
with
$$\begin{aligned}& F_{1}(p,q_{+})=\frac{\partial F(p,q_{+})}{\partial p}, \\& F_{2}(p,q_{+})= \frac {\partial F(p,q_{+})}{\partial q_{+}}. \end{aligned}$$
The generating function is \(\langle p, q_{+}\rangle+F(p, q_{+})\) with F being a small function.
By (2.7) and (2.8), we have a conjugate mapping \(\Phi=\Psi^{-1}\circ\Phi\circ \Psi: (p_{+},q_{+})\rightarrow(\hat{p}_{+},\hat{q}_{+}) \) implicitly by
$$ \hat{p}_{+}=H_{2}(p,\hat{q})+F_{2}(\hat{p}, {\hat{q}}_{+}), \qquad q_{+}=H_{1}(p,\hat{q})-F_{1}(p, q_{+}) $$
(2.9)
with
$$\begin{aligned}& H_{1}(p,\hat{q})=\frac{\partial H(p,\hat{q})}{\partial p}, \\& H_{2}(p,\hat{q})= \frac{\partial H(p,\hat{q})}{\partial\hat{q}}. \end{aligned}$$
So we have the following lemma.
Lemma 2.1
[19]
The conjugate symplectic mapping
\(\Phi_{+}\)
can be implicitly determined by a generating function
\(H_{+}(p_{+}, {\hat{q}}_{+})\)
through
$$ \hat{p}_{+}=\partial_{\hat{q}_{+}}H_{+}(p_{+},\hat{q}_{+}),\qquad q_{+}=\partial_{p_{+}} H_{+}(p_{+},\hat{q}_{+}), $$
(2.10)
where
$$ \begin{aligned} H_{+}(p_{+}, {\hat{q}}_{+})={}&H(p, \hat{q})+H_{1}(p,\hat{q})F_{2}(p, q_{+})-H_{2}(p,\hat{q})F_{1}(\hat{p}, {\hat{q}}_{+}) \\ &{}+F(\hat{p}, {\hat{q}}_{+})-F(p,q_{+})-F_{1}(p,q_{+})F_{2}(p,q_{+}), \end{aligned} $$
(2.11)
where
\(p,\hat{p}, \hat{q}, q_{+}\)
depend on
\((p_{+},\hat{q}_{+})\)
as explained above.
Set
\( z=(p_{+}, \hat{q}_{+})\). We have
$$ H_{+}(z)=H(z)+F \bigl(N_{2}(z),\hat{q}_{+} \bigr)-F \bigl(p_{+}, N_{1}(z) \bigr)+\Upsilon(z) $$
(2.12)
with
$$N_{1}(z)=\frac{\partial N(p_{+},\hat{q}_{+})}{\partial p_{+}}, \qquad N_{2}(z)=\frac{\partial N(p_{+},\hat{q}_{+})}{\partial\hat{q}_{+}} $$
and
\(\Upsilon(z) \)
satisfying
$$ |\!|\!| X_{\Upsilon} |\!|\!| _{r;\mathcal{D}(s-5\rho, r/16)}\le \frac{c\epsilon^{2}}{\alpha^{2\bar{\nu}}\rho^{2\nu}}, $$
(2.13)
where
\(\bar{\nu}=\bar{n}+1\)
and
\(\nu=\tau(\bar{n}+1)+\bar{n}+n\).
C. Truncation.
Let
where
$$\begin{aligned} R(p, \hat{q})&=\sum_{\vert k \vert \leqslant K} \bigl(P^{k}_{000}(x)+ \bigl\langle P^{k}_{100}(x), \hat{y} \bigr\rangle + \bigl\langle P^{k}_{010}(x), u \bigr\rangle + \bigl\langle P^{k}_{001}(x), \hat{v} \bigr\rangle \bigr) \end{aligned}$$
(2.15)
$$\begin{aligned} & =R_{000}(x)+ \bigl\langle R_{100}(x), \hat{y} \bigr\rangle + \bigl\langle R_{010}(x), u \bigr\rangle + \bigl\langle R_{001}(x), \hat{v} \bigr\rangle , \end{aligned}$$
(2.16)
and
$$P-R=\sum_{\vert l \vert +\vert i \vert +\vert j \vert =1}P_{lij} \hat{y}^{l}u^{i}\hat{v}^{j}+\sum _{2\vert l \vert +\vert i \vert +\vert j \vert \geqslant3}P_{lij}\hat{y}^{l}u^{i} \hat{v}^{j}. $$
Let \(F(p, \hat{q})\) possess the same form as (2.15).
D. Extending the small divisor estimate.
\(\forall\xi\in\Pi_{h}\), there exists \(\xi_{0} \in\Pi\) such that \(\vert \xi-\xi_{0} \vert < h\). So we have, for \(0<\vert k \vert \leqslant K\),
$$\begin{aligned} \bigl\vert \bigl\langle k,\omega(\xi) \bigr\rangle +2\pi l \bigr\vert & \geqslant\bigl\vert \bigl\langle k,\omega (\xi_{0}) \bigr\rangle +2 \pi l\bigr\vert - \bigl\vert \bigl\langle k,\omega(\xi)-\omega( \xi_{0}) \bigr\rangle \bigr\vert \geqslant\frac{\alpha}{(1+\vert k \vert )^{\tau}}. \end{aligned}$$
E. Homological equation.
By (2.12), it follows that
$$\begin{aligned}& N(p_{+},\hat{q}_{+})+P( p_{+},\hat{q}_{+})-F \bigl(p_{+}, N_{p}(p_{+}, \hat{q}_{+}) \bigr)+F \bigl(N_{q}(p_{+},\hat{q}_{+}), \hat{q}_{+} \bigr)+\Upsilon(z) \\& \quad = \bar{N}(p_{+},\hat{q}_{+})+\bar{P}(p_{+},\hat{q}_{+}). \end{aligned}$$
(2.17)
For simplicity, below we drop the subscripts ‘+’ in \(p_{+}\) and \(\hat{q}_{+}\).
Similar to the discussion in [27], we get the homological equations.
$$ -F \bigl(N_{q}(p,\hat{q}),\hat{q} \bigr)+F \bigl(p, N_{p}(p,\hat{q}) \bigr)=R-[R]. $$
(2.18)
To solve (2.18), we need some preparations.
Let \(x+\omega=\tilde{x} \). Since
$$\hat{p}=N_{\hat{q}}(p, \hat{p})= \bigl(\tilde{x} , (A+Q_{2})u+(C+Q_{3})v \bigr) $$
and
$$q=N_{p}(p, \hat{q})= \bigl(\hat{y}+Q_{x},(A+Q_{2}) \hat{v}+(B+Q_{1})u \bigr), $$
we have
$$\begin{aligned} F \bigl(p, N_{p}(p, \hat{q}) \bigr) = {}& F_{000}(x)+ \bigl\langle F_{100}(x), \hat{y}+Q_{x} \bigr\rangle + \bigl\langle F_{010}(x), u \bigr\rangle \\ & {}+ \bigl\langle F_{001}(x), (A+Q_{2})^{T} \hat{v}+(B+Q_{1})u \bigr\rangle \end{aligned}$$
(2.19)
and
$$\begin{aligned} F \bigl(N_{\hat{q}}(p, \hat{q}), \hat{q} \bigr) = {}& F_{000}(\tilde{x})+ \bigl\langle F_{100}( \tilde{x}), \hat{y} \bigr\rangle + \bigl\langle F_{001}(\tilde{x}), \hat{v} \bigr\rangle \\ & {}+ \bigl\langle F_{010}(\tilde{x}), (A+Q_{2})^{T}u+(C+Q_{3}) \hat{v} \bigr\rangle . \end{aligned}$$
(2.20)
So we get
$$F \bigl(N_{\hat{q}}(p,\hat{q}),\hat{q} \bigr)-F \bigl(p, N_{p}(p, \hat{q}) \bigr)=L_{0}+L_{10}+L_{01}- \bigl\langle F_{100}(x), Q_{x} \bigr\rangle , $$
where
$$\begin{aligned}& L_{0}= \bigl(F_{000}(\tilde{x} )- F_{000}(x ) \bigr)+ \bigl\langle F_{100}(\tilde{x})- F_{100}(x), \hat{y} \bigr\rangle , \\& L_{10}= \bigl\langle A^{T}F_{010}(\tilde{x})-F_{010}(x)-BF_{001}(x), u \bigr\rangle + \bigl\langle Q_{2}^{T}F_{010}(\tilde{x})-Q^{T}_{1}F_{010}(x), u \bigr\rangle \end{aligned}$$
and
$$L_{01}= \bigl\langle C^{T}F_{010}(\tilde{x})+F_{010}(x)-AF_{001}(x), u \bigr\rangle + \bigl\langle Q_{3}^{T}F_{010}(\tilde{x})-Q_{2}F_{010}(x), u \bigr\rangle . $$
After these preparations, we can solve (2.18) which is equivalent to solving the following:
$$ \textstyle\begin{cases} F_{000}(\tilde{x} )- F_{000}(x )=R_{000}(x)-[R_{000}], \\ F_{100}(\tilde{x})- F_{100}(x)=R_{100}(x)-[R_{100}], \end{cases} $$
(2.21)
and
$$ \textstyle\begin{cases} A^{T}F_{010}( \tilde{x})-F_{010}(x)-BF_{001}(x)+ Q_{2}^{T}F_{010}( \tilde{x})-Q^{T}_{1}F_{010}(x)=R_{010}(x), \\ C^{T}F_{010}(\tilde{x})+F_{010}(x)-AF_{001}(x)+ Q_{3}^{T}F_{010}(\tilde{x})-Q_{2}F_{010}(x)=R_{001}(x). \end{cases} $$
(2.22)
Firstly, we solve (2.21) for \(F_{000} \) and \(F_{100} \). Expand \(F_{000}(x)\) and \(R_{000}(x)\):
$$\begin{aligned}& F_{000}(x)=\sum_{k\in\mathbb{Z}^{n}} F_{k000}e^{\mathrm{i}\langle k, x\rangle}, \\& R_{000}(x)=\sum _{k\in\mathbb{Z}^{n}} R_{k000}e^{\mathrm{i}\langle k, x\rangle}. \end{aligned}$$
Then we get
$$ F_{kj00}=\frac{1}{e_{k}-1} R_{kj00} $$
(2.23)
with \(e_{k}=e^{\mathrm{i}\langle k, \omega\rangle}, k\ne0\). By Assumption 2, we have the following estimate:
$$\Vert F_{k000} \Vert _{s-\rho}\le\frac{c\Vert R_{k000} \Vert _{s} }{\alpha\rho^{\tau +n}}. $$
So we have
$$\Vert X_{F_{000}} \Vert _{r;D(s-\rho)\times\Pi}\leq\frac{c\Vert R_{000} \Vert _{s} }{\alpha^{\bar{\nu}}{\rho^{\nu}}} . $$
Similarly we have
$$\Vert X_{F_{100}} \Vert _{r;D(s-\rho)\times\Pi}\leq\frac{c\Vert R_{100} \Vert _{s} }{\alpha^{\bar{\nu}} \rho^{\nu}}. $$
Next we will get \(F_{010}\) and \(F_{001}\) from (2.22). Let \(F_{010}=(F^{1}_{010}, \ldots, F^{m}_{010})\) and \(F_{001}=(F^{1}_{001}, \ldots, F^{m}_{001})\). Expand \(F^{l}_{0i'j'}(x)\) and \(R^{l}_{0i'j'}(x)\):
$$\begin{aligned}& F^{l}_{0i'j'}(x)=\sum_{k\in\mathbb{Z}^{n}} F^{l}_{k0i'j'}e^{\mathrm {i}\langle k, x\rangle}, \\& R^{l}_{0i'j'}(x)= \sum_{k\in\mathbb{Z}^{n}} R^{l}_{k0i'j'}e^{\mathrm{i}\langle k, x\rangle} \end{aligned}$$
with \(l=1,2,\ldots,m\) and \((i',j')=(0,1),(1,0)\).
Let
$$\begin{aligned}& X= \left ( \textstyle\begin{array}{@{}c@{}} F^{l}_{010} \\ F^{l}_{001} \end{array}\displaystyle \right ), \qquad Y=\left ( \textstyle\begin{array}{@{}c@{}} R^{l}_{010} \\ R^{l}_{001} \end{array}\displaystyle \right ), \\& M_{k}=\left ( \textstyle\begin{array}{@{}c@{\quad}c@{}} ae_{k}-1 & -b \\ be_{k}& e_{k}-a \end{array}\displaystyle \right ). \end{aligned}$$
To get the estimate of \(F^{l}_{0i'j'}(x)\), we rewrite (2.22) as the following form:
$$ \sum_{k\in Z^{n}} M_{k}X_{k}e^{\mathrm{i}\langle k, x\rangle}= \sum_{k\in Z^{n}}Y_{k}e^{\mathrm{i}\langle k, x\rangle}+\sum _{k\in Z^{n}} N_{k}X_{k}e^{\mathrm{i}\langle k, x\rangle}, $$
(2.24)
where \(N_{k}\) is composed of the components of \(Q_{j}, j=1,2,3,4\). We can set \(\vert N_{k} \vert \leqslant\epsilon_{0}\).
By a direct calculation, we have
$$\vert M_{k} \vert = \vert e_{k}- \lambda_{i}\vert \bigl\vert e_{k}-\lambda'_{i} \bigr\vert , $$
where
$$\lambda_{i}=\frac{ \Delta_{i}+\sqrt{( \Delta _{i})^{2}-4}}{2},\qquad \lambda_{i}= \frac{ \Delta_{i}-\sqrt{( \Delta _{i})^{2}-4}}{2}, \quad i=1,2,\ldots,m, $$
are the eigenvalues of Ω. By Assumption 2, we have \(\vert \lambda_{i} \vert \neq1, \vert \lambda'_{i} \vert \neq 1\). Since \(\vert e_{k} \vert =1\), it follows that \(\vert M_{k} \vert >c_{0}>0\). We rewrite (2.24) as
$$\Lambda X=Y+\Lambda_{1} X. $$
Since \(\vert M_{k} \vert >0\), we have the operator Λ is invertible and hence \(X=\Lambda^{-1}(Y+\Lambda_{1}X)\). Set \(\Xi X=X-\Lambda^{-1}\Lambda_{1}X\), then we have \(\Xi X=L^{-1}Y\). So
$$\begin{aligned} \Vert \Xi X_{1}- \Xi X_{2} \Vert &=\bigl\Vert \Lambda^{-1}\Lambda_{1}X_{1}-\Lambda^{-1} \Lambda_{1}X_{1} \bigr\Vert \\ & \leqslant \bigl\Vert \Lambda^{-1} \bigr\Vert \cdot\bigl\Vert \Lambda _{1}\Vert \cdot \Vert X_{1}-X_{2} \bigr\Vert . \end{aligned}$$
Set \(\epsilon_{0}=\frac{c_{0}}{2}\), then we have
$$\Vert \Xi X_{1}- \Xi X_{2} \Vert \leqslant \frac{1}{2}\Vert X_{1}-X_{2} \Vert . $$
By the implicit function theorem, we have \(\Vert X \Vert \leqslant c\Vert Y \Vert \), with c depending on \(A,B,C\). So
$$\Vert F_{0i'j'} \Vert _{D(s-\rho,r)\times\Pi}\le\frac{c r\Vert R_{0i'j'} \Vert _{D(s,r)\times\Pi}}{\alpha^{\bar{\nu}} \rho^{\nu}} $$
with \((i',j')=(0,1),(1,0)\).
From the above discussion, we have
$$ \Vert X_{F} \Vert _{r;D(s-\rho,r)\times\Pi}\le \frac{c}{\alpha^{\bar{\nu}}\rho^{\nu}} \Vert X_{R} \Vert _{r;D(s,r)\times\Pi}\le \frac{c\epsilon}{\alpha^{\bar{\nu}} \rho^{\nu}}, $$
(2.25)
where \(\bar{\nu}=\bar{n}+1\) and \(\nu=\tau(\bar{n}+1)+\bar{n}+n\).
By (2.8) and (2.25), we obtain
$$\begin{aligned}& \Vert \Psi-\operatorname{id} \Vert _{r;D(s-3\rho, \frac{r}{4})\times\Pi}\leq\frac{c \epsilon}{\alpha^{\bar{\nu}} \rho^{\nu}}, \\& \Vert D \Psi-\operatorname{id} \Vert _{r;D(s-3\rho, \frac{r}{4})\times\Pi}\leq \frac{c \epsilon}{\alpha^{\bar{\nu}}\rho^{\nu+1}}. \end{aligned}$$
From the above discussion, we get the conjugate mapping \(\Phi _{+}(\cdot;\xi)= \Psi^{-1}\circ\Phi\circ\Psi\) generated by \(H_{+}=\bar{N}+\bar{P}\), where
$$\bar{N}=[R_{000}]+ \bigl\langle x+\omega(\xi)+R_{100}, \hat{y} \bigr\rangle +\langle Au,\hat{v}\rangle+\frac{1}{2}\langle B u, u \rangle+ \frac{1}{2}\langle C\hat{v}, \hat{v}\rangle+Q(x,u,\hat{v}), $$
and
$$\bar{P}=\Upsilon+(P-R)- \bigl\langle F_{100}(x), Q_{x} \bigr\rangle . $$
Recalling (2.6), we find there are second order terms of \(u,\hat{v}\) in \(P_{+}\), so we will put these terms into the main term. Let \(Q_{+}=-\langle F_{100}(x), Q_{x}\rangle+\Upsilon_{1}\), where \(\Upsilon_{1}\) contains the second order term on \(u,\hat{v}\) in ϒ.
Then we get \(H_{+}=N_{+}+P_{+}\), where
$$\begin{aligned} N_{+}={}& [R_{000}]+ \bigl\langle x+\omega( \xi)+R_{100}, \hat{y} \bigr\rangle +\langle Au,\hat{v}\rangle+\frac{1}{2}\langle B u, u \rangle+\frac{1}{2}\langle C\hat{v}, \hat{v}\rangle+Q(x,u,\hat{v})+ Q_{+} \end{aligned}$$
and
$$P_{+}=(P-R)+\Upsilon-\Upsilon_{1}. $$
We note that \(N_{+}\) has the same form as N.
Since
$$P-R=\sum_{\vert l \vert +\vert i \vert +\vert j \vert =1}P_{lij} \hat{y}^{l}u^{i}\hat{v}^{j}+\sum _{2\vert l \vert +\vert i \vert +\vert j \vert \geqslant3}P_{lij}\hat{y}^{l}u^{i} \hat{v}^{j}, $$
we have
$$ \Vert X_{P-R} \Vert _{\eta r; \mathcal{D}(s-5\rho, \eta r)\times\Pi }\leqslant c \cdot \epsilon \biggl(\eta+\frac{e^{-K\rho}}{\eta^{2}} \biggr). $$
(2.26)
By (2.13) and (2.26), we have
$$\Vert X_{P_{+}} \Vert _{\eta r; D(s-5\rho, \eta r)\times\Pi}\le c\cdot\epsilon \biggl( \eta+\frac{e^{-K\rho}}{\eta^{2}} \biggr) + \frac{c\epsilon^{2}}{\eta^{2}\alpha^{2\bar{\nu}}\rho^{2\nu}} . $$
F. Choice of parameters.
We choose \(0< E<1\) and set
$$\eta=E, \qquad \epsilon=\eta^{2}\alpha^{2\overline{\nu}}\rho^{2\nu }E,\qquad\frac{e^{-K\rho}}{\eta^{2}}=E,\qquad h=\frac{\alpha}{2(K+1)^{\tau+1}T}. $$
Fix \(\sigma\in(0,1)\). We define
$$\begin{aligned}& \rho_{+}=\sigma\rho, \qquad s_{+}=s-5\rho,\qquad r_{+}=\eta r, \\& \alpha_{+}=\alpha-(K+1)^{\tau+1}\epsilon,\qquad \epsilon_{+}=c\eta\epsilon,\qquad E_{+}=cE^{\frac{4}{3}}. \end{aligned}$$
By the estimate of \(P_{+}\), supposing \(\alpha<2\alpha_{+}\), we have
$$\begin{aligned} \Vert X_{P_{+}} \Vert _{\eta r; D(s-5\rho, \eta r)\times\Pi_{+}} &\le c\cdot \epsilon \biggl( \eta+\frac{e^{-K\rho}}{\eta^{2}} \biggr) + \frac{c\epsilon^{2}}{\eta^{2}\alpha^{2\bar{\nu}}\rho^{2\nu}} \\ & \leq c\eta\epsilon=c\alpha^{2\overline{\nu}}\rho ^{2\nu}E^{4} \\ & \leq c\alpha^{2\bar{\nu}}_{+}\rho^{2\tau}_{+}E_{+}^{3}. \end{aligned}$$
Setting \(\epsilon_{+}=c\alpha_{+}\rho^{\tau}_{+}E_{+}^{3}\), we arrive at
$$\Vert X_{P_{+}} \Vert _{r_{+};\mathcal{D}(s_{+},r_{+})\times\Pi_{+}}\le\epsilon_{+}. $$
By Iteration Lemma, we have
$$\begin{aligned} \bigl\vert \bigl\langle k,\omega_{+}(\xi) \bigr\rangle +2\pi l \bigr\vert &\geqslant\bigl\vert \bigl\langle k,\omega(\xi) +2\pi l \bigr\rangle \bigr\vert - \bigl\vert \bigl\langle k,\omega_{+}(\xi)-\omega (\xi) \bigr\rangle \bigr\vert \\ &\geq\frac{2}{(1+\vert k \vert )^{\tau}} \bigl[\alpha-(1+K)^{\tau+1}\epsilon \bigr] \\ &=\frac{2\alpha_{+}}{(1+\vert k \vert )^{\tau}}, \end{aligned}$$
where \(\xi\in\Pi_{+}\) and \(0\neq k\leq K\). So we choose \(\alpha_{+}= \alpha-(1+K)^{\tau+1}\epsilon\). By the choice of \(\alpha_{+}\), the definition of Π̄ in (2.3) and \(\Pi_{+}=\Pi\setminus\bar{ \Pi}\), it follows, for \(\forall\xi\in\Pi_{+}\),
$$\bigl\vert \bigl\langle k, \omega_{+}(\xi) \bigr\rangle +2\pi l \bigr\vert \geqslant \frac{2\alpha_{+}}{(1+\vert k \vert )^{\tau}},\quad \forall k \in\mathbb{Z}^{n},0< \vert k \vert \leq K_{+}. $$
Now we give the choice of \(T_{+}\). Suppose \(h_{+}\leq\frac{5}{6}h\). By the Cauchy estimate, for \(\xi\in \Pi_{h_{+}}^{+} \), we have
$$\bigl\vert \partial \bigl(\omega_{+}(\xi)-\omega(\xi) \bigr)/ \partial\xi \bigr\vert _{h_{+}}\leq \frac{\vert \omega_{+}(\xi)-\omega(\xi) \vert _{h}}{h-h_{+}}\leq \frac {6\epsilon}{h}. $$
Define \(T_{+}=T+\frac{6\epsilon}{h}\) and \(h_{+}=\frac{\alpha _{+}}{T_{+}(1+K_{+})^{\tau+1}}\), then we have
$$\max_{\xi\in\Pi_{h_{+}}}\vert \partial\omega_{+}/ \partial\xi \vert \leqslant\max_{\xi\in\Pi_{h_{+}}}\bigl\vert \partial \bigl(\omega_{+}-\omega (\xi) \bigr)/ \partial\xi \bigl\vert +\max _{\xi\in\Pi_{h_{+}}} \vert \partial\omega/ \partial\xi \vert \leq T_{+}. $$
Thus all the parameters for \(H_{+}\) are defined, and so Iteration Lemma is proved.
2.2 Iteration
Define inductive sequences
$$\begin{aligned}& \rho_{j+1}=\sigma\rho_{j}, \qquad s_{j+1}=s_{j}-5\rho,\qquad r_{j+1}=\eta_{j} r_{j}, \\& \alpha_{j+1}=\alpha_{j}-(1+K_{j})^{\tau+1}\epsilon _{j},\qquad E_{j+1}=cE_{j}^{\frac{4}{3}},\qquad T_{j+1}=T_{j}+ \frac{6\epsilon_{j}}{d_{j}}, \\& \eta_{j+1}=E_{j+1},\qquad \epsilon_{j+1}= \alpha^{2\bar{\nu}}_{j}\rho _{j+1}^{2\nu}E_{j+1}{ \eta_{j+1}^{2}}, \end{aligned}$$
and
$$\frac{e^{-K_{j+1}\rho_{j+1}}}{\eta _{j+1}^{2}}=E_{j+1},\qquad h_{j+1}=\frac{\alpha_{j+1}}{(1+K)_{j}^{\tau+1}T_{j+1}}. $$
Define
$$\Pi_{j+1}= \biggl\{ \xi\in\Pi_{j}: \bigl\vert \bigl\langle \omega_{j}(\xi)+2\pi l,k \bigr\rangle \bigr\vert \geqslant \frac{2\alpha_{j}}{( \vert k\vert +1)^{\tau}}, K_{j}< \vert k \vert \leq K_{j+1} \biggr\} $$
and
$$\Pi_{h_{j+1}}= \bigl\{ \xi\in C^{n}: \operatorname{dist}( \xi, \Pi _{j+1})\leqslant h_{j+1} \bigr\} . $$
In the following we give some estimates for Gevrey-smoothness.
Let \(\gamma_{j}=K_{j}\rho_{j}=-\ln E_{j}^{3}\). We have \(\frac {K_{j+1}}{K_{j}}=\frac{1}{2}\frac{\operatorname{ln}c}{\operatorname{ln}E_{j}}+\frac{4}{3\sigma}\), and hence \(\frac{4}{3}\leq\frac{K_{j+1}}{K_{j}}\leq\frac{4}{3}\frac{1}{\rho }\) for \(E_{0}\) small enough. If \(12< K_{j}< K_{j+1}\), we have \(\frac{h_{j+1}}{h_{j}}=\frac{\alpha_{j+1}}{\alpha _{j}}\frac{T_{j}}{T_{j+1}}\frac{(1+K_{j})^{\tau}}{(1+K_{j+1})^{\tau }}\leq\frac{5}{6}\), and hence \(h_{j+1}\leq\frac{5}{6} h_{j}\), which means \(h_{+}\leq \frac{5}{6} h\) holds. Suppose \(\max_{ \xi\in\Pi_{h_{j}}}\vert \frac{\partial\omega_{j}}{\partial\xi} \vert \leq T_{j}\). Let \(T_{j+1}=T_{j}+\frac{6\epsilon_{j}}{d_{j}}\). Then we have \(\vert \frac{\partial\omega_{j+1}}{\partial\xi} \vert =\vert \frac{\partial(\omega_{j+1}- \omega_{j} +\omega_{j})}{\partial\xi} \vert \leq T_{j+1}\). By the choice of σ, we can easily get that \(\rho_{j+1} \gamma_{j+1}^{\frac{\delta}{\tau+1}}\geq\rho_{j} \gamma_{j}^{\frac{\delta}{\tau+1}}\). Since \(\rho_{0} \gamma_{0}^{\frac{\delta}{\tau+1}}\geq1\), we have \(\rho_{j} \gamma_{j}^{\frac{\delta}{\tau+1}}\geq1\) for all \(j>1\).
By the definitions of \(T_{j},h_{j}\) and \(\epsilon_{j}\), we have \(T_{j+1}=T_{j}+\frac{6\epsilon_{j}}{d_{j}} =T_{0}+6\sum_{i=0}^{j} (\gamma_{i})^{\tau}e^{-\gamma_{i}}T_{i}\). Noting \(\gamma_{j}=-\ln E_{j}^{3}\) and \(E_{j}\leqslant (cE_{0})^{(\frac{4}{3})^{j}}\), we can choose \(E_{0}\) to be sufficiently small such that \(\sum_{i=0}^{j} (\gamma_{i})^{\tau}e^{-\gamma_{i}}T_{i}\leq\frac{1}{6}\), then we have \(T_{0}\leq T_{j}\leq T_{0}+1\). Similarly, we have \(\frac{1}{2}\alpha_{j}\leq\alpha_{j+1}\leq\alpha_{j}\).
By Iteration Lemma, there exists a sequence of symplectic mappings \(\{\Psi_{j}(\cdot;\xi)\}\), generated by \(\langle p, q_{+} \rangle+ F_{j}(p,q_{+})\), satisfying
$$\begin{aligned}& \Vert \Psi_{j}-\operatorname{id} \Vert _{r_{j};D(s_{j}-3\rho_{j},r_{j})\times\Pi_{h_{j}}}\le \frac{c \epsilon_{j} }{\alpha_{j}^{\bar{\nu}} \rho_{j}^{\nu}}, \\& \Vert D\Psi_{j}-\operatorname{Id} \Vert _{r_{j};D(s_{j}-3\rho_{j},r_{j})\times\Pi_{h_{j}}}\le \frac{c \epsilon_{j} }{\alpha_{j}^{\bar{\nu}} \rho_{j}^{\nu+1}}. \end{aligned}$$
Define \(\Psi^{j}=\Psi_{1}\circ\Psi_{2}\circ\cdots\circ\Psi_{j}\). Then we have a sequence of symplectic mappings \(\{\Phi_{j+1}(\cdot ;\xi)=(\Psi^{j})^{-1}\circ\Phi_{j}\circ\Psi^{j}\}\), generated by \(H_{j+1}(\cdot;\xi)=N_{j+1}+P_{j+1}\), where
$$N_{j+1}= \bigl\langle x+\omega_{j+1}(\xi),\hat{y} \bigr\rangle +\langle A_{ j+1}u,\hat{v}\rangle+\frac{1}{2}\langle B_{ j+1}u,u\rangle+\frac{1}{2}\langle C_{ j +1}\hat{v}, \hat{v}\rangle $$
with
$$\vert \omega_{j+1}-\omega_{j} \vert \le c \epsilon_{j},\quad \forall j \geqslant1, $$
and
$$\Vert X_{P_{j+1}} \Vert _{ r_{j+1}; \mathcal{D}(s_{j+1}, r_{j+1})\times\Pi _{h_{j+1}}}\le\epsilon_{j+1}. $$
2.3 The convergence of the KAM iteration
Now we prove the convergence of the KAM iteration. Similar to [27], we have
$$\bigl\Vert \Psi^{j}-\Psi^{j-1} \bigr\Vert _{r_{j};D(s_{j}-3\rho_{j},r_{j})\times\Pi _{h_{j}}}\leq c \alpha_{j-1}^{\bar{\nu}}\rho_{j-1}^{\nu} E^{3}_{j-1}, $$
and
$$\bigl\Vert D \bigl(\Psi^{j}-\Psi^{j-1} \bigr) \bigr\Vert _{r_{j};D(s_{j}-3\rho_{j},r_{j})\times\Pi _{h_{j}}}\leq\alpha_{j-1}^{\bar{\nu}} \rho_{j-1}^{\nu+1} E^{3}_{j-1}. $$
By the Cauchy estimate, we have
$$\begin{aligned}& \bigl\Vert \partial^{\beta}_{\xi} \bigl(\Psi^{j}- \Psi^{j-1} \bigr) \bigr\Vert _{r_{j};D(s_{j}-3\rho_{j},r_{j})\times\Pi_{h_{j}}}\leq\frac {c\alpha_{j-1}^{\bar{\nu}}\rho_{j-1}^{\nu} E^{3}_{j-1}\beta!}{h_{j}^{\vert \beta! \vert }}, \\& \bigl\Vert \partial^{\beta}_{\xi}D \bigl(\Psi^{j}- \Psi^{j-1} \bigr) \bigr\Vert _{r_{j};D(s_{j}-3\rho_{j},r_{j})\times\Pi_{h_{j}}}\leq\frac {c\alpha_{j-1}^{\bar{\nu}}\rho_{j-1}^{\nu+1} E^{3}_{j-1}\beta !}{h_{j}^{\vert \beta! \vert }} \end{aligned}$$
and
$$\bigl\Vert \partial^{\beta}_{\xi} \bigl(\omega^{j}- \omega^{j-1} \bigr) \bigr\Vert _{\Pi _{j}}\leq \frac{c\epsilon_{j-1}\beta!}{h_{j}^{\vert \beta! \vert }}. $$
Let \(U_{j}^{\beta}=\frac{c\alpha_{j-1}^{\bar{\nu}}\rho _{j-1}^{\nu} E^{3}_{j-1}\beta!}{h_{j}^{\vert \beta! \vert }}\) and \(G_{j}^{\beta}=\frac{c\epsilon_{j-1}\beta!}{h_{j}^{\vert \beta! \vert }}\). Now we estimate \(U_{j}^{\beta} \) and \(G_{j}^{\beta}\) for \(\beta\in Z^{+}_{n}\).
Since \(\rho_{j} \gamma_{j}^{\frac{\delta}{\tau+1}}\geq1\) for all \(j>1\), we have \(\frac{1}{\rho_{j}}\leq\gamma_{j}^{\frac {\delta}{\tau+1}}\). Then we have \(K_{j}=\frac{\gamma_{j}}{\rho_{j}} \leq\gamma _{j}^{1+\frac{\delta}{\tau+1}}\), which means that \(K_{j}^{\tau+1}\leq\gamma_{j}^{\tau+1+\delta}\). Noting that \(h_{j}= \frac{\alpha_{j}}{2(K+1)_{j}^{\tau+1}T_{j}}, T_{j}< T+1, \frac{1}{2}\alpha\leq\alpha_{j}\) and \(E_{j-1}= E_{j}^{\frac{3}{4}}=e^{-\frac{\gamma_{j}}{4}}\), we have
$$\begin{aligned} U_{j}^{\beta}&\leq c \alpha^{\bar{\nu}} \rho_{j}^{\nu} \beta! \biggl( \frac{T+1}{\frac{\alpha}{2}} \biggr)^{\vert \beta \vert } \bigl(\gamma_{j}^{\tau+1+\delta} \bigr)^{\vert \beta \vert }e^{-\frac{3\gamma_{j}}{4}} \\ &\leq c \rho_{j}^{\nu} \biggl( \frac{2(T+1)}{\alpha} \biggr)^{\vert \beta \vert } \beta! \bigl[ \gamma_{j}^{\beta_{1}}e^{-\frac{3\gamma_{j}}{4}\frac {1}{(\tau+\delta)(n+1)}} \cdots\gamma_{j}^{\beta_{n}}e^{-\frac{3\gamma _{j}}{4}\frac{1}{(\tau+\delta)(n+1)}}\bigr]^{\tau+\delta}e^{-\frac {3\gamma_{j}}{4}\frac{1}{n+1}} \\ &\leq c \rho_{j}^{\nu}J^{\vert \beta \vert }\beta!^{\mu}J_{j}^{\frac {9}{4(n+1)}}, \end{aligned}$$
where \(J= \frac{2T+1}{\alpha}[ \frac{4(\mu-1)(n+1)}{3}]^{\mu-1},\mu=\tau+\delta\), and c only depends on \(n,\alpha,\mu\).
In the same way, we have
$$G_{j}^{\beta}\leq c \rho_{j}^{2\nu}J^{\vert \beta \vert } \beta!^{\mu }E_{j}^{\frac{9}{4(n+1)}}. $$
Note that \(s_{j}\rightarrow\frac{s}{2}, r_{j}\rightarrow0, h_{j}\rightarrow0\) as \(j\rightarrow\infty\). Let \(D_{*}=D(\frac{s}{2},0), \Pi_{*}=\bigcap_{j\geq0}\Pi^{j}\) and \(\Psi_{*}=\lim_{j\rightarrow\infty}\Psi^{j}\). Then we have
$$\bigl\Vert \partial^{\beta}_{\xi}(\Psi_{*}- \operatorname{id}) \bigr\Vert _{\frac{r}{2};D(*)\times \Pi_{*}}\leq c\rho_{0}^{\nu} J^{\vert \beta \vert }\beta!^{\mu}E_{0}^{\frac {9}{4(n+1)}}, \quad \forall \beta\in Z^{+}_{n}. $$
Since \(\Psi_{j}\) is affine in y, \(\Psi^{j}\) is also affine in y, and hence we have the convergence of \(\partial^{\beta}_{\xi }\Psi^{j} \) to \(\partial^{\beta}_{\xi}\Psi^{*}\) on \(D(\frac{s}{2},\frac{r}{2})\) and
$$\bigl\Vert \partial^{\beta}_{\xi}(\Psi_{*}- \operatorname{id}) \bigr\Vert _{\frac{r}{2};D(\frac {s}{2},\frac{r}{2})\times\Pi_{*}}\leq c\rho_{0}^{\nu} J^{\vert \beta \vert }\beta!^{\mu}E_{0}^{\frac{9}{4(n+1)}}, $$
\(\forall\beta\in Z^{+}_{n}\). Thus we proved (1.6).
Let \(\omega_{*}=\lim_{j\rightarrow\infty}\omega_{j}\). Similarly, it follows that
$$\bigl\vert \partial^{\beta}_{\xi} \bigl(\omega_{*}( \xi)-\omega \bigr) (\xi) \bigr\vert _{\Pi _{*}}\leq c\rho_{0}^{2\nu}J^{\vert \beta \vert } \beta!^{\mu}E_{0}^{\frac{9}{4(n+1)}}, \quad \forall\beta\in Z^{+}_{n}. $$
Moreover we have
$$\bigl\vert \bigl\langle \omega_{*}(\xi),k \bigr\rangle \bigr\vert \geq\frac{\alpha _{*}}{(1+\vert k \vert )^{\tau}} $$
for all \(\xi\in\prod_{*}\) and \(0 \neq k\in Z^{n}\), where \(\alpha_{*}= \lim_{j\rightarrow\infty}\alpha^{j}\), with \(\frac{\alpha}{2} \leq\alpha_{*}\leq\alpha\). Thus we proved (1.7) and (1.8).
2.4 Estimate of measure
We note that \(\beta\geqslant1\) in Assumption 1 for symplectic mappings , while \(\beta\geqslant0\) in Hamiltonian systems [24, 25]. So the non-degeneracy condition in symplectic mappings and that in Hamiltonian systems are different. It means that the estimate of measure is different in two cases. But the proof for symplectic mappings is similar to [24, 25], so we omit the details.