Skip to main content

Cauchy problem of the generalized Zakharov type system in \(\mathbf{R}^{2}\)

Abstract

In this paper, we consider the initial value problem for a two-dimensional generalized Zakharov system with quantum effects. We prove the existence and uniqueness of global smooth solutions to the initial value problem in the Sobolev space through making a priori integral estimates and the Galerkin method.

1 Introduction

In the recent years, special interest has been devoted to quantum corrections to the Zakharov equations for Langmuir waves in a plasma [1]. By use of a quantum fluid approach, the following modified Zakharov equations are obtained:

$$\begin{aligned} &iE_{t}+ E_{xx}-H^{2} E_{xxxx}=nE, \end{aligned}$$
(1)
$$\begin{aligned} &n_{tt}-n_{xx}+H^{2} n_{xxxx}= \vert E\vert ^{2}_{xx}, \end{aligned}$$
(2)

where H is the dimensionless quantum parameter given by the ratio of the ion plasmon and electron thermal energies. For \(H=0\), this system was derived by Zakharov in [2] to model a Langmuir wave in plasma. The Zakharov system attracted many scientists’ wide interest and attention [3–14].

In this paper, we deal with the following generalized Zakharov system:

$$\begin{aligned} &iE_{t}+\Delta E-H^{2}\Delta^{2}E-nE=0, \end{aligned}$$
(3)
$$\begin{aligned} &n_{tt}-\Delta n+H^{2}\Delta^{2}n- \Delta \vert E\vert ^{2}=0, \end{aligned}$$
(4)

where \((E, n ): (x, t)\in\mathbf{R}^{2}\times\mathbf{R}\) and the initial data are taken to be

$$ E|_{t=0}=E_{0}(x),\qquad n|_{t=0}=n_{0}(x),\qquad n_{t}|_{t=0}=n_{1}(x). $$
(5)

To study a smooth solution of the generalized Zakharov system, we transform it into the following form:

$$\begin{aligned} &iE_{t}+\Delta E-H^{2}\Delta^{2}E-nE=0, \end{aligned}$$
(6)
$$\begin{aligned} &n_{t}-\Delta\varphi=0, \end{aligned}$$
(7)
$$\begin{aligned} &\varphi_{t}-n+H^{2}\Delta n-\vert E\vert ^{2}=0, \end{aligned}$$
(8)

with initial data

$$ E|_{t=0}=E_{0}(x),\qquad n|_{t=0}=n_{0}(x),\qquad \varphi|_{t=0}=\varphi_{0}(x). $$
(9)

Now we state the main results of the paper.

Theorem 1.1

Suppose that \(E_{0}(x)\in H^{l+4}(\mathbf{R}^{2})\), \(n_{0}(x)\in H^{l+2}(\mathbf{R}^{2})\), \(n_{1}(x)\in H^{l}(\mathbf{R}^{2})\), \(l\geq0\). Then there exists a unique global smooth solution of the initial value problem (3)-(5).

$$\begin{aligned} &E(x,t)\in L^{\infty}\bigl(0,T;H^{l+4} \bigl( \mathbf{R}^{2} \bigr) \bigr),\qquad E_{t}(x,t)\in L^{\infty}\bigl(0,T;H^{l} \bigl(\mathbf{R}^{2} \bigr) \bigr) \\ &n(x,t)\in L^{\infty}\bigl(0,T;H^{l+2} \bigl( \mathbf{R}^{2} \bigr) \bigr), \qquad n_{t}(x,t)\in L^{\infty}\bigl(0,T;H^{l} \bigl(\mathbf{R}^{2} \bigr) \bigr) \\ &n_{tt}(x,t)\in L^{\infty}\bigl(0,T;H^{l-2} \bigl( \mathbf{R}^{2} \bigr) \bigr). \end{aligned}$$

The obtained results may be useful for better understanding the nonlinear coupling between the ion-acoustic waves and the Langmuir waves in a two-dimensional space.

2 A priori estimates

Lemma 2.1

Suppose that \(E_{0}(x)\in L^{2}(\mathbf{R}^{2})\). Then, for the solution of problem (6)∼(9), we have

$$\Vert E\Vert ^{2}_{L^{2}(\mathbf{R}^{2})}= \bigl\Vert E_{0}(x) \bigr\Vert ^{2}_{L^{2}(\mathbf{R}^{2})}. $$

Proof

Taking the inner product of (6) and E, then taking the imaginary part, we have

$$\begin{aligned} &\operatorname {Im}(iE_{t},E )=\operatorname {Re}(E_{t},E )=\frac{1}{2} \frac {d}{dt}\Vert E\Vert ^{2}_{L^{2}}, \\ &\operatorname {Im}\bigl(\Delta E-H^{2}\Delta^{2}E-nE,E \bigr)=0. \end{aligned}$$

Hence, we get

$$\frac{d}{dt}\Vert E\Vert ^{2}_{L^{2}}=0. $$

We thus get Lemma 2.1. □

Lemma 2.2

Sobolev’s estimations

Assume that \(u\in L^{q}(\mathbf{R}^{n})\), \(D^{m}u\in L^{r}(\mathbf{R}^{n})\), \(1\leq q,r\leq \infty, 0\leq j\leq m\), we have the estimations

$$\bigl\Vert D^{j}u \bigr\Vert _{L^{p}(\mathbf{R}^{n})}\leq C \bigl\Vert D^{m}u \bigr\Vert ^{\alpha}_{L^{r}(\mathbf{R}^{n})}\Vert u\Vert ^{1-\alpha}_{L^{q}(\mathbf{R}^{n})}, $$

where C is a positive constant, \(0\leq\frac{j}{m}\leq \alpha\leq1\),

$$\frac{1}{p}=\frac{j}{n}+\alpha \biggl(\frac{1}{r}- \frac{m}{n} \biggr)+(1-\alpha)\frac{1}{q}. $$

Lemma 2.3

Suppose that \(E_{0}(x)\in H^{2}(\mathbf{R}^{2})\), \(n_{0}(x)\in H^{1}(\mathbf{R}^{2})\), \(\varphi_{0}(x)\in H^{1}(\mathbf{R}^{2})\). Then we have

$$\begin{aligned} \mathscr{F}(t)=\mathscr{F}(0), \end{aligned}$$

where

$$\begin{aligned} \mathscr{F}(t)=\Vert \nabla E\Vert ^{2}_{L^{2}}+H^{2} \Vert \Delta E\Vert ^{2}_{L^{2}}+ \int_{\mathbf{R}^{2}}n\vert E\vert ^{2}\,\mathrm{d} x+ \frac{1}{2}\Vert \nabla\varphi \Vert ^{2}_{L^{2}}+ \frac {1}{2}\Vert n\Vert ^{2}_{L^{2}}+ \frac{H^{2}}{2}\Vert \nabla n\Vert ^{2}_{L^{2}}. \end{aligned}$$

Proof

Take the inner products of (6) and \(-E_{t}\). Since

$$\begin{aligned} &\operatorname {Re}(iE_{t},-E_{t})=0, \qquad \operatorname {Re}(\Delta E,-E_{t})= \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\Vert \nabla E\Vert ^{2}_{L^{2}}, \\ &\operatorname {Re}\bigl(-H^{2}\Delta^{2}E,-E_{t} \bigr)= \frac{H^{2}}{2}\frac{\mathrm{d}}{\mathrm{d}t}\Vert \Delta E\Vert ^{2}_{L^{2}}, \\ &\operatorname {Re}(-n E,-E_{t})=\frac{1}{2} \int_{\mathbf{R}^{2}}n\vert E\vert ^{2}_{t} \,\mathrm{d} x \\ &\phantom{\operatorname {Re}(-n E,-E_{t})}=\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d} t} \int_{\mathbf{R}^{2}}n\vert E\vert ^{2}\,\mathrm{d} x- \frac{1}{2} \int_{\mathbf{R}^{2}}n_{t}\vert E\vert ^{2} \,\mathrm{d} x \\ &\phantom{\operatorname {Re}(-n E,-E_{t})}=\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d} t} \int_{\mathbf{R}^{2}}n\vert E\vert ^{2}\,\mathrm{d} x- \frac{1}{2} \int_{\mathbf{R}^{2}}n_{t} \bigl(\varphi_{t}-n+H^{2} \Delta n \bigr)\,\mathrm{d} x \\ &\phantom{\operatorname {Re}(-n E,-E_{t})}=\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d} t} \int_{\mathbf{R}^{2}}n\vert E\vert ^{2}\,\mathrm{d} x- \frac{1}{2} \int_{\mathbf{R}^{2}}n_{t}\varphi_{t}\,\mathrm{d} x+ \frac{1}{4}\frac{\mathrm{d}}{\mathrm{d} t}\Vert n\Vert ^{2}_{L^{2}}+ \frac{H^{2}}{4}\frac{\mathrm {d}}{\mathrm{d} t}\Vert \nabla n\Vert ^{2}_{L^{2}} \\ &\phantom{\operatorname {Re}(-n E,-E_{t})}=\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d} t} \int_{\mathbf{R}^{2}}n\vert E\vert ^{2}\,\mathrm{d} x- \frac{1}{2} \int_{\mathbf{R}^{2}}\Delta\varphi\varphi_{t}\,\mathrm{d} x+ \frac{1}{4}\frac{\mathrm{d}}{\mathrm{d} t}\Vert n\Vert ^{2}_{L^{2}}+ \frac{H^{2}}{4}\frac{\mathrm {d}}{\mathrm{d} t}\Vert \nabla n\Vert ^{2}_{L^{2}} \\ &\phantom{\operatorname {Re}(-n E,-E_{t})}=\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbf{R}^{2}}n\vert E\vert ^{2}\,\mathrm{d} x+ \frac{1}{4}\frac{\mathrm{d}}{\mathrm{d} t}\Vert \nabla\varphi \Vert ^{2}_{L^{2}}+\frac{1}{4}\frac{\mathrm {d}}{\mathrm{d} t}\Vert n \Vert ^{2}_{L^{2}}+\frac{H^{2}}{4}\frac{\mathrm {d}}{\mathrm{d}t}\Vert \nabla n\Vert ^{2}_{L^{2}}, \end{aligned}$$

thus it follows that

$$\begin{aligned} &\frac{\mathrm{d}}{\mathrm{d}t} \biggl[\Vert \nabla E\Vert ^{2}_{L^{2}}+H^{2}\Vert \Delta E\Vert ^{2}_{L^{2}}+ \int_{\mathbf{R}^{2}}n\vert E\vert ^{2}\,\mathrm{d} x+ \frac{1}{2}\Vert \nabla\varphi \Vert ^{2}_{L^{2}}+ \frac {1}{2}\Vert n\Vert ^{2}_{L^{2}}+ \frac{H^{2}}{2}\Vert \nabla n\Vert ^{2}_{L^{2}} \biggr] \\ &\quad=0. \end{aligned}$$
(10)

Letting

$$\mathscr{F}(t)=\Vert \nabla E\Vert ^{2}_{L^{2}}+H^{2} \Vert \Delta E\Vert ^{2}_{L^{2}}+ \int_{\mathbf{R}^{2}}n\vert E\vert ^{2}\,\mathrm{d} x+ \frac{1}{2}\Vert \nabla\varphi \Vert ^{2}_{L^{2}}+ \frac {1}{2}\Vert n\Vert ^{2}_{L^{2}}+ \frac{H^{2}}{2}\Vert \nabla n\Vert ^{2}_{L^{2}}, $$

and noticing (10), we obtain

$$\begin{aligned} \mathscr{F}(t)=\mathscr{F}(0). \end{aligned}$$

 □

Lemma 2.4

Suppose that \(E_{0}(x)\in H^{2}(\mathbf{R}^{2})\), \(n_{0}(x)\in H^{1}(\mathbf{R}^{2})\), \(\varphi_{0}(x)\in H^{1}(\mathbf{R}^{2})\). Then we have

$$\sup_{0\leq t\leq T} \bigl(\Vert E\Vert _{H^{2}}+\Vert n \Vert _{H^{1}}+\Vert \varphi \Vert _{H^{1}} \bigr)\leq C. $$

Proof

By Hölder’s inequality, Young’s inequality and Lemma 2.2, it follows that

$$\begin{aligned} \biggl\vert \int_{\mathbf{R}^{2}} n\vert E\vert ^{2}\,\mathrm{d}x \biggr\vert &\leq \Vert n\Vert _{L^{2}}\Vert E\Vert ^{2}_{L^{4}} \\ &\leq\frac{1}{4}\Vert n\Vert ^{2}_{L^{2}}+\Vert E \Vert ^{4}_{L^{4}} \\ &\leq\frac{1}{4}\Vert n\Vert ^{2}_{L^{2}}+C\Vert \Delta E\Vert _{L^{2}}\Vert E\Vert ^{3}_{L^{2}} \\ &\leq\frac{1}{4}\Vert n\Vert ^{2}_{L^{2}}+ \frac{H^{2}}{2}\Vert \Delta E\Vert ^{2}_{L^{2}}+C. \end{aligned}$$

From Lemma 2.3 we get

$$\Vert \nabla E\Vert ^{2}_{L^{2}}+\frac{H^{2}}{2}\Vert \Delta E\Vert ^{2}_{L^{2}}+\frac{1}{2}\Vert \nabla \varphi \Vert ^{2}_{L^{2}}+\frac{1}{4}\Vert n\Vert ^{2}_{L^{2}}+\frac{H^{2}}{2}\Vert \nabla n\Vert ^{2}_{L^{2}}\leq\mathscr{F}(0)+C. $$

Take the inner products of Eq. (8) and φ. It follows that

$$\begin{aligned} \bigl(\varphi_{t}-n+H^{2}\Delta n-\vert E \vert ^{2}, \varphi \bigr)=0 \end{aligned}$$
(11)

since

$$\begin{aligned} &(\varphi_{t}, \varphi )=\frac{1}{2}\frac{\mathrm{d}}{\mathrm {d}t}\Vert \varphi \Vert ^{2}_{L^{2}}, \\ &\bigl(n+\vert E\vert ^{2}, \varphi \bigr)\leq \bigl(\Vert n \Vert _{L^{2}}+\Vert E\Vert ^{2}_{L^{4}} \bigr) \Vert \varphi \Vert _{L^{2}}\leq\frac{1}{2}\Vert \varphi \Vert ^{2}_{L^{2}}+C, \end{aligned}$$

where

$$\begin{aligned} &\Vert E\Vert ^{2}_{L^{4}}\leq C \Vert \nabla E\Vert _{L^{2}}\Vert E\Vert _{L^{2}}\leq C. \\ &\bigl(H^{2}\Delta n, \varphi \bigr)=H^{2} (n, \Delta\varphi )=H^{2} (n, n_{t} )=\frac{H^{2}}{2}\frac{\mathrm{d}}{\mathrm {d}t} \Vert n\Vert ^{2}_{L^{2}}. \end{aligned}$$

Hence, from Eq. (11) we get

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \bigl(\Vert \varphi \Vert ^{2}_{L^{2}}+H^{2} \Vert n\Vert ^{2}_{L^{2}} \bigr)\leq \Vert \varphi \Vert ^{2}_{L^{2}}+C. \end{aligned}$$

Using Gronwall’s inequality, we obtain that

$$\begin{aligned} \sup_{0\leq t\leq T} \bigl(\Vert \varphi \Vert ^{2}_{L^{2}}+H^{2} \Vert n\Vert ^{2}_{L^{2}} \bigr)\leq C. \end{aligned}$$

We thus get Lemma 2.4. □

Lemma 2.5

Suppose that \(E_{0}(x)\in H^{4}(\mathbf{R}^{2})\), \(n_{0}(x)\in H^{2}(\mathbf{R}^{2})\), \(\varphi_{0}(x)\in H^{2}(\mathbf{R}^{2})\). Then we have

$$\sup_{0\leq t \leq T} \bigl(\Vert E\Vert _{H^{4}}+\Vert n \Vert _{H^{2}}+\Vert \varphi \Vert _{H^{2}}+\Vert E_{t}\Vert _{L^{2}}+\Vert n_{t}\Vert _{L^{2}}+\Vert \varphi_{t}\Vert _{L^{2}} \bigr)\leq C. $$

Proof

Differentiating (6) with respect to t, then taking the inner products of the resulting equation and \(E_{t}\), we have

$$\begin{aligned} \bigl(iE_{tt}+\Delta E_{t}-H^{2} \Delta^{2}E_{t}- (nE )_{t}, E_{t} \bigr)=0 \end{aligned}$$
(12)

since

$$\begin{aligned} &\operatorname {Im}(iE_{tt},E_{t})=\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t} \Vert E_{t}\Vert ^{2}_{L^{2}}, \qquad \operatorname {Im}\bigl(\Delta E_{t}-H^{2}\Delta^{2}E_{t}-nE_{t},E_{t} \bigr)=0, \\ &\bigl\vert \operatorname {Im}(-n_{t}E,E_{t}) \bigr\vert \leq C\Vert E\Vert _{L^{\infty}} \Vert n_{t}\Vert _{L^{2}}\Vert E_{t}\Vert _{L^{2}}\leq C \bigl(\Vert E_{t} \Vert ^{2}_{L^{2}}+\Vert n_{t}\Vert ^{2}_{L^{2}} \bigr). \end{aligned}$$

By Lemma 2.2, it follows that

$$\begin{aligned} \Vert E\Vert _{L^{\infty}}\leq C\Vert \Delta E\Vert ^{\frac{1}{2}}_{L^{2}}\Vert E\Vert ^{\frac{1}{2}}_{L^{2}}; \end{aligned}$$

thus from Eq. (12) we get

$$ \frac{\mathrm{d}}{\mathrm{d}t}\Vert E_{t}\Vert ^{2}_{L^{2}}\leq C \bigl(\Vert E_{t}\Vert ^{2}_{L^{2}}+\Vert n_{t}\Vert ^{2}_{L^{2}} \bigr). $$
(13)

Differentiating Eq. (7) with respect to t, then taking the inner products of the resulting equation and \(n_{t}\), we have

$$\begin{aligned} (n_{tt}-\Delta\varphi_{t}, n_{t} )=0 \end{aligned}$$
(14)

since

$$\begin{aligned} &(n_{tt}, n_{t} )=\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\Vert n_{t}\Vert ^{2}_{L^{2}}, \\ &(-\Delta\varphi_{t}, n_{t} )= \bigl(-\Delta n+H^{2}\Delta^{2} n-\Delta \vert E\vert ^{2}, n_{t} \bigr) \\ & = \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\Vert \nabla n\Vert ^{2}_{L^{2}}+\frac{H^{2}}{2}\frac{\mathrm{d}}{\mathrm{d}t}\Vert \Delta n\Vert ^{2}_{L^{2}}- \bigl(\Delta \vert E\vert ^{2}, n_{t} \bigr). \end{aligned}$$

Noting that

$$\begin{aligned} \bigl\vert \bigl(\Delta \vert E\vert ^{2}, n_{t} \bigr) \bigr\vert \leq C \Vert E\Vert _{L^{\infty}} \Vert \Delta E\Vert _{L^{2}}\Vert n_{t}\Vert _{L^{2}}\leq C \bigl( \Vert n_{t}\Vert ^{2}_{L^{2}}+1 \bigr), \end{aligned}$$

from Eq. (14) we get

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \bigl[\Vert n_{t}\Vert ^{2}_{L^{2}}+\Vert \nabla n\Vert ^{2}_{L^{2}}+H^{2} \Vert \Delta n\Vert ^{2}_{L^{2}} \bigr]\leq C \bigl(\Vert n_{t}\Vert ^{2}_{L^{2}}+1 \bigr). \end{aligned}$$
(15)

From Eq. (13) and (15) we get

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \bigl[\Vert E_{t}\Vert ^{2}_{L^{2}}+ \Vert n_{t}\Vert ^{2}_{L^{2}}+\Vert \nabla n \Vert ^{2}_{L^{2}}+H^{2}\Vert \Delta n\Vert ^{2}_{L^{2}} \bigr]\leq C \bigl(\Vert E_{t}\Vert ^{2}_{L^{2}}+\Vert n_{t}\Vert ^{2}_{L^{2}}+1 \bigr). \end{aligned}$$

By Gronwall’s inequality, it follows that

$$\begin{aligned} \sup_{0\leq t\leq T} \bigl[\Vert E_{t} \Vert ^{2}_{L^{2}}+\Vert n_{t}\Vert ^{2}_{L^{2}}+\Vert \nabla n\Vert ^{2}_{L^{2}}+H^{2} \Vert \Delta n\Vert ^{2}_{L^{2}} \bigr]\leq C. \end{aligned}$$
(16)

Take the inner products of Eq. (8) and \(\varphi_{t}\). It follows that

$$\begin{aligned} \bigl(\varphi_{t}-n+H^{2}\Delta n-\vert E \vert ^{2}, \varphi _{t} \bigr)=0 \end{aligned}$$
(17)

since

$$\begin{aligned} &(\varphi_{t}, \varphi_{t} )=\Vert \varphi_{t} \Vert ^{2}_{L^{2}}, \\ &\bigl(-n+H^{2}\Delta n-\vert E\vert ^{2}, \varphi_{t} \bigr)\leq \bigl(\Vert n\Vert _{L^{2}}+H^{2} \Vert \Delta n\Vert _{L^{2}}+\Vert E\Vert ^{2}_{L^{4}} \bigr)\Vert \varphi_{t}\Vert _{L^{2}} \\ & \phantom{\bigl(-n+H^{2}\Delta n-\vert E\vert ^{2}, \varphi_{t} \bigr)}\leq C+\frac{1}{2}\Vert \varphi_{t}\Vert ^{2}_{L^{2}}. \end{aligned}$$

From Eq. (17) we get

$$\begin{aligned} \Vert \varphi_{t}\Vert ^{2}_{L^{2}}\leq C. \end{aligned}$$

Take the inner products of Eq. (6) and ΔE. It follows that

$$\begin{aligned} \bigl(iE_{t}+\Delta E-H^{2} \Delta^{2}E-nE, \Delta E \bigr)=0 \end{aligned}$$
(18)

since

$$\begin{aligned} &(iE_{t}-nE, \Delta E )\leq \bigl(\Vert E_{t}\Vert _{L^{2}}+\Vert E\Vert _{L^{\infty}} \Vert n\Vert _{L^{2}} \bigr)\Vert \Delta E\Vert _{L^{2}}\leq C, \\ &\bigl(\Delta E-H^{2}\Delta^{2}E, \Delta E \bigr)=\Vert \Delta E\Vert ^{2}_{L^{2}}+H^{2} \bigl\Vert \nabla^{3} E \bigr\Vert ^{2}_{L^{2}}. \end{aligned}$$

From Eq. (18) we get

$$\begin{aligned} \bigl\Vert \nabla^{3} E \bigr\Vert ^{2}_{L^{2}} \leq C. \end{aligned}$$

From (6) we obtain

$$\begin{aligned} H^{2} \bigl\Vert \Delta^{2}E \bigr\Vert _{L^{2}} \leq \Vert E_{t}\Vert _{L^{2}}+\Vert \Delta E\Vert _{L^{2}}+\Vert nE\Vert _{L^{2}}\leq C, \end{aligned}$$

where

$$\begin{aligned} \Vert nE\Vert _{L^{2}}\leq \Vert n\Vert _{L^{4}}\Vert E \Vert _{L^{4}}\leq C \Vert \nabla n\Vert ^{\frac {1}{2}}_{L^{2}} \Vert n\Vert ^{\frac{1}{2}}_{L^{2}}\Vert \nabla E\Vert ^{\frac{1}{2}}_{L^{2}}\Vert E\Vert ^{\frac {1}{2}}_{L^{2}}\leq C. \end{aligned}$$

From (7) we obtain

$$\begin{aligned} \Vert \Delta\varphi \Vert _{L^{2}}=\Vert n_{t}\Vert _{L^{2}}\leq C. \end{aligned}$$

We thus get Lemma 2.5. □

Lemma 2.6

Suppose that \(f_{1},f_{2}\in H^{s}(\Omega)\), \(\Omega\subseteq\mathbf{R}^{n}\). Then we have

$$\bigl\Vert D^{s}(f_{1}\cdot f_{2}) \bigr\Vert _{L^{2}}\leq C_{s} \bigl(\Vert f_{1}\Vert _{L^{2}} \bigl\Vert D^{s}f_{2} \bigr\Vert _{L^{2}}+ \bigl\Vert D^{s}f_{1} \bigr\Vert _{L^{2}}\Vert f_{2}\Vert _{L^{2}} \bigr), $$

where the constant \(C_{s}\) is independent of \(f_{1}\) and \(f_{2}\).

Lemma 2.7

Suppose that \(E_{0}(x)\in H^{m+4}(\mathbf{R}^{2})\), \(n_{0}(x)\in H^{m+2}(\mathbf{R}^{2})\), \(\varphi_{0}(x)\in H^{m+2}(\mathbf{R}^{2})\), \(m\geq0\). Then we have

$$\begin{aligned} &\sup_{0\leq t\leq T} \bigl( \bigl\Vert E(x,t) \bigr\Vert _{H^{m+4}}+ \bigl\Vert n(x,t) \bigr\Vert _{H^{m+2}}+ \bigl\Vert \varphi(x,t) \bigr\Vert _{H^{m+2}} \bigr)\leq C \\ &\sup_{0\leq t\leq T} \bigl( \bigl\Vert E_{t}(x,t) \bigr\Vert _{H^{m}}+ \bigl\Vert n_{t}(x,t) \bigr\Vert _{H^{m}}+\Vert \varphi_{t}\Vert _{H^{m}} \bigr)\leq C. \end{aligned}$$

Proof

Lemma 2.7 is true when \(m=0\) (Lemma 2.5). Suppose that Lemma 2.7 is true when \(m=k, (k\geq0)\). Take the inner products of (8) and \((-1)^{k+1}\Delta ^{k+3}\varphi\). It follows that

$$\begin{aligned} \bigl(\varphi_{t}-n+H^{2}\Delta n-\vert E \vert ^{2}, (-1)^{k+1}\Delta^{k+3}\varphi \bigr)=0 \end{aligned}$$
(19)

since

$$\begin{aligned} &\bigl(\varphi_{t},(-1)^{k+1}\Delta^{k+3}\varphi \bigr)=\frac{1}{2}\frac {\mathrm{d}}{\mathrm{d}t} \bigl\Vert \nabla^{k+3} \varphi \bigr\Vert ^{2}_{L^{2}}, \\ &\bigl(-n,(-1)^{k+1}\Delta^{k+3}\varphi \bigr)= \bigl(-n,(-1)^{k+1}\Delta^{k+2} n_{t} \bigr)= \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t} \bigl\Vert \nabla^{k+2} n \bigr\Vert ^{2}_{L^{2}}, \\ &\bigl(H^{2}\Delta n,(-1)^{k+1}\Delta^{k+3}\varphi \bigr)=H^{2} \bigl(\Delta n,(-1)^{k+1}\Delta^{k+2} n_{t} \bigr)=\frac{H^{2}}{2}\frac{\mathrm{d}}{\mathrm{d}t} \bigl\Vert \nabla^{k+3} n \bigr\Vert ^{2}_{L^{2}}, \\ &\bigl\vert \bigl(-\vert E\vert ^{2},(-1)^{k+1}\Delta ^{k+3}\varphi \bigr) \bigr\vert = \bigl\vert \bigl( \nabla^{k+3} \vert E\vert ^{2},\nabla^{k+3} \varphi \bigr) \bigr\vert \leq \bigl\Vert \nabla^{k+3} \vert E \vert ^{2} \bigr\Vert _{L^{2}} \bigl\Vert \nabla^{k+3} \varphi \bigr\Vert _{L^{2}} \\ &\phantom{\bigl\vert \bigl(-\vert E\vert ^{2},(-1)^{k+1}\Delta ^{k+3}\varphi \bigr) \bigr\vert }\leq C\Vert E\Vert _{L^{2}} \bigl\Vert \nabla^{k+3} E \bigr\Vert _{L^{2}} \bigl\Vert \nabla^{k+3}\varphi \bigr\Vert _{L^{2}} \\ &\phantom{\bigl\vert \bigl(-\vert E\vert ^{2},(-1)^{k+1}\Delta ^{k+3}\varphi \bigr) \bigr\vert }\leq C \bigl( \bigl\Vert \nabla^{k+3}\varphi \bigr\Vert ^{2}_{L^{2}}+1 \bigr), \end{aligned}$$

thus from Eq. (19) it follows that

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \bigl( \bigl\Vert \nabla^{k+3} \varphi \bigr\Vert ^{2}_{L^{2}}+ \bigl\Vert \nabla^{k+2} n \bigr\Vert ^{2}_{L^{2}}+H^{2} \bigl\Vert \nabla^{k+3} n \bigr\Vert ^{2}_{L^{2}} \bigr)\leq C \bigl( \bigl\Vert \nabla^{k+3}\varphi \bigr\Vert ^{2}_{L^{2}}+1 \bigr). \end{aligned}$$
(20)

By using Gronwall’s inequality, we have

$$\sup_{0\leq t\leq T} \bigl( \bigl\Vert \nabla^{k+3}\varphi \bigr\Vert ^{2}_{L^{2}}+ \bigl\Vert \nabla^{k+2} n \bigr\Vert ^{2}_{L^{2}}+ \bigl\Vert \nabla^{k+3} n \bigr\Vert ^{2}_{L^{2}} \bigr)\leq C. $$

From (7) and (8) we get

$$\begin{aligned} & \bigl\Vert \nabla^{k+1}n_{t} \bigr\Vert _{L^{2}}= \bigl\Vert \nabla ^{k+3}\varphi \bigr\Vert _{L^{2}}\leq C, \\ & \bigl\Vert \nabla^{k+1}\varphi_{t} \bigr\Vert _{L^{2}}\leq C \bigl( \bigl\Vert \nabla^{k+1}n \bigr\Vert _{L^{2}}+ \bigl\Vert \nabla^{k+3} n \bigr\Vert _{L^{2}}+ \Vert E\Vert _{L^{2}} \bigl\Vert \nabla ^{k+1}E \bigr\Vert _{L^{2}} \bigr)\leq C. \end{aligned}$$

Differentiating (6) with respect to t, then taking the inner products of the resulting equation and \((-1)^{k+1}\Delta ^{k+1}E_{t}\), we obtain

$$\begin{aligned} \bigl(iE_{tt}+\Delta E_{t}-H^{2} \Delta^{2}E_{t}- (nE )_{t}, (-1)^{k+1} \Delta^{k+1}E_{t} \bigr)=0. \end{aligned}$$
(21)

Since

$$\begin{aligned} &\operatorname {Im}\bigl(iE_{tt},(-1)^{k+1}\Delta^{k+1}E_{t} \bigr)=\frac{1}{2}\frac {\mathrm{d}}{\mathrm{d}t} \bigl\Vert \nabla^{k+1}E_{t} \bigr\Vert ^{2}_{L^{2}}, \\ &\operatorname {Im}\bigl(\Delta E_{t}-H^{2}\Delta^{2}E_{t},(-1)^{k+1} \Delta^{k+1}E_{t} \bigr)=0, \\ &\bigl\vert \operatorname {Im}\bigl(-n_{t}E,(-1)^{k+1} \Delta^{k+1}E_{t} \bigr) \bigr\vert \leq \bigl\vert \bigl( \nabla^{k+1}(n_{t}E),\nabla^{k+1}E_{t} \bigr) \bigr\vert \\ &\phantom{\bigl\vert \operatorname {Im}\bigl(-n_{t}E,(-1)^{k+1} \Delta^{k+1}E_{t} \bigr) \bigr\vert }\leq C \bigl( \bigl\Vert \nabla^{k+1}n_{t} \bigr\Vert _{L^{2}}\Vert E\Vert _{L^{2}}+ \bigl\Vert \nabla^{k+1}E \bigr\Vert _{L^{2}}\Vert n_{t}\Vert _{L^{2}} \bigr) \bigl\Vert \nabla^{k+1}E_{t} \bigr\Vert _{L^{2}} \\ &\phantom{\bigl\vert \operatorname {Im}\bigl(-n_{t}E,(-1)^{k+1} \Delta^{k+1}E_{t} \bigr) \bigr\vert }\leq C \bigl( \bigl\Vert \nabla^{k+1}E_{t} \bigr\Vert ^{2}_{L^{2}}+1 \bigr), \\ &\bigl\vert \operatorname {Im}\bigl(-nE_{t},(-1)^{k+1} \Delta^{k+1}E_{t} \bigr) \bigr\vert \leq \bigl\vert \bigl( \nabla^{k+1}(nE_{t}),\nabla^{k+1}E_{t} \bigr) \bigr\vert \\ &\phantom{\bigl\vert \operatorname {Im}\bigl(-nE_{t},(-1)^{k+1} \Delta^{k+1}E_{t} \bigr) \bigr\vert }\leq C \bigl( \bigl\Vert \nabla^{k+1}n \bigr\Vert _{L^{2}} \Vert E_{t}\Vert _{L^{2}}+ \bigl\Vert \nabla^{k+1}E_{t} \bigr\Vert _{L^{2}}\Vert n\Vert _{L^{2}} \bigr) \bigl\Vert \nabla^{k+1}E_{t} \bigr\Vert _{L^{2}} \\ &\phantom{\bigl\vert \operatorname {Im}\bigl(-nE_{t},(-1)^{k+1} \Delta^{k+1}E_{t} \bigr) \bigr\vert }\leq C \bigl( \bigl\Vert \nabla^{k+1}E_{t} \bigr\Vert ^{2}_{L^{2}}+1 \bigr), \end{aligned}$$

thus from Eq. (21) we get

$$ \frac{\mathrm{d}}{\mathrm{d}t} \bigl\Vert \nabla^{k+1}E_{t} \bigr\Vert ^{2}_{L^{2}}\leq C \bigl( \bigl\Vert \nabla^{k+1}E_{t} \bigr\Vert ^{2}_{L^{2}}+1 \bigr). $$
(22)

By using Gronwall’s inequality, we get

$$\sup_{0\leq t \leq T} \bigl\Vert \nabla^{k+1}E_{t} \bigr\Vert ^{2}_{L^{2}}\leq C. $$

From (6) we obtain

$$\begin{aligned} \bigl\Vert \nabla^{k+5}E \bigr\Vert _{L^{2}}\leq C \bigl( \bigl\Vert \nabla ^{k+1}E_{t} \bigr\Vert _{L^{2}}+ \bigl\Vert \nabla^{k+3} E \bigr\Vert _{L^{2}}+ \bigl\Vert \nabla^{k+1}n \bigr\Vert _{L^{2}}\Vert E\Vert _{L^{2}}+\Vert n\Vert _{L^{2}} \bigl\Vert \nabla^{k+1}E \bigr\Vert _{L^{2}} \bigr)\leq C. \end{aligned}$$

Hence

$$\begin{aligned} &\sup_{0\leq t\leq T} \bigl( \bigl\Vert E(x,t) \bigr\Vert _{H^{k+5}}+ \bigl\Vert n(x,t) \bigr\Vert _{H^{k+3}}+ \bigl\Vert \varphi(x,t) \bigr\Vert _{H^{k+3}} \bigr)\leq C, \\ &\sup_{0\leq t\leq T} \bigl( \bigl\Vert E_{t}(x,t) \bigr\Vert _{H^{k+1}}+ \bigl\Vert n_{t}(x,t) \bigr\Vert _{H^{k+1}}+\Vert \varphi_{t}\Vert _{H^{k+1}} \bigr)\leq C. \end{aligned}$$

This means Lemma 2.7 is true when \(m=k+1\). Thus Lemma 2.7 is proved completely. □

3 Existence and uniqueness of solution

Now, with these lemmas, we are able to prove Theorem 1.1. First we obtain the existence and uniqueness of the global generalized solution of problem (6)-(9).

Definition 3.1

The functions \(E\in L^{\infty}(0, T; H^{4})\cap W^{1,\infty}(0, T; L^{2})\), \(n\in L^{\infty}(0, T; H^{2})\cap W^{1,\infty}(0, T; L^{2})\) and \(\varphi \in L^{\infty}(0, T; H^{2})\cap W^{1,\infty}(0, T; L^{2})\) are called a generalized solution of problem (6)-(9) if for any \(\omega\in L^{2}\) they satisfy the integral equality

$$\begin{aligned} & (iE_{jt}, \omega )+ (\Delta E_{j}, \omega )=H^{2} \bigl(\Delta^{2}E_{j}, \omega \bigr)+ (nE_{j},\omega ),\quad j=1,2,\ldots,N, \\ & (n_{t},\omega )= (\Delta\varphi,\omega ), \\ & (\varphi_{t},\omega )+H^{2} (\Delta n,\omega )= (n,\omega )+ \bigl(\vert E\vert ^{2},\omega \bigr) \end{aligned}$$

with initial data

$$E(x,0)=E_{0}(x),\qquad n(x,0)=n_{0}(x),\qquad \varphi(x,0)= \varphi_{0}(x). $$

Now, one can estimate the following theorem.

Theorem 3.1

Suppose that \(E_{0}(x)\in H^{l+4}(\mathbf{R}^{2})\), \(n_{0}(x)\in H^{l+2}(\mathbf{R}^{2})\), \(\varphi_{0}(x)\in H^{l+2}(\mathbf{R}^{2})\), \(l\geq0\). Then there exists a global smooth solution of the initial value problem (6)-(9).

$$\begin{aligned} &E(x,t)\in L^{\infty}\bigl(0,T;H^{l+4} \bigl( \mathbf{R}^{2} \bigr) \bigr), \qquad E_{t}(x,t)\in L^{\infty}\bigl(0,T;H^{l} \bigl(\mathbf{R}^{2} \bigr) \bigr), \\ &n(x,t)\in L^{\infty}\bigl(0,T;H^{l+2} \bigl( \mathbf{R}^{2} \bigr) \bigr), \qquad n_{t}(x,t)\in L^{\infty}\bigl(0,T;H^{l} \bigl(\mathbf{R}^{2} \bigr) \bigr), \\ &\varphi(x,t)\in L^{\infty}\bigl(0,T;H^{l+2} \bigl( \mathbf{R}^{2} \bigr) \bigr), \qquad \varphi_{t}(x,t)\in L^{\infty}\bigl(0,T;H^{l} \bigl(\mathbf{R}^{2} \bigr) \bigr). \end{aligned}$$

Proof

By using the Galerkin method, choose the basic periodic functions \(\{\omega_{\kappa}(x)\}\) as follows:

$$-\Delta\omega_{\kappa}(x)=\lambda_{\kappa}\omega_{\kappa}(x),\quad \omega_{\kappa}(x)\in H^{2}(\Omega), \kappa=1,\ldots, l. $$

The approximate solution of problem (6)-(9) can be written as

$$\begin{aligned} &E^{l}(x,t)=\sum^{l}_{\kappa=1} \alpha^{l}_{\kappa}(t)\omega_{\kappa}(x),\qquad n^{l}(x,t)=\sum^{l}_{\kappa=1} \beta^{l}_{\kappa}(t)\omega_{\kappa}(x), \\ &\varphi^{l}(x,t)=\sum^{l}_{\kappa=1} \gamma^{l}_{\kappa}(t)\omega_{\kappa}(x), \end{aligned}$$

where

$$\begin{aligned} E^{l}(x,t)= \bigl(E^{l}_{1}, E^{l}_{2}, \ldots, E^{l}_{N} \bigr), \qquad \alpha^{l}_{\kappa}(t)= \bigl(\alpha^{l}_{\kappa1}, \alpha^{l}_{\kappa 2}, \ldots, \alpha^{l}_{\kappa N} \bigr). \end{aligned}$$

Ω is a two-dimensional cube with 2D in each direction, that is, \(\overline{\Omega}=\{x=(x_{1}, x_{2})\vert \vert x_{j}\vert \leq2D, j=1, 2\}\). According to Galerkin’s method, these undetermined coefficients \(\alpha^{l}_{\kappa}(t)\), \(\beta^{l}_{\kappa}(t)\) and \(\gamma^{l}_{\kappa }(t)\) need to satisfy the following initial value problem of the system of ordinary differential equations:

$$\begin{aligned} & \bigl(iE^{l}_{jt}, \omega_{\kappa}\bigr)+ \bigl(\Delta E^{l}_{j}, \omega_{\kappa}\bigr)=H^{2} \bigl(\Delta^{2}E^{l}_{j}, \omega_{\kappa}\bigr)+ \bigl(n^{l}E^{l}_{j}, \omega_{\kappa}\bigr),\quad j=1,2,\ldots,N, \end{aligned}$$
(23)
$$\begin{aligned} & \bigl(n^{l}_{t},\omega_{\kappa}\bigr)= \bigl(\Delta\varphi ^{l},\omega_{\kappa}\bigr), \end{aligned}$$
(24)
$$\begin{aligned} & \bigl(\varphi^{l}_{t},\omega_{\kappa}\bigr)+H^{2} \bigl(\Delta n^{l},\omega_{\kappa}\bigr)= \bigl(n^{l},\omega_{\kappa}\bigr)+ \bigl( \bigl\vert E^{l} \bigr\vert ^{2},\omega_{\kappa}\bigr) \end{aligned}$$
(25)

with initial data

$$\begin{aligned} E^{l}(x,0)=E^{l}_{0}(x),\qquad n^{l}(x,0)=n^{l}_{0}(x), \qquad \varphi^{l}(x,0)= \varphi^{l}_{0}(x), \end{aligned}$$
(26)

where

$$E^{l}_{0}(x)\xrightarrow{H^{4}} E_{0}(x),\qquad n^{l}_{0}(x)\xrightarrow{H^{2}}n_{0}(x),\qquad \varphi^{l}_{0}(x)\xrightarrow{H^{2}} \varphi_{0}(x),\quad l\to\infty. $$

Similarly to the proof of Lemmas 2.1-2.5, for the solution \(E^{l}(x,t)\), \(n^{l}(x,t)\), \(\varphi^{l}(x,t)\) of problem (23)-(26), we can establish the following estimates:

$$\begin{aligned} \sup_{0\leq t \leq T} \bigl( \bigl\Vert E^{l} \bigr\Vert _{H^{4}}+ \bigl\Vert n^{l} \bigr\Vert _{H^{2}}+ \bigl\Vert \varphi^{l} \bigr\Vert _{H^{2}}+ \bigl\Vert E^{l}_{t} \bigr\Vert _{L^{2}}+ \bigl\Vert n^{l}_{t} \bigr\Vert _{L^{2}}+ \bigl\Vert \varphi^{l}_{t} \bigr\Vert _{L^{2}} \bigr)\leq C, \end{aligned}$$

where the constants C are independent of l and D. By compact argument, some subsequence of \((E^{l}, n^{l}, \varphi^{l} )\), also labeled by l, has a weak limit \((E, n, \varphi )\). More precisely

$$\begin{aligned} & E^{l}(x,t)\to E(x,t) \quad\text{in } L^{\infty}\bigl(0,T; H^{4} \bigr) \text{ weakly star}, \\ & n^{l}(x,t)\to n(x,t)\quad \text{in } L^{\infty}\bigl(0,T; H^{2} \bigr) \text{ weakly star}, \\ & \varphi^{l}(x,t)\to\varphi(x,t) \quad\text{in } L^{\infty}\bigl(0,T;H^{2} \bigr) \text{ weakly star} \end{aligned}$$

and

$$\begin{aligned} & E^{l}_{t}\rightarrow E_{t} \quad\text{in } L^{\infty} \bigl(0,T; L^{2} \bigr) \text{ weakly star}, \\ & n^{l}_{t}\rightarrow n_{t} \quad\text{in } L^{\infty} \bigl(0,T; L^{2} \bigr) \text{ weakly star}, \\ & \varphi^{l}_{t}\rightarrow\varphi_{t}\quad \text{in } L^{\infty} \bigl(0,T; L^{2} \bigr) \text{ weakly star}. \end{aligned}$$

By using Guo and Shen’s method [15], one can prove the existence of a local solution for the periodic initial problem (6)-(9). Similarly to Zhou and Guo’s proof [16], letting \(D\rightarrow\infty\), the existence of a local solution for the initial value problem (6)-(9) can be obtained. By the continuation extension principle, from the conditions of the theorem and a priori estimates in Section 2, we can get the existence of a global generalized solution for problem (6)-(9). By Lemma 2.7 and the Sobolev imbedding theorem, Theorem 3.1 is proved. □

Next, we prove the uniqueness of a solution for problem (6)-(9).

Theorem 3.2

Suppose that \(E_{0}(x)\in H^{l+4}(\mathbf{R}^{2})\), \(n_{0}(x)\in H^{l+2}(\mathbf{R}^{2})\), \(\varphi_{0}(x)\in H^{l+2}(\mathbf{R}^{2})\), \(l\geq0\). Then the global solution of the initial value problem (6)-(9) is unique.

Proof

Suppose that there are two solutions \(E_{1},n_{1},\varphi_{1}\) and \(E_{2},n_{2},\varphi_{2}\). Let

$$\begin{aligned} E=E_{1}-E_{2},\qquad n=n_{1}-n_{2},\qquad \varphi= \varphi_{1}-\varphi_{2}. \end{aligned}$$

From (6)-(9) we get

$$\begin{aligned} &iE_{t}+\Delta E-H^{2}\Delta^{2}E-n_{1}E_{1}+n_{2}E_{2}=0, \end{aligned}$$
(27)
$$\begin{aligned} &n_{t}-\Delta\varphi=0, \end{aligned}$$
(28)
$$\begin{aligned} &\varphi_{t}-n+H^{2}\Delta n-\vert E_{1}\vert ^{2}+\vert E_{2}\vert ^{2}=0, \end{aligned}$$
(29)

with initial data

$$\begin{aligned} &E\vert_{t=0}=0,\qquad n\vert_{t=0}=0,\qquad \varphi \vert_{t=0}=0,\qquad x\in\mathbf{R}^{2}. \end{aligned}$$
(30)

Take the inner product of (27) and E. Since

$$\begin{aligned} &\operatorname {Im}(iE_{t},E)=\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\Vert E\Vert ^{2}_{L^{2}}, \\ &\operatorname {Im}\bigl(\Delta E-H^{2} \Delta^{2}E,E \bigr)=0, \\ &\bigl\vert \operatorname {Im}(n_{1}E_{1}-n_{2}E_{2},E ) \bigr\vert \leq \bigl\vert (nE_{1}+n_{2}E,E ) \bigr\vert \\ &\phantom{\bigl\vert \operatorname {Im}(n_{1}E_{1}-n_{2}E_{2},E ) \bigr\vert }\leq C \bigl(\Vert E_{1}\Vert _{L^{\infty}} \Vert n\Vert _{L^{2}}+\Vert n_{2}\Vert _{L^{\infty}} \Vert E\Vert _{L^{2}} \bigr)\Vert E\Vert _{L^{2}} \\ &\phantom{\bigl\vert \operatorname {Im}(n_{1}E_{1}-n_{2}E_{2},E ) \bigr\vert }\leq C \bigl(\Vert n\Vert ^{2}_{L^{2}}+\Vert E\Vert ^{2}_{L^{2}} \bigr), \end{aligned}$$

thus we obtain

$$ \frac{\mathrm{d}}{\mathrm{d}t}\Vert E\Vert ^{2}_{L^{2}} \leq C \bigl(\Vert n\Vert ^{2}_{L^{2}}+\Vert E\Vert ^{2}_{L^{2}} \bigr). $$
(31)

Take the inner product of (29) and φ. Since

$$\begin{aligned} &(\varphi_{t},\varphi)=\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\Vert \varphi \Vert ^{2}_{L^{2}}, \qquad \bigl\vert (-n,\varphi) \bigr\vert \leq C \bigl(\Vert n\Vert ^{2}_{L^{2}}+\Vert \varphi \Vert ^{2}_{L^{2}} \bigr), \\ &\bigl(H^{2}\Delta n,\varphi \bigr)= \bigl(H^{2}n,\Delta \varphi \bigr)= \bigl(H^{2}n,n_{t} \bigr)=\frac{H^{2}}{2} \frac{\mathrm {d}}{\mathrm{d}t}\Vert n\Vert ^{2}_{L^{2}}, \\ &\bigl\vert \bigl(-\vert E_{1}\vert ^{2}+\vert E_{2}\vert ^{2},\varphi \bigr) \bigr\vert = \bigl\vert \bigl( (E_{1}-E_{2} )\overline{E_{1}}+E_{2}( \overline{E_{1}}-\overline{E_{2}}),\varphi \bigr) \bigr\vert \\ &\phantom{\bigl\vert \bigl(-\vert E_{1}\vert ^{2}+\vert E_{2}\vert ^{2},\varphi \bigr) \bigr\vert }\leq C (\Vert E_{1}\Vert_{L^{\infty}}\Vert E\Vert_{L^{2}} \Vert+\Vert E_{2}\Vert_{L^{\infty}}\Vert E\Vert_{L^{2}} )\Vert \varphi\Vert _{L^{2}} \\ &\phantom{\bigl\vert \bigl(-\vert E_{1}\vert ^{2}+\vert E_{2}\vert ^{2},\varphi \bigr) \bigr\vert }\leq C \bigl(\Vert E\Vert^{2}_{L^{2}}+\Vert\varphi \Vert^{2}_{L^{2}} \bigr), \end{aligned}$$

thus we get

$$ \frac{\mathrm{d}}{\mathrm{d}t} \bigl(\Vert \varphi \Vert ^{2}_{L^{2}}+H^{2}\Vert n\Vert ^{2}_{L^{2}} \bigr)\leq C \bigl(\Vert E\Vert ^{2}_{L^{2}}+\Vert n\Vert ^{2}_{L^{2}}+ \Vert \varphi \Vert ^{2}_{L^{2}} \bigr). $$
(32)

Hence from (31) and (32) we get

$$ \frac{\mathrm{d}}{\mathrm{d}t} \bigl(\Vert E\Vert ^{2}_{L^{2}}+ \Vert n\Vert ^{2}_{L^{2}}+\Vert \varphi \Vert ^{2}_{L^{2}} \bigr)\leq C \bigl(\Vert E\Vert ^{2}_{L^{2}}+\Vert n\Vert ^{2}_{L^{2}}+ \Vert \varphi \Vert ^{2}_{L^{2}} \bigr). $$
(33)

By using Gronwall’s inequality and noticing (30), we arrive at

$$E\equiv0, \qquad n\equiv0,\qquad \varphi\equiv0. $$

Theorem 3.2 is proved. This completes the proof of Theorem 1.1. □

4 Results and discussion

One can regard (3)-(4) as the Langmuir turbulence parameterized by H and study the asymptotic behavior of systems (3)-(4) when H goes to zero.

5 Conclusions

By a priori integral estimates and the Galerkin method, we have the following conclusion.

Suppose that \(E_{0}(x)\in H^{l+4}(\mathbf{R}^{2})\), \(n_{0}(x)\in H^{l+2}(\mathbf{R}^{2})\), \(n_{1}(x)\in H^{l}(\mathbf{R}^{2})\), \(l\geq0\). Then there exists a unique global smooth solution of the initial value problem (3)-(5).

$$\begin{aligned} &E(x,t)\in L^{\infty}\bigl(0,T;H^{l+4} \bigl( \mathbf{R}^{2} \bigr) \bigr),\qquad E_{t}(x,t)\in L^{\infty}\bigl(0,T;H^{l} \bigl(\mathbf{R}^{2} \bigr) \bigr) \\ &n(x,t)\in L^{\infty}\bigl(0,T;H^{l+2} \bigl( \mathbf{R}^{2} \bigr) \bigr),\qquad n_{t}(x,t)\in L^{\infty}\bigl(0,T;H^{l} \bigl(\mathbf{R}^{2} \bigr) \bigr) \\ &n_{tt}(x,t)\in L^{\infty}\bigl(0,T;H^{l-2} \bigl( \mathbf{R}^{2} \bigr) \bigr). \end{aligned}$$

References

  1. Garcia, LG, Haas, F, de Oliveira, LPL, Goedert, J: Modified Zakharov equations for plasmas with a quantum correction. Phys. Plasmas 12, 012302 (2005)

    Article  Google Scholar 

  2. Zakharov, VE: Collapse of Langmuir waves. Sov. Phys. JETP 35, 908-914 (1972)

    Google Scholar 

  3. Holmer, J: Local ill-posedness of the 1D Zakharov system. Electron. J. Differ. Equ. 2007, 24 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Pecher, H: An improved local well-posedness result for the one-dimensional Zakharov system. J. Math. Anal. Appl. 342, 1440-1454 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Guo, B, Zhang, J, Pu, X: On the existence and uniqueness of smooth solution for a generalized Zakharov equation. J. Math. Anal. Appl. 365, 238-253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Linares, F, Matheus, C: Well posedness for the 1D Zakharov-Rubenchik system. Adv. Differ. Equ. 2009, 14 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Linares, F, Saut, JC: The Cauchy problem for the 3D Zakharov-Kuznetsov equation. Discrete Contin. Dyn. Syst. 24, 547-565 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. You, S: The posedness of the periodic initial value problem for generalized Zakharov equations. Nonlinear Anal. TMA 71, 3571-3584 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. You, S, Guo, B, Ning, X: Initial boundary value problem for a generalized Zakharov equations. Appl. Math. 57, 581-599 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Masmoudi, N, Nakanishi, K: Energy convergence for singular limits of Zakharov type systems. Invent. Math. 172, 535-583 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Seadawy, AR: Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput. Math. Appl. 67, 172-180 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ismail, A: The first integral method for constructing exact and explicit solutions to nonlinear evolution equations. Math. Methods Appl. Sci. 35, 716-722 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Morris, R, Kara, AH, Biswas, A: Soliton solution and conservation laws of the Zakharov equation in plasmas with power law nonlinearity. Nonlinear Anal., Model. Control 18, 153-159 (2013)

    MathSciNet  MATH  Google Scholar 

  14. You, S, Ning, X: On global smooth solution for generalized Zakharov equations. Comput. Math. Appl. 72, 64-75 (2016)

    Article  MathSciNet  Google Scholar 

  15. Guo, B, Shen, L: The existence and uniqueness of the classical solution and the periodic initial value problem for Zakharov equation. Acta Math. Appl. Sin. 3, 310-324 (1982)

    MathSciNet  MATH  Google Scholar 

  16. Zhou, Y, Guo, B: The periodic boundary value problem and the initial value problem for the generalized Korteweg-de Vries system of higher order. Acta Math. Sin. 27, 154-176 (1984)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Grant No. 11501232), Research Foundation of Education Bureau of Hunan Province (Grant Nos. 15B185 and 16C1272) and Scientific Research Fund of Huaihua University (Grant No. HHUY2015-05) for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun You.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SY carried out the existence studies and drafted the manuscript. XN carried out the uniqueness of the solution and helped to draft the manuscript. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, S., Ning, X. Cauchy problem of the generalized Zakharov type system in \(\mathbf{R}^{2}\) . J Inequal Appl 2017, 32 (2017). https://doi.org/10.1186/s13660-017-1306-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s13660-017-1306-2

Keywords